PUBLIC NOTICE

Bridgestone Americas Tire Operations, LLC – Warren Plant has applied to the Tennessee Department of Environment & Conservation, Division of Air Pollution Control (Division identification number 89-0077/981102) for approval to expand its tire manufacturing facility in Morrison, Warren County, Tennessee. The expansion will provide for additional tire capacity at the Warren Plant location. The project is subject to review under the State rule for Prevention of Significant Deterioration of Air Quality (PSD), Paragraph 1200-03-09-.01(4) of the Tennessee Air Pollution Control Regulations, which requires a public notification and 30-day public comment period.

The Division of Air Pollution Control has reviewed the application with respect to the above-mentioned PSD regulations and has determined that construction can be approved if certain conditions are met. A copy of the PSD application materials, a copy of the PSD preliminary determination, and a copy of the draft construction permit are available for public inspection during normal business hours at the following locations:

Cookeville Environmental Field Office	TDEC Division of Air Pollution Control
Division of Air Pollution Control	William R. Snodgrass Tennessee Tower
1221 South Willow Avenue	312 Rosa L. Parks Avenue, 15th Floor
Cookeville, TN 38506	Nashville, Tennessee 37243

Electronic copies of the draft permit and supporting materials are available by accessing the TDEC internet site located at:

https://www.tn.gov/environment/ppo-public-participation/ppo-public-participation/ppo-air.html

Questions concerning the source(s) may be addressed to Justin Dolzen at (615) 532-0575 or by e-mail at justin.dolzen@tn.gov.

Interested parties are invited to review these materials and comment. In addition, a public hearing may be requested at which written or oral presentations may be made. To be considered, written comments or requests for a public hearing must be received no later than 4:30 PM on **February 26, 2024**. To assure that written comments are received and addressed in a timely manner, written comments must be submitted using one of the following methods:

- Mail, private carrier, or hand delivery: Address written comments to Ms. Michelle W. Owenby, Director, Division of Air Pollution Control, William R. Snodgrass Tennessee Tower, 312 Rosa L. Parks Avenue 15th Floor, Nashville, Tennessee 37243.
- 2. E-mail: Submit electronic comments to <u>air.pollution.control@tn.gov</u>.

A final determination will be made after weighing all relevant comments.

Individuals with disabilities who wish to review information maintained at the above-mentioned depositories should contact the Tennessee Department of Environment and Conservation to discuss any auxiliary aids or services needed to facilitate such review. Such contact may be in person, by writing, telephone, or other means, and should be made no less than ten days prior to the end of the public comment period to allow time to provide such aid or services. Contact the Tennessee Department of Environment and Conservation ADA Coordinator, William R. Snodgrass Tennessee Tower, 312 Rosa L. Parks Avenue 2nd Floor, Nashville, TN 37243, (866) 253-5827. Hearing impaired callers may use the Tennessee Relay Service, (800) 848-0298.

Air Pollution Control

DATE: January 26, 2024

Assigned to – Justin Dolzen

PREVENTION OF SIGNIFICANT DETERIORATION PRECONSTRUCTION REVIEW AND PRELIMINARY DETERMINATION FOR BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC IN WARREN COUNTY, TENNESSEE

This review was performed by the Tennessee Air Pollution Control Division in accordance with the Rules for Prevention of Significant Deterioration (PSD).

DRAFT

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

TABLE OF CONTENTS

		Page
I.	Rule Background	1
II.	Project Background and Description	2
III.	Information Used in Analysis	3
IV.	Emissions Analysis	3
V.	Regulatory Applicability	5
VI.	Best Available Control Technology (BACT) Analysis Review	6
VII.	Air Quality Analysis	17
VIII.	Additional Impact Analysis	23
IX.	Conclusions and Conditions of Approval	25

Appendix A	Application for Proposed PSD Construction Permit	A-1
Appendix B	Draft PSD Construction Permit 981102	B-1
Appendix C	Emission Summaries for PSD Construction Permit 981102	C-1
Appendix D	Public Notice	D-1
Appendix E	PSD Determination Calculations	E-1
Appendix F	Dispersion Modeling Correspondence	F-1
Appendix G	Draft Permit Correspondence	G-1
Appendix H	Response to EPA/Public Comments on Draft Permits	H-1

