Tennessee Comprehensive Assessment Program

Geometry
 Item Release

Developed and published under contract with the Tennessee Department of Education by NCS Pearson, Inc., 5601 Green Valley Dr.,
Bloomington, MN 55437. Copyright© 2022 Tennessee Department of Education. Nb part of this publication may be copied, reproduced, or distributed in any form or by any means, or stored in a database or retrieval system, without the prior express written consent of the Tennessee Department of Education and NCS Pearson, Inc. All trademarks, product names, and logos are the property of their respective owners. All rights reserved.

Metadata- Math

Items

| Page
 Number | UIN | Grade | Item
 Type | Key | DOK | TN
 Standards | Calculator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$| 4 | TN0001496 | Geometry | MC | D | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G.CO.B.7 | N | | | | |
| 5 | TN0001497 | Geometry | MS | A,B,D | 2 |
| G.CO.B.8 | N | | | | |
| 6 | TN0001519 | Geometry | MS | D,E | 2 |
| G.SRT.A.2 | Y | | | | |
| 7 | TN0001537 | Geometry | MC | A | 2 |
| G.SRT.C.7 | Y | | | | |
| 8 | TN0001623 | Geometry | MC | A | 2 |
| G.SRT.C.8 | Y | | | | |
| 9 | TN0001658 | Geometry | MC | A | 3 |
| 10 | TN0025973 | Geometry | MC | A | 2 |
| G.GMD.A.1 | Y | | | | |
| 11 | TN0029381 | Geometry | MS | A,E | 1 |
| 12 | TN0031130 | Geometry | MC | C | 3 |
| 13 | TN0031944 | Geometry | MC | A | 2 |
| G.SRT.B.1 | G.GPE.B.3 | Y | | | |
| 14 | TN0032417 | Geometry | MC | C | 2 |
| 15 | TN0063345 | Geometry | MC | A | 2 |
| G.GPE.B.2 | Y | | | | |
| 16 | TN0066806 | Geometry | MS | C,E | 3 |
| 17 | TN0069474 | Geometry | MC | C | 2 |
| 18 | TN0083039 | Geometry | MS | B,E | 3 |
| 19 | TN0084869 | Geometry | MC | D | 2 |
| G.CO.B.6 | G.GT.B.4 | Y | | | |
| 20 | TN0085449 | Geometry | MC | B | 2 |

Metadata Definitions:

UIN	Unique letter/number code used to identify the item.
Grade	Grade level or Course.
Item Type	Indicates the type of item. MC= Multiple Choice; MS= Multiple Select
Key	Correct answer. This may be blank for constructed response items where students write or type their responses.
DOK	Depth of Knowledge (cognitive complexity) is measured on a three-point scale. $1=$ Recall or simple reproduction of information; $2=$ Skills and concepts: comprehension and processing of text; $3=$ Strategic thinking, prediction, elaboration.
TN Standards	Primary educational standard assessed.

0. Triangles $J K L$ and $J^{\prime} K^{\prime} L^{\prime}$ are graphed on the coordinate grid.

Which statement is true?
A. The triangles are congruent because $\frac{J K}{J^{\prime} K^{\prime}}=\frac{K L}{K^{\prime} L^{\prime}}=\frac{J L}{J^{\prime} L^{\prime}}$.
B. The triangles are not congruent because $m \angle J \neq m \angle J^{\prime}, m \angle K \neq m \angle K^{\prime}$, and $m \angle L \neq m \angle L^{\prime}$.
C. The triangles are congruent because the corresponding angles of $\triangle J^{\prime} K^{\prime} L^{\prime}$ and $\triangle J K L$ are congruent.
D. The triangles are not congruent because the corresponding sides of $\triangle J^{\prime} K^{\prime} L^{\prime}$ and $\triangle J K L$ are not congruent.

TN0001497_1,2,4
00. Triangle $J K L$ is reflected across the y-axis to create the image, triangle $J^{\prime} K^{\prime} L^{\prime}$.

Which criteria for triangle congruence will prove triangle $J K L$ is congruent to triangle $J^{\prime} K^{\prime} L^{\prime}$?

