Tennessee Comprehensive Assessment Program

Math EOC Item Release Geometry

Published under contract with the Tennessee Department of Education by Educational Testing Service (ETS), Princeton, NJ 08541 . Copyright © 2019 by Tennessee Department of Education. All rights reserved. No part of this publication may be copied, reproduced, or distributed in any form or by any means, or stored in a database or retrieval system, without the prior express written consent of the Tennessee Department of Education.

Table of Contents

Metadata Interpretation Guide - Math 4
Geometry 5
Geometry to Integrated Math Courses Standard Crosswalk 32

Item Information
Item Code: TN239421 Grade Level: Geometry
Standard Code: G.CO.A. 2
Position No: 1
Standard Text: Represent transformations in the plane in multiple ways, including technology. Describe transformations as functions that take points in the plane (pre-image) as inputs and give other points (image) as outputs. Compare transformations that preserve distance and angle measure to those that do not (e.g., translation versus horizontal stretch).
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: B DOK Level: 2 Item Type: O

Metadata Definitions

Item Code: Unique letter/number code used to identify the item.	Grade Level: Grade level or Course.
Standard Code: Primary educational standard assessed.	Position No: Position of the item in the PDF.

Standard Text: Text of the educational standard assessed.
Reporting Category: Text of the Reporting Category the standard assesses.
Calculator: Indicates if usage of a calculator is allowed. $\mathrm{Y}=$ calculator is allowed, $\mathrm{N}=$ calculator is not allowed, $\mathrm{Z}=$ calculator may be allowed.

Correct Answer: Correct answer. This may be blank for constructed response items where students write or type their responses.

DOK Level: (if listed): Depth of Knowledge (cognitive complexity) is measured on a three-point scale. 1 = Recall or simple reproduction of information;
$2=$ Skills and concepts: comprehension and processing of text;
$3=$ Strategic thinking, prediction, elaboration.

Item Type: Indicates administered usage. O = Operational.

Item Information

Item Code: TN239421
Grade Level: Geometry
Standard Code: G.CO.A. 2
Position No: 1
Standard Text: Represent transformations in the plane in multiple ways, including technology. Describe transformations as functions that take points in the plane (pre-image) as inputs and give other points (image) as outputs. Compare transformations that preserve distance and angle measure to those that do not (e.g., translation versus horizontal stretch).
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: B DOK Level: 2 Item Type: O

Triangle $A B C$ has vertices $A(-3,3), B(2,4)$, and $C(-2,2)$ and is translated according to the rule $(x, y) \rightarrow(x+2, y-4)$.

What are the coordinates of the vertices of the translated figure?
A. $A^{\prime}(-7,5), B^{\prime}(-2,6)$, and $C^{\prime}(-6,4)$
B. $A^{\prime}(-1,-1), B^{\prime}(4,0)$, and $C^{\prime}(0,-2)$
C. $\quad A^{\prime}(-5,7), B^{\prime}(0,8)$, and $C^{\prime}(-4,6)$
D. $A^{\prime}(-1,-1), B^{\prime}(6,-2)$, and $C^{\prime}(4,-6)$

Item Information

Item Code: TN710213
Grade Level: Geometry
Standard Code: G.CO.A. 5
Position No: 2
Standard Text: Given a geometric figure and a rigid motion, draw the image of the figure in multiple ways, including technology. Specify a sequence of rigid motions that will carry a given figure onto another.
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: C DOK Level: 2 Item Type: O
$\triangle A B C$ is rotated 180° counter clockwise about the origin to produce $\triangle A^{\prime} B^{\prime} C^{\prime}$.

What are the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$?
A. $\quad A^{\prime}(2,1), B^{\prime}(1,1)$, and $C^{\prime}(1,3)$
B. $\quad A^{\prime}(-2,1), B^{\prime}(-1,1)$, and $C^{\prime}(1,-3)$
C. $A^{\prime}(2,-1), B^{\prime}(1,-1)$, and $C^{\prime}(1,-3)$
D. $A^{\prime}(-1,-2), B^{\prime}(-1,-1)$, and $C^{\prime}(-3,-1)$

Item Information

Item Code: TN910140
Grade Level: Geometry
Standard Code: G.CO.B. 6
Position No: 3
Standard Text: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to determine informally if they are congruent.
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: B,E DOK Level: 2 Item Type: O

Consider the line segment defined by the points $A(0,1)$ and $B(4,6)$. How does a reflection across the x-axis affect $\overline{A B}$?