I. <u>Rule Background</u>

On June 3, 1981, the State of Tennessee adopted Tennessee Air Pollution Control Regulations (TAPCR) paragraph 1200-03-09-.01(4), Prevention of Significant Air Quality Deterioration (PSD). This paragraph has been subsequently amended, with the latest amendments effective December 28, 2022. Under these regulations, a new major stationary source that is included in one of 28 source categories and has the potential to emit 100 tons per year (tons/yr) or more of any criteria pollutant, or 250 tons/yr or more of any criteria pollutant located in an attainment area, must be reviewed with regard to significant deterioration prior to construction. In addition, any major stationary source which makes a major modification in an attainment area that causes a significant emissions increase must be reviewed with the same regard.

To comply with the amended PSD regulations, a source with potential emissions greater than significant amounts of a regulated pollutant must meet several criteria. The first criterion is that Best Available Control Technology (BACT) must be applied to all emission points for the applicable PSD pollutant. The second criterion is that the proposed source or modification must not cause or contribute to any violation of the National Ambient Air Quality Standards (NAAQS – see **Table 1**). Finally, increases in ambient concentrations of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and particulate matter (PM₁₀ and PM_{2.5}) resulting from emissions discharged by the proposed source must not exceed the increments specified by the PSD regulations (**Table 2**).

Table 1: National Ambient Air Quality Standards					
Pollutant Averaging Period Star			Standard		
	(PM ₁₀)	24-hour (primary and secondary)	$150 \mu g/m^{3} ^{[1]}$		
Particulate		Annual	12.0 µg/m ³ (primary) ^[2]		
Matter	(PM _{2.5})	Annuar	$15.0 \mu g/m^3$ (secondary) ^[2]		
		24-hour (primary and secondary)	$35 \ \mu g/m^3 (or \ 100 \ \mu g/m^3)^{[3]}$		
Nitrogen Dioxide (NO ₂)		Annual (primary and secondary)	53 ppb ^[4]		
Nittogen I	Dioxide (INO_2)	1-hour (primary)	100 ppb (or 100 μ g/m ³) ^[5]		
		8-hour	9 ppm (or 10,000 µg/m ³) ^[6]		
Carbon Monoxide (CO)		1-hour	35 ppm (or 40,000 μ g/m ³) ^[6]		
		1-hour (primary)	75 ppb (or 197 μ g/m ³) ^[7]		
Sulfur Dioxide (SO ₂)		3-hour (secondary)	0.5 ppm (or 1,300 μ g/m ³) ^[6]		
Lea	Lead (Pb)3-month (primary and secondary)		0.15 µg/m ³ [8]		
Ozone (O ₃)		8-hour (primary and secondary)	0.070 ppm (or 140 μ g/m ³) ^[9]		

1. Not to be exceeded more than once per year on average over three years.

2. Annual mean, averaged over three years.

3. 98th percentile, averaged over three years.

4. Annual mean.

5. 98th percentile of 1-hour daily maximum concentration, averaged over three years.

6. Not to be exceeded more than once per year.

7. 99th percentile of 1-hour daily maximum concentrations, averaged over three years.

8. Not to be exceeded.

9. Annual fourth-highest daily maximum 8-hour concentration, averaged over three years.

Table 2: Maximum Allowable Increases (µg/m ³) for Class II Areas				
Pollutant	μg/m ³			
PM ₁₀ , annual arithmetic mean	17			
PM_{10} , 24-hour maximum	30			
PM _{2.5} , annual arithmetic mean	4			
PM _{2.5} , 24-hour maximum	9			
SO ₂ , Annual arithmetic mean	20			
SO ₂ , 24-hour maximum	91			
SO ₂ , 3-hour maximum	512			
NO ₂ , Annual arithmetic mean	25			

II. <u>Project Background and Description</u>

Bridgestone Americas Tire Operations, LLC (BATO) is proposing to expand its rubber truck and bus tire manufacturing operations at their Morrison, Tennessee factory located in Warren County (BATO - Warren Plant). The proposed facility expansion will provide for additional tire manufacturing capacity at the Warren Plant location currently permitted in Title V Operating Permit Number 569874. A summary of the existing permitted sources is shown in **Table 3**.