Select all that apply.
A. Side Side Side
B. Side Angle Side
C. Side Side Angle
D. Angle Side Angle
E. Angle Angle Angle

TN0001519_4,5
00. Triangle $V X Y$ is graphed on a coordinate grid. Which series of transformations will result in a triangle that is similar, but not congruent, to triangle $V X Y$?

Select the two that apply.
A. a translation 4 units down followed by a translation 6 units left
B. a translation 3 units left followed by a rotation of 180° about the origin
C. a rotation of 60° about the origin followed by a translation 0.5 unit left
D. a dilation with a factor of 0.25 using the origin as the center of dilation followed by a translation 4 units down
E. a rotation of 90° about the origin followed by a dilation with a factor of 4 using the origin as the center of dilation
F. a dilation with a factor of 0.5 followed by a dilation with a factor of 2 using the origin as the center of dilation for both

TN0001537_1
00. In a right triangle, the cosine of one acute angle is $\frac{5}{13}$. What is the sine of the other acute angle?
A. $\frac{5}{13}$
B. $\frac{13}{5}$
C. $\frac{5}{12}$
D. $\frac{12}{13}$

TN0001623_1
00. A ramp is placed on a loading dock that is 5 ft tall.

Which ratio can be used to find the length of the ramp?
A. $\frac{5}{\sin 15^{\circ}}$
B. $\frac{5}{\cos 15^{\circ}}$
C. $\frac{\sin 15^{\circ}}{5}$
D. $\frac{\cos 15^{\circ}}{5}$
00. Logan is investigating the circumference of a circle with a radius of 10 inches. He divides the circle into 20 equal sections. Next he removes the sections and lines up the pieces to make a figure as shown.

To the nearest whole inch, what are the height and length of the base of the figure?
A. height $=10 \mathrm{in}$.

$$
\text { base }=31 \mathrm{in}
$$

B. height $=10 \mathrm{in}$.
base $=63$ in.
C. height $=20 \mathrm{in}$.
base $=31$ in.
D. height $=20 \mathrm{in}$.
base $=63 \mathrm{in}$.
00. A partial proof is given, using isosceles triangle $A B C$, where angle B is the vertex angle.

Given: Isosceles $\triangle A B C$ $\overline{B D}$ bisects $\angle A B C$
Prove: $\triangle A B D \cong \triangle C B D$

Statements	Reasons
1. Isosceles $\triangle A B C$	1. Given
2. $\overline{A B} \cong \overline{B C}$	2. Definition of an isosceles triangle
3. $\overline{B D}$ bisects $\angle A B C$	3. Given
4. $\angle A B D \cong \angle C B D$	4. Definition of an angle bisector
5.	5.
$6 . \triangle A B D \cong \triangle C B D$	6. Side-Angle-Side (SAS)

Which statement and reason complete the proof?
A. $\overline{B D} \cong \overline{B D}$, Reflexive Property
B. $\overline{A D} \cong \overline{D C}$, Definition of a midpoint
C. $\angle A D B \cong \angle C D B$, All right angles are congruent.
D. $\angle A \cong \angle C$, Base angles of an isosceles triangle are congruent.
00. The coordinates of the vertices of $\triangle A B C$ are integers, as shown on the coordinate plane.

Triangle $A B C$ will be dilated by a scale factor of 2 . Which statements are true about the image of $\triangle A B C$?

Select the two true statements.
A. If the center of dilation is the origin, then the image is a triangle that has a side on the x-axis.
B. If the center of dilation is the origin, then the image is a triangle that has a side on the y-axis.
C. If the center of dilation is the origin, then the image is a triangle that does not have any sides parallel to the sides of $\triangle A B C$.
D. If the center of dilation is the point $(0,1)$, then the image is a triangle that is similar to $\triangle A B C$ but that has been rotated.
E. If the center of dilation is the point $(0,1)$, then the image is a triangle that has corresponding sides that are parallel to the sides of $\triangle A B C$.

TN0031130_3
00. In quadrilateral $A B C D, \overline{B C} \cong \overline{C D}$ and $\overline{A B} \cong \overline{A D}$.