Select all that apply.
A. The x-values of the reflection are the opposite values of the x-values of the original segment.
B. The y-values of the endpoints become their opposites.
C. The length of the reflection of $\overline{A B}$ is greater than the length of $\overline{A B}$.
D. The length of the reflection of $\overline{A B}$ is less than the length of $\overline{A B}$.
E. The length of the reflection of $A B$ is the same as the length of $A B$.

Item Information

Item Code: TN710390
Standard Code: G.CO.B. 7
Grade Level: Geometry
Position No: 4
Standard Text: Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: D
DOK Level: 2
Item Type: O

Which transformation proves $\triangle A B C \cong \triangle D E F$?

A. reflection of $\triangle A B C$ over the line $y=x$
B. translation of $\triangle A B C 7$ units right and 9 units down
C. rotation of $\triangle A B C 90^{\circ}$ clockwise, centered at the origin
D. reflection of $\triangle A B C$ over the y-axis and then over the x-axis

Item Information

Item Code: TN441970
Standard Code: G.CO.C. 11
Grade Level: Geometry
Standard Text: Prove theorems about parallelograms.
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: A,D,E
DOK Level: 2
Position No: 5
OR

Item Type: O

A partial proof that the opposite angles of a parallelogram are congruent is shown.

Given: Quadrilateral $A B C D$ is a parallelogram Prove: $\angle A \cong \angle C$

Statements	Reasons		
1. Quadrilateral $A B C D$ is a parallelogram	1. Given		
2. $\overline{B C}\\|\overline{A D}, \overline{A B}\\| \overline{D C}$	2.		
3. $\angle A$ and $\angle B$ are supplementary; $\angle B$ and $\angle C$ are supplementary	3.		
4. $\angle A$ and $\angle C$ are congruent	4.		

(This item continues on the next page.)
(Item 5, continued from the previous page)
Which reasons are missing from the proof?
Select all that apply.
A. Definition of parallelogram
B. Definition of parallel lines
C. When parallel lines are cut by a transversal, corresponding angles are congruent.
D. When parallel lines are cut by a transversal, consecutive interior angles are supplementary.
E. Angles supplementary to the same angle are congruent to each other.
F. Angles supplementary to the same angle are supplementary to each other.

Item Information

Item Code: TN841784
Grade Level: Geometry
Standard Code: G.CO.C. 9
Position No: 6
Standard Text: Prove theorems about lines and angles.
Reporting Category: 1: Congruence
Calculator: Z
Correct Answer: C
DOK Level: 2
Item Type: O

The steps of a proof are shown.
Given: $a \| b, \angle 1 \cong \angle 4$ Prove: $\angle 2 \cong \angle 3$

Steps
1. $a \\| b, \angle 1 \cong \angle 4$
2. $\angle 1 \cong \angle 2$
3. $\angle 2 \cong \angle 4$
4. $\angle 4 \cong \angle 3$
5. $\angle 2 \cong \angle 3$

What is the reason for Step 4?
A. Given
B. Alternate Interior Angle Theorem
C. Alternate Exterior Angle Theorem
D. Transitive Property of Congruence

Item Information

Item Code: TN110412

Grade Level: Geometry
Position No: 7

Standard Code: G.C.A. 2
Standard Text: Identify and describe relationships among inscribed angles, radii, and chords.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: D DOK Level: 1 Item Type: O

In the circle shown, $\overline{A B}$ is tangent to circle O at point C and $\overline{O C}$ is a radius.