Table 3: Current Permitted Sources at the Warren Plant			
Source Number	Source Description		
89-0077-02	Railcar and Trailer Unloading, Storage, and Handling		
89-0077-04	Manufacturing and Material Usage		
89-0077-05	Rubber Mixing and Remilling		
89-0077-10	Two 75 MMBtu/hr Boilers and One 10.3 MMBtu/hr Hydronic Heater		
89-0077-18	One 99 HP Diesel Driven Emergency Engine		
89-0077-19	One 15 HP Diesel Driven Emergency Engine		
89-0077-20	Two 266 HP Diesel Driven Emergency Engine		
89-0077-21	One 300-Gallon Gasoline Storage Tank		
89-0077-22	Tire Curing		

As discussed earlier, a major stationary source is one that is included in one of 28 listed source categories and that emits, or has the potential to emit, 100 tons/yr or more of any regulated NSR pollutant, or any other stationary source that emits, or has the potential to emit, 250 tons/yr or more of any regulated NSR pollutant. The existing BATO - Warren Plant (Facility ID 89-0077), the subject of this PSD application and permitting review, is a PSD major stationary source.

To accommodate the proposed increase in tire manufacturing capacity, the following modifications are necessary:

Source 89-0077-02: install one new railcar unloading station and 10 new carbon black silos;

Source 89-0077-04: install additional extruders, calendars, and cement stations;

Source 89-0077-05: install four additional mixers;

Source 89-0077-10: install one additional 75 MMBtu/hr natural gas-fired boiler with No.2 fuel oil backup;

Source 89-0077-22: install two additional tire curing trenches.

Additional tire repair equipment and oil storage tanks are being added as part of this project. These emission units will qualify as insignificant emission units and are not required to be listed in the permit. This project will cause an increase in production rates for existing permitted equipment and some existing insignificant activities.

The proposed modification will result in a significant emission increase of volatile organic compounds (VOC). The project is therefore subject to review under the regulations governing PSD.

III. <u>Information Used in Analysis</u>

The applicant provided the following information in their June 21, 2023, permit application and the revised BACT analysis dated August 11, 2023. The proposed expansion project will consist of modification to the following emission sources:

- Source 89-0077-02: Railcar and trailer unloading, storage, and handling;
- Source 89-0077-04: Manufacturing and material usage;
- Source 89-0077-05: Rubber mixing and remilling;
- Source 89-0077-10: Powerhouse (boilers and heaters);
- Source 89-0077-22: Tire curing.

The proposed facility expansion consists of new emission units being added to the existing emission sources listed above. The existing equipment included in the sources listed above will experience increased utilization as a result of this expansion. Emissions from the increased utilization of these processes have been evaluated and are included in the project emission summary.

IV. <u>Emissions Analysis</u>

Projected emission increases from the proposed project (Table 4) were obtained from the information and assumptions given in the June 21, 2023, permit application.

Table 4: Pre- and Post-Modification Emissions Comparison					
		Baseline Actual	Future Actual/Potential	Project Emissions Increase	
Source ID	Source Description	I	M Emissions (tons/	/yr)	
89-0077-02	Railcar Unloading, Storage, and Handling	1.14	1.78	0.64	
89-0077-05	Rubber Mixing and Remilling	5.73	11.32	5.59	
89-0077-10	Boilers and Heater	1.75	6.84	5.09	
	Tire Spraying (Dopers)	1.85	2.74	0.90	
	Cement Spraying (PM only)	0.0037	0.0054	0.0018	
	Tire Repair	0.0835	0.1240	0.0405	
	Final Inspection Marking	0.0313	0.0625	0.0313	
	Tire Testing	0.0010	0.0014	0.0005	
	Mold Cleaning	0.038	0.075	0.037	
	Inside Day Bins	0.884	1.105	0.221	
	Total:	11.51	24.05	12.54	
Source ID	Source Description	P	M ₁₀ Emissions (tons	s/yr)	
89-0077-02	Railcar Unloading, Storage, and Handling	1.14	1.78	0.64	
89-0077-05	Rubber Mixing and Remilling	5.73	11.32	5.59	
89-0077-10	Boilers and Heater	1.75	6.84	5.09	
	Tire Spraying (Dopers)	1.85	2.74	0.90	
	Cement Spraying (PM only)	0.0037	0.0054	0.0018	
	Tire Repair	0.0835	0.1240	0.0405	
	Final Inspection Marking	0.0313	0.0625	0.0313	
	Tire Testing	0.0010	0.0014	0.0005	
	Mold Cleaning	0.038	0.075	0.037	
	Inside Day Bins	0.884	1.105	0.221	

