Algebra One Mathematics Instructional Materials Scoring Rubric

Introduction:

The following Instructional Materials Scoring Rubric for Mathematics is designed to score materials in the following categories:

- Instructional Focus
- Math Practices
- Aspects of Rigor
- Accessibility Features

Scoring:

Each section is to be scored using a 0,1 , or 2 . For all sections, except for Rigor, use the following rubric when deciding on the appropriate rating:

- 0 : The metric is not present within the material.
- 1: The metric is present within the material. The intent and/or frequency component of the metric is not fully met.
- 2: A rating of 2 indicates the metric is present and all aspects of the metric are fully met.

For Rigor:

- 0 : The standard is not instructionally present within the material.
- 1: The standard is instructionally present but does not have an instructional focus on the indicated type of rigor.
- 2: The standard is instructionally present and has a clear instructional focus on the indicated type of rigor.

Note: Some standards appear under multiple aspects of rigor (i.e., Conceptual Understanding, Procedural Fluency, or Application). When scoring these standards, only score the part of the standard relevant to that aspect of rigor, which is identified by a bold, italics, larger font.

Algebra One Mathematics Instructional Materials Scoring Rubric

Gateway: The publisher must provide a Tennessee standards alignment guide as a part of the scope and sequence for the material. If this gateway is not met, the materials will not be scored.

Instructional Focus							
Connections to content from prior grades are clearly identified and explicitly related to grade-level work.							
Materials embed a minimum of 3 tasks in every unit. Each task has multiple entry- points and can be solved using a minimum of 2 solution strategies and/or representations.							
Materials give students opportunities to work problems within each lesson. Each problem set: - Covers the full breadth of the standard(s) covered in the lesson - Is aligned to on grade level expectations as identified in the standard(s)							
Teacher resources indicate common student misconceptions in every unit and provide guidance on how to instructionally address the identified misconceptions.							
Materials provide educative supports (e.g., adult level explanations of the standards and strategies) in every lesson for teachers to ensure standards are taught accurately and to the appropriate level of rigor (i.e., conceptual understanding, procedural fluency, and application) as indicated by the standards.							
Materials develop student understanding of multiple representations (i.e., concrete, representational, abstract) for relevant standards which are identified in the state's Instructional Focus Documents.							
Materials include problems and activities in every unit that connect two or more grade level standards in a domain (e.g., A1.S.ID.A.1 and A1.S.ID.A.3).							
Materials include problems and activities in every unit that connect two or more grade level domains. (e.g., A1.F.IF.A.2 and A1.A.REI.D.6)							
Materials provide opportunities for students to participate in a spiraled review in every unit.							

Algebra One Mathematics Instructional Materials Scoring Rubric

Materials embed the eight math practice standards in every unit. Math practice standards are clearly identified in both teacher and student materials.
Materials use appropriate math vocabulary which is aligned to the grade level standards.
Materials support students in discussing and articulating mathematical ideas.
Within each lesson students either write or verbally justify their thoughts.

Aspects of Rigor				
Conceptual Understanding: The materials support the intentional development of students' conceptual understanding of key mathematical concepts, especially where called for in specific content standards or clusters.	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	
A1.N.Q.A.1 Use units as a way to understand real-world problems. \star		Evidence		
A1.N.Q.A.1a Choose and interpret the scale and the origin in graphs and data displays. \star				
A1.N.Q.A.1b Use appropriate quantities in formulas, converting units as necessary. \star				
A1.N.Q.A.1c Define and justify appropriate quantities within a context for the purpose of modeling. \star				
A1.N.Q.A.1b Choose an appropriate level of accuracy when reporting quantities. \star				
A1.A.SSE.A.1 Interpret expressions that represent a quantity in terms of its context. \star				
A1.A.SSE.A.1a Interpret parts of an expression, such as terms, factors, and coefficients.				
A1.A.SSE.A.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.				
A1.A.SSE.A. 2 Use the structure of an algebraic expression to identify ways to rewrite it.				
A1.A.APR.A.1 Add, subtract, and multiply polynomials. Use these operations to demonstrate that polynomials form a closed system that adhere to the same properties of operations as the integers.				