Which relationship is true?
A. $\angle C O B \cong \angle C B O$
B. $\angle C O B \cong \angle A C O$
c. $\overline{O B} \perp \overline{O C}$
D. $\overline{O C} \perp \overline{A B}$

Item Information

Item Code: TN810446 Grade Level: Geometry
Standard Code: G.C.A. 2
Position No: 8
Standard Text: Identify and describe relationships among inscribed angles, radii, and chords.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: A
DOK Level: 1
Item Type: O

Which statement about angles of a circle is true?
A. An angle inscribed in a semicircle is a right angle.
B. A central angle has one half the measure of the arc it subtends.
C. An inscribed angle has the same measure as the arc it subtends.
D. An inscribed angle in which one of the sides is a diameter is obtuse.

Item Information

Item Code: TN845778

Grade Level: Geometry
Position No: 9

Standard Code: G.GPE.A. 1
Standard Text: Know and write the equation of a circle of given center and radius using the Pythagorean Theorem.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: D DOK Level: 2 Item Type: O

Jamal is asked to draw a circle. He is given the center and two points on the circle, but he isn't told which point is which. The points are $(-4,7),(3,6)$, and $(-1,3)$. Jamal draws the accurate circle from this information.

What is the equation of the circle he draws?
A. $(x+4)^{2}+(y-7)^{2}=50$
B. $(x-3)^{2}+(y-6)^{2}=50$
C. $(x-3)^{2}+(y-6)^{2}=25$
D. $(x+1)^{2}+(y-3)^{2}=25$

Item Information

Item Code: TN543001 Grade Level: Geometry
Standard Code: G.SRT.A. 1
Position No: 10
Standard Text: Verify informally the properties of dilations given by a center and a scale factor.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: A,D,F DOK Level: 2 Item Type: O

On a coordinate plane, consider the transformation of dilating a line by a factor of 3 , with the point $(0,8)$ as the center of dilation. Which line remains unchanged under the transformation?

Select all that apply.
A. The line $y=-3 x+8$
B. The line $y=3(x-8)$
C. The line $y=3(x+8)$
D. The line $y=3 x+8$
E. The line $y=4(x-8)$
F. The line $y=4 x+8$

Item Information

Item Code: TN943007 Grade Level: Geometry
Standard Code: G.SRT.A. 1
Position No: 11
Standard Text: Verify informally the properties of dilations given by a center and a scale factor.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: A
DOK Level: 2
Item Type: O

On a coordinate plane, the segment with endpoints $(10,40)$ and $(70,120)$ is dilated by a factor of $\frac{4}{5}$, with the origin as the center of dilation. What is the length of the resulting segment?
A. 80
B. 100
C. 112
D. 125

Item Information

Item Code: TN341656
Grade Level: Geometry
Standard Code: G.SRT.A. 2
Position No: 12
Standard Text: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: B DOK Level: 2 Item Type: O

What sequence of transformations can be used to prove that $\triangle A B C \sim \triangle D E F$?

(This item continues on the next page.)

(Item 12, continued from the previous page)

A. Dilate $\triangle A B C$ with respect to the origin using a scale factor of $\frac{1}{3}$. Then reflect the result over the y-axis.
B. Dilate $\triangle A B C$ with respect to the origin using a scale factor of $\frac{1}{2}$. Then reflect the result over the y-axis.
C. Dilate $\triangle A B C$ with respect to the origin using a scale factor of $\frac{1}{3}$. Then reflect the result over the x-axis.
D. Dilate $\triangle A B C$ with respect to the origin using a scale factor of $\frac{1}{2}$. Then reflect the result over the x-axis.

Item Information

Item Code: TN543078
Grade Level: Geometry
Standard Code: G.SRT.A. 2
Position No: 13
Standard Text: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: D
DOK Level: 2
Item Type: O

On a coordinate plane, $\triangle A B C$ has vertices at $A(10,5), B(10,15)$, and $C(5,5)$. $\triangle A^{\prime} B^{\prime} C^{\prime}$ has vertices at $A^{\prime}(30,12), B^{\prime}(30,52)$, and $C^{\prime}(10,12)$. Which transformation maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?
A. $(x, y) \rightarrow(3 x, 3 y+3)$
B. $(x, y) \rightarrow(3 x, 3 y-3)$
C. $(x, y) \rightarrow(4 x+10,4 y+8)$
D. $(x, y) \rightarrow(4 x-10,4 y-8)$

Item Information

Item Code: TN044272
Standard Code: G.SRT.A. 3

Grade Level: Geometry
Position No: 14

Standard Text: Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: B,C,D DOK Level: 3 Item Type: O

In the diagram shown, $\overline{A B} \| \overline{D E}$ and C is on both $\overline{A E}$ and $B D$.