	Table 4: Pre- and Post-Modificat	ion Emissions C	omparison	
		Baseline Actual	Future Actual/Potential	Project Emissions Increase
	Total:	11.51	24.05	12.54
Source ID	Source Description	P	M _{2.5} Emissions (ton	s/yr)
89-0077-02	Railcar Unloading, Storage, and Handling	0.26	0.41	0.15
89-0077-05	Rubber Mixing and Remilling	1.32	2.60	1.29
89-0077-10	Boilers and Heater	1.75	6.84	5.09
	Tire Spraying (Dopers)	1.85	2.74	0.90
	Cement Spraying (PM only)	0.0037	0.0054	0.0018
	Tire Repair	0.0835	0.1240	0.0405
	Final Inspection Marking	0.0313	0.0625	0.0313
	Tire Testing	0.0010	0.0014	0.0005
	Mold Cleaning	0.038	0.075	0.037
	Inside Day Bins	0.884	1.105	0.221
	Total:	6.22	13.96	7.75
Source ID	Source Description	V	OC Emissions (ton	s/yr)
89-0077-04	Manufacturing and Material Usage	148.75	261.26	112.51
89-0077-05	Rubber Mixing and Remilling	16.94	180.66	163.72
89-0077-10	Boilers and Heater	1.25	3.02	1.77
89-0077-22	Curing Operation	38.34	104.77	66.43
	Solvent Storage Tank	0.07	0.12	0.05
	Tire Repair (does not include emissions from paint)	0.0582	0.0796	0.0264
	Final Inspection Marking (Spray Cans)	0.094	0.125	0.031
	Three New 30,000 Gallon (Max) Oil Storage Tanks	0.00	0.019	0.019
	Electron Beam Generator	0.0010	0.0015	0.0005
	Total:	205.50	550.06	344.56
Source ID	Source Description	N	Ox Emissions (tons	/yr)
89-0077-10	Boilers and Heater	11.49	38.28	26.79
	Electron Beam Generator	1.47	2.19	0.72
	Total:	12.96	40.47	27.51
Source ID	Source Description	(CO Emissions (tons	/yr)
89-0077-10	Boilers and Heater	19.08	46.13	27.05
	Total:	19.08	46.13	27.05
Source ID	Source Description	S	SO ₂ Emissions (tons	/yr)
89-0077-10	Boilers and Heater	0.30	25.31	25.01
	Total:	0.30	25.31	25.01
Source ID	Source Description	CO2e Emissions (short tons/yr)		
89-0077-10	Boilers and Heater	27,073	73,152	46,078
	Total:	27,073	73,152	46,078
Source ID	Source Description	Lead Emissions (short tons/yr)		
89-0077-10	Boilers and Heater	1.23E-04	1.68E-03	1.55E-03
	Total:	1.23E-04	1.68E-03	1.55E-03

Table 5: PSD Applicability Summary					
Pollutant	Net EmissionPSD SignificantPollutantIncrease (tons/yr)Emission Rate (tons/yr)				
PM	12.54	25	No		
PM ₁₀	12.54	15	No		
PM _{2.5}	7.75	10	No		
VOC	344.56	40	Yes		
NO _X	27.51	40	No		
СО	27.05	100	No		
SO_2	25.01	40	No		
CO ₂ e	46,078	75,000	No		
Lead	1.55E-03	0.6	No		

The proposed project will result in a significant emissions increase. There are no contemporaneous reductions available for netting, therefore, the project emissions increase of each pollutant is also the net emissions increase due to the project.

As demonstrated in Table 5, the net emission increase of each pollutant, when compared to the PSD SER thresholds, indicate emissions of VOC exceed the SER. Therefore, the proposed project is PSD major for VOC.

V. <u>Regulatory Applicability</u>

V.1 New Source Performance Standards (NSPS)

The New Source Performance Standards (NSPS) are national emission standards that apply to specific categories of new stationary sources. As stated in the Clean Air Act Amendments of 1977, these standards "shall reflect the degree of emission limitation and the percentage reduction achievable through application of the best technological system of continuous emission reduction the Administrator determines has been adequately demonstrated."