Which single statement is sufficient to prove that $\angle B \cong \angle D$?
A. $\triangle A B D$ is isosceles because $\overline{A B} \cong \overline{A D}$.
B. $\triangle B C D$ is isosceles because $\overline{B C} \cong \overline{C D}$.
C. $\triangle A B C \cong \triangle A D C$ because $\overline{A C} \cong \overline{A C}, \overline{A B} \cong \overline{A D}$, and $\overline{B C} \cong \overline{C D}$.
D. $m \angle A+m \angle B+m \angle C+m \angle D=360^{\circ}$ because $A B C D$ is a convex quadrilateral.

TN0031944_1
00. Which equation represents a line perpendicular to the line represented by the equation $2 x-5 y=5$?
A. $5 x+2 y=6$
B. $6 x-15 y=15$
C. $5 x-2 y=6$
D. $2 x+5 y=20$

TN0032417_3
00. The center of circle O is located at $(25,20)$, and the radius of the circle is 10 units. Which of the following points lies on the circle?
A. $(-24,-17)$
B. $(-17,-14)$
C. $(19,28)$
D. $(26,23)$

TN0063345_1
00. Circle O is represented by the equation shown.

$$
(x+4)^{2}+(y-4)^{2}=9
$$

Which statement describes circle O ?
A. The length of a radius of circle O is 3 units, and circle O lies in Quadrant II.
B. The length of a radius of circle O is 3 units, and circle O lies in Quadrant III.
C. The length of a radius of circle O is 4.5 units, and circle O lies in Quadrant II.
D. The length of a radius of circle O is 4.5 units, and circle O lies in Quadrant III.

TN0066806_3,5
00. Segments $A C$ and $B D$ are diagonals of parallelogram $A B C D$.

Using $\overline{A D} \cong \overline{B C}$, which pairs of angles must be congruent to prove $\triangle A E D \cong \triangle C E B$ by the Angle-Side-Angle theorem?

Select the two that apply.
A. $\angle B C A \cong \angle B D A$
B. $\angle B E C \cong \angle A E D$
C. $\angle C A D \cong \angle B C A$
D. $\angle D A C \cong \angle D B C$
E. $\angle D B C \cong \angle B D A$

TN0069474_3
00. The graph of $\triangle R S T$ is shown.

The triangle is rotated 90° counterclockwise about the origin to create $\triangle R^{\prime} S^{\prime} T^{\prime}$. What are the coordinates of point R^{\prime} ?
A. $(8,-4)$
B. $(-8,4)$
C. $(4,-8)$
D. $(-4,8)$
00. A partial proof is given. Two statements are missing.

Given: $\frac{A B}{A D}=\frac{A E}{A C}$
Points A, B, and C are collinear. Points A, E, and D are collinear.
Prove: $\angle 1 \cong \angle 4$

Statement 1: $\frac{A B}{A D}=\frac{A E}{A C}$; Points A, B, and C are collinear; Points A, E, and D are collinear.
Statement 2:
Statement 3:
Statement 4: $\angle 1 \cong \angle 4$
Which relationships could be the two missing statements?
Select the two that apply.
A. $\angle 2 \cong \angle 3$
B. $\angle A \cong \angle A$
c. $\frac{A B}{B E}=\frac{C D}{A D}$
D. $\triangle A B E \sim \triangle A C D$
E. $\triangle E A B \sim \triangle C A D$

TN0084869_4
00. In the diagram, Cylinder 1 and Cylinder 2 have the same radius, r. The volume of Cylinder 2 is $1,543.5 \pi$ cubic centimeters.

What is the area, in square centimeters, of the base of Cylinder 1?
A. 10.5π
B. 21.0π
C. 55.125π
D. 110.25π

TN0085449_2
00. Two triangular prisms are shown in the figure.

Prism 1

Prism 2
A. 17 cm
B. 13 cm
C. 12 cm
D. 11 cm

The area of the base of Prism 1 and the area of the base of Prism 2 are both equal to 9 square centimeters. Prism 1 and Prism 2 have equal heights. The volume of Prism 1 is 108 cubic centimeters. What is the slant height, I, of Prism 2?

This page intentionally left blank.

Tennessee Comprehensive Assessment Program TCAP Geometry Item Release
Spring 2021