Which of these statements must be true?
Select all that apply.
A. $\angle A \cong \angle D$ and $\angle B \cong \angle E$
B. $\triangle A B C \sim \triangle E D C$
C. Dilation by a factor of $\frac{E C}{A C}$ centered at point C followed by a rotation of 180° about point C, maps $\triangle A B C$ to $\triangle E D C$.
D. Rotation 180° about point C followed by a dilation by a factor of $\frac{E C}{A C}$ centered at point C, maps $\triangle A B C$ to $\triangle E D C$.
E. Dilation by a factor of $\frac{E C}{A C}$ centered at point C followed by a reflection across the line through C parallel to $\overline{A B}$, maps $\triangle A B C$ to $\triangle E D C$.

Item Information

Item Code: TN344316

Grade Level: Geometry
Position No: 15

Standard Code: G.SRT.B. 4
Standard Text: Prove theorems about similar triangles.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: B DOK Level: 2 Item Type: O
$\triangle A B C$ and $\triangle X Y Z$ are both right triangles.

Statements	Reasons
1. $A C=10, B C=15$, $X Z=4, Y Z=6$	1. Given
2. ?	2. ?
3. $\angle A C B$ and $\angle X Z Y$ are right angles	3. Given
4. $\angle A C B \cong \angle X Z Y$	4. All right angles are congruent.
5. $\triangle A B C \sim \triangle X Y Z$	5. SAS

(Item 15, continued from the previous page)

Which statement and reason are missing from the proof to prove $\triangle A B C \sim \triangle X Y Z$?
A. $A C=X Z$ and $B C=Y Z$ since the lengths of the corresponding sides are equal.
B. $\frac{A C}{X Z}=\frac{B C}{Y Z}$ since the lengths of the corresponding sides are proportional.
C. $A B=X Y$ since the lengths of the hypotenuses are equal.
D. $\frac{A C}{X Z}=\frac{Y Z}{B C}$ since the lengths of the corresponding sides are proportional.

Item Information

Item Code: TN444396
Standard Code: G.SRT.B. 4
Grade Level: Geometry
Standard Text: Prove theorems about similar triangles.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: D DOK Level: 3
Item Type: O

The following statements describe triangles $A B C$ and $P Q R$.
For $\triangle A B C: A C=2, A B=4$, and $B C=5$.
For $\triangle P Q R: Q R=7.5, P R=3$, and $P Q=6$.
Which statement explains why $\triangle A B C$ and $\triangle P Q R$ are either similar or not similar?
A. $\triangle A B C$ and $\triangle P Q R$ are not similar because $\frac{A C}{Q R} \neq \frac{A B}{P R}$.
B. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A C}{P R}=\frac{P Q}{A B}=\frac{B C}{Q R}$.
C. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A B}{P Q}=\frac{B C}{Q R}$.
D. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A C}{P R}=\frac{B C}{Q R}=\frac{A B}{P Q}$.

Item Information

Item Code: TN144443 Grade Level: Geometry
Standard Code: G.SRT.C.8.a
Position No: 17
Standard Text: Know and use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: C DOK Level: 2 Item Type: O

Lorenzo is 6 feet, 3 inches in height. He looks at his shadow when the angle of elevation of the sun is 35°.

What is the approximate length of his shadow?
A. 4 feet, 5 inches
B. 7 feet, 7 inches
C. 8 feet, 11 inches
D. 10 feet, 11 inches

Item Information

Item Code: TN844507
Grade Level: Geometry
Standard Code: G.SRT.C.8.b
Position No: 18
Standard Text: Know and use the Law of Sines and Law of Cosines to solve problems in real life situations. Recognize when it is appropriate to use each.
Reporting Category: 2: Triangles and Circles
Calculator: Z
Correct Answer: B
DOK Level: 2
Item Type: O

James and Padma are on opposite sides of a 100 -ft-wide canyon. James sees a bear at an angle of depression of 45°. Padma sees the same bear at an angle of depression of 65°.