V.1.1 Small Industrial-Commercial-Institutional Steam Generating Units

40 CFR 60, Subpart Dc – *Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units* (Subpart Dc) regulates each steam generating unit for which construction, modification, or reconstruction begins after June 9, 1989, and that has a maximum design heat input capacity of 100 million British thermal units per hour (MMBtu/hr) or less, but greater than or equal to 10 MMBtu/hr. As a natural gas and No.2 fuel oil-fired unit, the new boiler (with a design heat input capacity of 75.0 MMBtu/hr) is subject to the requirements of 60.42c(d) to utilize fuel oil with a maximum sulfur content of 0.5% by weight, to the requirements of 60.48c(g)(1) or (2) to record and maintain records of the amount of fuel combusted in each unit on either a daily or monthly basis, and to the requirements of 60.48c(d) to submit semiannual reports. Alternatively, the facility may elect to record and maintain records of the total amount of fuel delivered to the property during each calendar month, per 60.48c(g)(3).

V.1.2 Rubber Tire Manufacturing

40 CFR 60, Subpart BBB – *Standards of Performance for the Rubber Tire Manufacturing Industry* (Subpart BBB) regulates rubber tire manufacturing plants for which construction, modification, or reconstruction began after January 20, 1983. Tire is defined in §60.541 as any agricultural, airplane, industrial, mobile home, light-duty truck and/or passenger vehicle tire that has a bead diameter less than or equal to 0.5 meter (m) (19.7 inches) and a cross section dimension less than or equal to 0.325 m (12.8 in.), and that is mass produced in an assembly-line fashion. The diameter of the tire beads for all tires manufactured at the BA–O - Warren Plant is 22.5 in or greater. Therefore, Subpart BBB does not apply.

V.2 National Emission Standards for Hazardous Air Pollutants (NESHAP)

The Environmental Protection Agency (EPA) has promulgated National Emission Standards for Hazardous Air Pollutants (NESHAP) for various industrial source categories. Sources in these categories that emit 10 tons per year or more of a single hazardous air pollutant (HAP) or 25 tons per year of total HAPs are subject to major source NESHAPs.

The proposed expansion will not result in facility-wide emissions of HAP to exceed the major source thresholds. The facility has requested limits to maintain area source status.

V.2.1 Rubber Tire Manufacturing

40 CFR 63, Subpart XXXX - *National Emission Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing* (Subpart XXXX) regulates existing and new rubber tire manufacturing operations located at, or that are a part of, a major source of HAP emissions. The BATO - Warren Plant is an area source of HAP emissions and is therefore not subject to Subpart XXXX.

V.2.2 Industrial, Commercial and Institutional Boilers Area Sources

40 CFR 63, Subpart JJJJJJ - National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources (Subpart JJJJJJ) regulates existing and new industrial, commercial, and institutional boilers located at a facility that is an area source of HAP. Subpart JJJJJJ applies to boilers located at area source facilities that burn coal, oil, biomass, or non-waste materials, but <u>not</u> to boilers that burn only gaseous fuels (including, but not limited to, natural gas, process gas, landfill gas, coal derived gas, refinery gas, hydrogen, and biogas).

The permittee has agreed to operate the proposed boiler as required to meet the definition of a gas-fired boiler per 40 CFR §63.11237. As such, the proposed boiler will not be subject to Subpart JJJJJJ.

VI. <u>Best Available Control Technology (BACT) Analysis Review</u>

Pursuant to subparagraph 1200-03-09-.01(4)(j)3 of the TAPCR, BATO is required to apply best available control technology (BACT) for emissions of VOC, since a significant net emission increase in VOC is expected as a result of this project. This requirement applies to each proposed or existing emissions unit at which an emission increase in VOC would occur as a result of a physical change or change in the method of operation of the unit. The emission sources included as part of this expansion that have potential emissions of VOC for which a BACT analysis is required are the new emissions units (new cement stations, calendars, and extruders) being added to the manufacturing and material usage operations (89-0077-04), the new emissions units (four new mixers) being added to the rubber mixing and remilling operations, (89-0077-05), the new boiler being added to the powerhouse (89-0077-10), the new tire curing trenches and curing presses being added to the tire curing operation (89-0077-22), two new tire repair stations, and three new 30,000 gallon (max) oil storage tanks.