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. \star				
A1.A.CED.A2 Create equations in two variables to represent relationships between quantities and use them to solve problems in a real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.				
A1.A.CED.A. 3 Create individual and systems of equations and/or inequalities to represent constraints in a contextual situation, and interpret solutions as viable or nonviable.				
A1.A.CED.A. 4 Rearrange formulas to isolate a quantity of interest using algebraic reasoning.				
A1.A.REI.A. 1 Understand solving equations as a process of reasoning and explain the reasoning. Construct a viable argument to justify a solution method.				
A1.A.REI.B.2a Solve linear equations and inequalities, including compound inequalities, in one variable. Represent solutions algebraically and graphically.				
A1.A.REI.B.2b Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically.				
A1.A.REI.B.3a Solve quadratic equations by inspection (e.g., for $\times 2=49$), taking square roots, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when a quadratic equation has nonreal complex solutions.				
A1.A.REI.B.3b Solve quadratic inequalities using the graph of the related quadratic equation.				
A1.A.REI.C. 4 Write and solve a system of linear equations in real-world context. \downarrow				
A1.A.REI.D. 5 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).				
A1.A.REI.D. 6 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=$ $\boldsymbol{g}(\boldsymbol{x})$. Find approximate solutions by graphing the functions or making a table of values, using technology when appropriate. \star				
A1.F.IF.A. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.				
A1.F.IF.A. 2 Use function notation. \star				

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.F.IF.A.2a Use function notation to evaluate functions for inputs in their domains, including functions of two variables.				
A1.F.IF.A.2b Interpret statements that use function notation in terms of a context.				
A1.F.IF.A. 3 Understand geometric formulas as functions. \star				
A1.F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. \star				
A1.F.IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the context of the function it models.				
A1.F.IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph. \star				
A1.F.IF.C. 7 Graph functions expressed algebraically and show key features of the graph by hand and using technology.				
A1.F.IF.C. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.				
A1.F.IF.C.8a Rewrite quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a real-world context.				
A1.F.IF.C. 9 Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions.				
A1.F.IF.C.9a Compare properties of two different functions. Functions may be of different types and/or represented in different ways.				
A1.F.IF.C.9b Compare properties of the same function on two different intervals or represented in two different ways.				
A1.F.BF.A. 1 Build a function that describes a relationship between two quantities. \star				
A1.F.BF.A.1a Determine steps for calculation, a recursive process, or an explicit expression from a context.				
A1.F.BF.B. 2 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given graphs.				
A1.F.LE.A. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.				
A1.F.LE.A.1a Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.				

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.F.LE.A.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
A1.F.LE.A.1c Recognize situations in which a quantity grows or decays by a constant factor per unit interval relative to another.
A1.F.LE.A. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a table, a description of a relationship, or input-output pairs.
A1.F.LE.B. 3 Interpret the parameters in a linear or exponential function in terms of a context. \star
A.S.ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (mean, median, and/or mode) and spread (range, interquartile range) of two or more different data sets.
A1.S.ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points. \star
A1.S.ID.B. 4 Represent data from two quantitative variables on a scatter plot, and describe how
the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. \star
A1.S.ID.C. 5 Interpret the rate of change and the constant term of a linear model in the context of data. \star
A1.S.ID.C. 6 Use technology to compute the correlation coefficient of a linear model; interpret the correlation coefficient in the context of the data. \star
A1.S.ID.C. 7 Explain the differences between correlation and causation. Recognize situations where an additional factor may be impacting correlated data. \star Procedural Skill and Fluency: The materials provide intentional opportunities for students to develop procedural skills and fluencies, especially where called for in specific content standards or clusters
A1.N.Q.A.1b Use appropriate quantities in formulas, converting units as necessary. \star
A1.A.SSE.A. 2 Use the structure of an algebraic expression to identify ways to rewrite it.
A1.A.APR.A. 1 Add, subtract, and multiply polynomials. Use these operations to
demonstrate that polynomials form a closed system that adhere to the same properties of operations as the integers.

Algebra One Mathematics Instructional Materials Scoring Rubric

variables on coordinate axes with labels and scales, and use the graphs to make predictions.*				
A1.A.CED.A. 4 Rearrange formulas to isolate a quantity of interest using algebraic reasoning.				
A1.A.REI.B. 2 Solve linear and absolute value equations and inequalities in one variable				
A1.A.REI.B.2a Solve linear equations and inequalities, including compound inequalities, in one variable. Represent solutions algebraically and graphically.				
A1.A.REI.B.2b Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically.				
A1.REI.B.3 Solve quadratic equations and inequalities in one variable.				
A1.A.REI.B.3a Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when a quadratic equation has nonreal complex solutions.				
A1.A.REI.B.3b Solve quadratic inequalities using the graph of the related quadratic equation.				
A1.A.REI.C. 4 Write and solve a system of linear equations in real-world context. $\begin{aligned} & \text { ¢ }\end{aligned}$				
A1.A.REI.D. 6 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ intersect are the solutions of the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$. Find approximate solutions by graphing the functions or making a table of values, using technology when appropriate.				
A1.REI.D. 7 Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.				
A1.F.IF.A.2a Use function notation to evaluate functions for inputs in their domains, including functions of two variables.				
A1.F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.				
A1.F.IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph. \star				
A1.F.IF.C. 7 Graph functions expressed algebraically and show key features of the graph by hand and using technology. \star				
A1.F.IF.C. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. \star				