What is the approximate distance, in feet, between Padma and the bear?
A. 21.2 ft
B. 75.2 ft
C. $\quad 96.4 \mathrm{ft}$
D. 171.6 ft

Item Information

Item Code: TN544274

Grade Level: Geometry
Position No: 19

Standard Code: G.GPE.B. 2
Standard Text: Use coordinates to prove simple geometric theorems algebraically.
Reporting Category: 3: Geometric Proofs and Solving Design Problems
Calculator: Z
Correct Answer: A,D,E DOK Level: 3 Item Type: O

On a coordinate plane, $\triangle A B C$ has vertices at $A(3,6), B(12,6)$, and $C(12,1)$. Which statements are true?

Select all that apply.
A. $\triangle A B C$ is a right triangle.
B. $\triangle A B C$ is an equilateral triangle.
C. $\triangle A B C$ is an isosceles triangle.
D. $\triangle A B C$ is a scalene triangle.
E. $\angle A$ and $\angle C$ are complementary.
F. $\angle A$ and $\angle C$ are supplementary.

Item Information

Item Code: TN162390
Standard Code: G.GPE.B. 5
Grade Level: Geometry
Position No: 20
Standard Text: Know and use coordinates to compute perimeters of polygons and areas of triangles and rectangles.
Reporting Category: 3: Geometric Proofs and Solving Design Problems
Calculator: Z
Correct Answer: A,C,D,E
DOK Level: 2
Item Type: O

Three points of rectangle $A B C D$ are shown on a coordinate plane.

Which statement is true? Select all that apply.
A. The coordinates of D are $(-4,-2)$.
B. The perimeter of rectangle $A B C D$ is about 13.41 units.
C. The length of $\overline{C D}$ is about 8.94 units.
D. The area of the rectangle is about 40 square units.
E. The length of $\overline{A D}$ is about 4.47 units.

Item Information

Item Code: TN262363
Standard Code: G.GPE.B. 5
Grade Level: Geometry
Position No: 21
Standard Text: Know and use coordinates to compute perimeters of polygons and areas of triangles and rectangles.
Reporting Category: 3: Geometric Proofs and Solving Design Problems
Calculator: Z
Correct Answer: B,D,E
DOK Level: 2
Item Type: O

Triangle $A B C$ is shown on a coordinate plane.

Which statement is true?
Select all that apply.
A. If $\overline{A D}$ is the altitude from A to $\overline{B C}$, the coordinates of D are $(1,3)$.
B. The perimeter of $\triangle A B C$ is about 15 units.
C. The length of the longest side of the triangle is about 5.83 units.
D. The area of the triangle is 9 square units.
E. The length of the shortest side of the triangle is about 3.16 units.

Item Information

Item Code: TN842856
Standard Code: G.GMD.A. 1

Grade Level: Geometry
Position No: 22

Standard Text: Give an informal argument for the formulas for the circumference of a circle and the volume and surface area of a cylinder, cone, prism, and pyramid.
Reporting Category: 4: Two and Three Dimensional Geometry
Calculator: Z
Correct Answer: A,C,D DOK Level: 2 Item Type: O

A right circular cylinder has radius r and height h. Two regular polygons with n sides are inscribed in the circular bases, and then joined to form a right prism.

Let A_{n} represent the area of a regular polygon with n sides. Which statements can be used to justify the formula for the volume of a cylinder?

Select all that apply.
A. As n increases, A_{n} approaches πr^{2}.
B. As n increases, A_{n} approaches $2 \pi r$.
C. The volume of the prism is given by A_{n} times the height.
D. As n increases, the volume of the prism approaches $\pi r^{2} h$.
E. As n increases, the volume of the prism approaches $2 \pi r^{2} h$.