BACT means an emission limitation (including a visible emission standard) based on the maximum degree of reduction for each regulated NSR pollutant which would be emitted from any proposed new or modified source which the Technical Secretary, <u>on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs</u>, determines is achievable for such source or modification through application of production processes or available methods, systems and techniques, including fuel cleaning or treatment or innovative fuel combustion techniques, for control of such pollutant.

In no event shall application of BACT result in emissions of any pollutant which would exceed the emissions allowed by any applicable standard under 40 CFR part 60 or 61. If the Technical Secretary determines that technological or economic limitations on the application of measurement methodology to a particular emissions unit would make the imposition of an emissions standard infeasible, a design, equipment, work practice, operational standard or combination thereof, may be prescribed instead to require the application of BACT. Such standard shall, to the degree possible, set forth the emissions reduction achievable by implementation of such design, equipment, work practice or operation, and shall provide for compliance by means which achieve equivalent results.

The EPA policy memorandum dated December 1, 1987, directs applicants and permit reviewers to consider all technically feasible alternatives, including those more stringent than the BACT selection. This is referred to as the "top-down BACT analysis approach." The Air & Waste Management Association's New Source Review Manual (Updated edition, August 2019) summarizes the top-down BACT analysis in the following steps:

1. Identify all available control technologies.

- 2. Eliminate technically infeasible options.
- 3. Rank remaining control technologies by control effectiveness.
- 4. Evaluate most effective controls and document results.
- 5. Select BACT.

The results of the BACT analysis are summarized in Table 6. The top-down BACT analysis approach provides that all available control technologies be ranked in descending order of control effectiveness. The most effective control technology is established as BACT unless the applicant demonstrates, and the permitting authority agrees, that technical considerations, or energy, environmental, or economic impacts indicate that the most effective technology is not achievable. If the most stringent technology is eliminated in this fashion, then the next most stringent alternative is considered, and so on.

Pursuant to TAPCR 1200-03-09-.01(4)(b)53, BACT means an emission limitation based on the maximum degree of reduction for each regulated NSR pollutant which would be emitted from any proposed new or modified air contaminant source. Pursuant to TAPCR 1200-03-02-.01(aa), a modification is any physical change in or change in the method of operation of an air contaminant source which increases the amount of any air contaminant (to which an emission standard applies) emitted by such source or which results in the emission of any air contaminant (to which an emission standard applies) not previously emitted except that an increase in the production rate or operating hours, if such increase does not exceed the operating design capacity nor the stated production rate or operating hours stipulated on the permit of the affected source. Existing equipment will experience debottlenecking and increased utilization upon completion of the proposed project. However, this increase in annual production rates for the existing equipment would not result in emissions which would be prohibited by the current permit (Title V permit number 569874). Therefore, no physical change or change in the method of operation is occurring for the existing equipment. Accordingly, the increase in emissions from the existing equipment does not meet the definition of a modification and the existing equipment is not subject to BACT.

Table 6: Summary of VOC BACT Analysis					
Emission Source	Emission Units	Emission Limit	Control Technology	Compliance Method	
Source 04: Manufacturing and Material Usage	new extruders, new calendars (equipment list provided in confidential application dated x), and three new cement stations	116.08 tons during any period of 12 consecutive months	Pollution Prevention (P2)	P2 will entail developing and implementing a work practice plan to minimize VOC emissions	
Source 05: Rubber Mixing and Remilling	Four new mixers	80.27 tons during any period of 12 consecutive months	P2	P2 will entail developing and implementing a work practice plan to minimize VOC emissions	
Source 10: Powerhouse	Boiler 3	1.77 tons during any period of 12 consecutive months	P2	P2 will entail good combustion and maintenance practices, including annual tune-ups	
Source 22: Tire Curing Operation	Two New Curing Trenches (Four new curing lines)	34.92 tons during any period of 12 consecutive months	P2	P2 will entail developing and implementing a work practice plan to minimize VOC emissions	
Tire Repair (Insignificant)	Two new tire stations	0.04 tons during any period of 12 consecutive months	P2	P2 will entail documentation of industry best practices implemented to minimize VOC emissions.	
Oil Storage Tanks (Insignificant)	Three new oil storage tanks (30,000 gallons or smaller, each)	0.02 tons during any period of 12 consecutive months	P2	P2 will entail documentation that the tanks are equipped with submerged fill and maintaining a light-colored tank exterior.	