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.F.IF.C.8a Rewrite quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a real-world context.				
A1.F.BF.A. 1 Build a function that describes a relationship between two quantities. \star				
A1.F.BF.A.1a Determine steps for calculation, a recursive process, or an explicit expression from a context.				
A1.F.BF.B. 2 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of \boldsymbol{k} given graphs.				
A1.F.LE.A. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a table, a description of a relationship, or input-output pairs.				
A1.S.ID.A. 1 Use measures of center to solve real-world and mathematical problems.				
A.S.ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (mean, median, and/or mode) and spread (range, interquartile range) of two or more different data sets.				
A1.S.ID.B. 4 Represent data from two quantitative variables on a scatter plot, and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.				
A1.S.ID.C. 6 Use technology to compute the correlation coefficient of a linear model; interpret the correlation coefficient in the context of the data. \star				
Applications: The materials support the intentional development of students' ability to utilize mathematical concepts and skills in engaging applications, especially where called for in specific content standards or clusters.	0	1	2	Evidence
A1.N.Q.A. 1 Use units as a way to understand real-world problems. \star				
A1.N.Q.A.1a Choose and interpret the scale and the origin in graphs and data displays.				
A1.N.Q.A.1b Use appropriate quantities in formulas, converting units as necessary.				
A1.N.Q.A.1c Define and justify appropriate quantities within a context for the purpose of modeling.				
A1.N.Q.A.1b Choose an appropriate level of accuracy when reporting quantities. \star				
A1.A.SSE.A. 1 Interpret expressions that represent a quantity in terms of its context.				
A1.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems.				

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.A.CED.A2 Create equations in two variables to represent relationships between quantities and use them to solve problems in a real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions. \star
A1.A.CED.A. 3 Create individual and systems of equations and/or inequalities to represent constraints in a contextual situation, and interpret solutions as viable or non-viable. \star
A1.A.REI.C. 4 Write and solve a system of linear equations in real-world context. \star
A1.A.REI.D. 6 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$. Find approximate solutions by graphing the functions or making a table of values, using technology when appropriate. \star
A1.F.IF.A. 2 Use function notation. \star
A1.F.IF.A.2b Interpret statements that use function notation in terms of a context.
A1.F.IF.A. 3 Understand geometric formulas as functions. \star
A1.F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. \star
A1.F.IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the context of the function it models.
A1.F.IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph. \star
A1.F.IF.C. 7 Graph functions expressed algebraically and show key features of the graph by hand and using technology. \star
A1.F.IF.C. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
A1.F.IF.C.8a Rewrite quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a real-world context.
A1.F.IF.C. 9 Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions. \star
A1.F.BF.A. 1 Build a function that describes a relationship between two quantities. \star

Algebra One Mathematics Instructional Materials Scoring Rubric

A1.F.BF.A.1a Determine steps for calculation, a recursive process, or an explicit expression from a context.				
A1.F.LE.B. 3 Interpret the parameters in a linear or exponential function in terms of a context. \star				
A1.S.ID.A. 1 Use measures of center to solve real-world and mathematical problems. \star				
A.S.ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (mean, median, and/or mode) and spread (range, interquartile range) of two or more different data sets.				
A1.S.ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.				
A1.S.ID.B. 4 Represent data from two quantitative variables on a scatter plot, and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.				
A1.S.ID.C. 5 Interpret the rate of change and the constant term of a linear model in the context of data.				
A1.S.ID.C. 6 Use technology to compute the correlation coefficient of a linear model; interpret the correlation coefficient in the context of the data.				
A1.S.ID.C. 7 Explain the differences between correlation and causation. Recognize situations where an additional factor may be impacting correlated data.				

Accessibility Features				
Digital Materials	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Evidence
All lessons within the materials are available in digital form and include a printable option.				
In every lesson, materials include recommended supports, accommodations, and modifications for Students with Disabilities and English Language Learners that will support their regular and active participation in accessing on grade level material (e.g., modifying vocabulary words within word problems, sentence starters, etc.).				

Algebra One Mathematics Instructional Materials Scoring Rubric Education