Item Information

Item Code: TN542946 Grade Level: Geometry
Standard Code: G.GMD.A. 2
Position No: 23
Standard Text: Know and use volume and surface area formulas for cylinders, cones, prisms, pyramids, and spheres to solve problems.
Reporting Category: 4: Two and Three Dimensional Geometry
Calculator: Z
Correct Answer: A DOK Level: 2 Item Type: O

A fish tank in the shape of a rectangular prism holds 30 cubic feet of water. The tank has a length of 5 feet and a width of 3 feet. What is the depth, in feet, of the tank?
A. 2
B. 6
C. 10
D. 15

Item Information

Item Code: TN839361
Grade Level: Geometry
Standard Code: G.GMD.A. 2
Position No: 24
Standard Text: Know and use volume and surface area formulas for cylinders, cones, prisms, pyramids, and spheres to solve problems.
Reporting Category: 4: Two and Three Dimensional Geometry
Calculator: Z
Correct Answer: D DOK Level: 2 Item Type: O

A right triangular prism and a rectangular prism are shown. Each prism has a height of h inches and a cross-section that is parallel to its base. The length and width of the rectangular cross-section given.

If the volumes of the two solids are equal, which pair of measurements are possible lengths of the legs of the right-triangular cross-section?
A. 4 in. and 6 in.
B. 6 in. and 8 in.
C. 8 in. and 12 in .
D. 12 in . and 16 in .

Geometry to Integrated Math Courses Standard Crosswalk

The Tennessee Academic Standards for Mathematics are grouped by conceptual category - not by course - to allow for two approaches. The traditional approach consists of three courses: Algebra I, Geometry, and Algebra II. The integrated approach also consists of three courses: Integrated Math I, Integrated Math II, and Integrated Math III. Both pathways include the same content standards. Across the three courses, students in the traditional pathway will study the same content as students in the integrated pathway. The two pathways will provide the same entry point and the same exit point in the content standards. Because of limitations in the item bank for integrated pathway courses, only operational items from the traditional pathway assessments can be publicly released at this time. In order to provide assessment resources applicable to both pathways, the released items from traditional pathway assessments have been linked to standards in the integrated pathways. The table below lists the released items from the designated traditional pathway course, the standards they assess in that course, and the corresponding standards in the integrated pathway courses.

Geometry To Integrated Math Courses			
Sequence	Item Code	Geometry Standard	Int Math Standard
1	TN239421	G.CO.A. 2	M1.G.CO.A. 2
2	TN710213	G.CO.A. 5	M1.G.CO.A. 5
3	TN910140	G.CO.B. 6	M1.G.CO.B. 6
4	TN710390	G.CO.B. 7	M1.G.CO.B. 7
5	TN441970	G.CO.C. 11	M1.G.CO.C. 11
6	TN841784	G.CO.C. 9	M1.G.CO.C. 9
7	TN110412	G.C.A. 2	M3.G.C.A. 2
8	TN810446	G.C.A. 2	M3.G.C.A. 2
9	TN845778	G.GPE.A. 1	M3.G.GPE.A. 1
10	TN543001	G.SRT.A. 1	M2.G.SRT.A. 1
11	TN943007	G.SRT.A. 1	M2.G.SRT.A. 1
12	TN341656	G.SRT.A. 2	M2.G.SRT.A. 2
13	TN543078	G.SRT.A. 2	M2.G.SRT.A. 2
14	TN044272	G.SRT.A. 3	M2.G.SRT.A. 3
15	TN344316	G.SRT.B. 4	M2.G.SRT.B. 4
16	TN444396	G.SRT.B. 4	M2.G.SRT.B. 4
17	TN144443	G.SRT.C.8.a	M2.G.SRT.C.8a
18	TN844507	G.SRT.C.8.b	M2.G.SRT.C.8b
19	TN544274	G.GPE.B. 2	M3.G.GPE.B. 2
20	TN162390	G.GPE.B. 5	M3.G.GPE.B. 5
21	TN262363	G.GPE.B. 5	M3.G.GPE.B. 5
22	TN842856	G.GMD.A. 1	M2.G.GMD.A. 1
23	TN542946	G.GMD.A. 2	M2.G.GMD.A. 2
24	TN839361	G.GMD.A. 2	M2.G.GMD.A. 2

This page intentionally left blank.

Tennessee Comprehensive
Assessment Program TCAP
Math
EOC Item Release
Geometry
2018-2019