Under Step 1 of a criteria pollutant top-down BACT analysis, the following resources are typically consulted when identifying demonstrated and potentially applicable control technology alternatives:

- The EPA's RACT/BACT/LAER Clearinghouse (RBLC);
- EPA's Clean Air Technology Center;
- Determinations of BACT by regulatory agencies for other similar sources or air permits and permit files from federal and state agencies;
- Engineering experience with similar control technologies;
- Control technology vendors;
- Technical journals, reports, and newsletters.

Searches of the RBLC database were conducted to identify the emission control technologies and emission levels established by permitting authorities as BACT for units comparable to those planned for installation at the BATO - Warren Plant.

VI.1 VOC BACT Analysis Review

VI.1.1 VOC BACT Analysis – Manufacturing and Material Usage (89-0077-04)

This source consists of cement stations, calendaring, extruding, bead winding, and autoclaving operations and includes plantwide usage of cement, inks, paints, and solvents. Various chemical additives and rubber compounds are utilized in each process, depending upon the particular tire recipe. VOC and HAP are emitted from the material usage included in this source. The proposed modification is to construct additional emission units of the type described above, in order to increase the tire manufacturing capacity of the facility.

BATO reviewed the RBLC database as part of the BACT analysis for this project and found six tire manufacturing plants which had undergone BACT analysis in the database. No instances where add on control technology was required as BACT were identified for the types of emission units included in this source.

A review of their analysis is presented below.

VI.1.1.1 Identify Available Control Technologies

BATO provided the following list of technologies as being applicable for the control of VOC emissions from the calendars, extruders, and cement stations:

- Thermal Oxidation (e.g., regenerative thermal oxidizers [RTO])
- Adsorption (e.g., activated carbon tower)
- RTO plus Zeolite concentrators
- Condenser Unit
- Boilers
- Absorption (e.g., wet scrubbing)
- Alternative Materials (i.e., silane replacement)
- Work Practice Standards (Pollution Prevention [P2])

VI.1.1.2 Eliminate Infeasible Options

Thermal Oxidation (RTO): Oxidation (incineration) destroys VOC by oxidizing them to form carbon dioxide and water. RTOs are a type of thermal oxidation control technology which utilize ceramic media in order to retain heat and improve energy efficiency. RTOs have proven effective in the tire industry. The units have limited impact on the environment, function effectively in a wide range of production scenarios, and are typically the most cost-effective thermal oxidation technology. Thermal oxidation, specifically by an RTO, is considered technically feasible. BATO assumes the use of an RTO to be the most effective and economical control device due the high control efficiency and energy efficiency of the technology.

Adsorption: Adsorption is a process whereby VOC is removed from a gaseous stream by adhering to the surface of a solid medium. Activated carbon is the most commonly used adsorbent. Zeolites and polymer adsorbents are also available options. The adsorbent can be regenerated, typically by heating, or replaced. When regenerated, the desorbed VOC must be controlled. BATO notes that the use of an adsorber would result in the production of a saturated carbon adsorbent waste stream due to the tire processing oils which are unable to be removed from the carbon. Adsorber systems are most effective at input concentrations at or above 500 ppm. This renders this technology technically infeasible for all activities included in this source, except for the cement stations. The use of a regenerating zeolite adsorber in conjunction with an RTO for the cement stations is considered technically feasible and discussed further below.

RTO plus Zeolite Concentrator: The use of an adsorber (concentrator) prior to incineration is sometimes necessary to achieve a high control efficiency when the exhaust gas has a low concentration of VOC and/or a high exhaust rate. When the adsorbent reaches its adsorption capacity, it is desorbed, and the VOC which is desorbed is routed to a control device at an appropriate concentration and flow rate for optimal pollution control. RTOs are often the control device paired with concentrators. Due to the proven effectiveness of RTOs in the tire industry, a concentrator and RTO pairing is considered technically feasible for control of VOC emissions from the calenders and extruders for the reasons discussed above.

Condenser Units: Condenser units are devices which convert a gas or vapor to a liquid. Devices which utilize a temperature reduction to achieve this phase change are called refrigerated condensers. Section 3 in Chapter 2 of the EPA Air Pollution Control Cost Manual indicates that refrigerated condensers are used for air pollution control when treating emissions streams with high VOC concentrations (usually >5,000 ppm). BATO has stated in the application that the emissions streams from the calenders, extruders, and cement stations are low concentration, high flow exhaust streams. Therefore, this technology is not considered technologically feasible.

Boilers: VOC laden exhaust gas may be routed to a boiler wherein the VOC is oxidized to form carbon dioxide and water. This control technique is considered technically feasible. Each boiler can accept 7,000 cfm of exhaust. Milling, calendaring, and extruding processes are vented directly inside the production area and would require a large volume of exhaust air in order to achieve a high VOC capture efficiency. The volume of exhaust air is conservatively estimated at 30,000 cfm, which exceeds the capacity of the boilers, making this option technically infeasible for control of VOC from the calenders and extruders. However, the new cement stations have a flowrate of 11,000 cfm per station, and the expected VOC concentration is higher than milling, calendaring, or extruding. Therefore, boiler control of the new cement stations is considered technically feasible.

Absorption (e.g., scrubbers): Absorption is a process whereby VOC is removed from a gaseous stream via a liquid solvent. Devices which utilize this method of control are commonly called scrubbers. There are a variety of implementations, which all seek to create contact between a scrubbing fluid and exhaust gas. The VOC in the exhaust gas is absorbed by the scrubbing fluid. The cleaned exhaust gas is emitted, and the scrubber liquid is either utilized for material recovery or disposed. BATO has not identified any absorbers/wet scrubbers which have been installed for control of VOC emissions from similar emission sources at other tire plants. BATO notes in the application that absorbers are best suited to high concentration exhaust streams and that the exhaust streams from this source are low concentration, high flow. Therefore, this control technology is deemed technically infeasible.

Alternative Materials (e.g., silane replacement): BATO states in the application that they are not aware of any alternative material to silane which can be used to produce tires which meet the quality and safety standards of BATO.

Work Practice Standards (P2): Work practice standards are work practices which focus on the minimization of emissions. VOC work practice standards that are applicable to calenders, extruders, and cement stations are practices such as storing VOC-containing materials in closed containers, using low-VOC materials where possible, promptly cleaning up spills, and minimization of cleaning with VOC containing compounds. This control technique is deemed technically feasible.

VI.1.1.3 Rank Remaining Control Technologies by Control Effectiveness

Following review of the available control technologies, thermal oxidation via RTO or boilers, with and without a concentrator system, and P2 remained as technically feasible control options. The remaining VOC control options, ranked by control effectiveness, are shown in **Table 7**.

Table 7: Ranked VOC Control Options - Calendars, Extruders, and Cement Stations			
Control Option Control Efficiency			
RTO/Boiler	98%		
RTO/Boiler with concentrator	95%		
P2 Unquantified			

A review of the energy, environmental, and economic impacts from the use of these controls are presented in the next section.

VI.1.1.4 Evaluate Most Effective Controls

Thermal Oxidation (RTO) and Boiler Economic Impact Analysis: This emission source consists of several types of emission units. The three highest emitting unit groups, cement stations, extruding, and calendaring, were evaluated. Cement stations were evaluated in the following configurations: each new cement station routed to a dedicated RTO, the three new stations routed to a single RTO with concentrator, the three new stations routed to a single boiler with concentrator, and the three new stations routed to three boilers. A concentrator would reduce the air volume sufficiently to allow a single boiler to handle three cement stations. Without a concentrator, the capture efficiency for boiler control is reduced to 85%, due to the inability of the three boilers to accommodate the entirety of the exhaust stream from the three cement stations.

The extrusion units contribute the next largest quantity of VOC emissions after the cement stations, 52.0 tons per year (total for existing and new units; new units alone will contribute 19.1 tons per year). The existing units are currently not vented to a control device. BATO states that a conservative estimate of exhaust flow needed to capture emissions from both the existing and new extruders is 30,000 scfm. The estimated control cost of abatement of VOC from the extruders with an RTO is \$13,446/ton VOC.

BATO states that the next highest contribution to VOC emissions from rubber processing equipment is 20.56 tons of VOC per year from calendaring. Similar to the extruders, calendaring units are not currently vented to a control device, but emissions could be feasibly collected with an exhaust flow of 30,000 cfm. Therefore, assuming the same control cost as for the extruders, the dollar per ton control cost for calendaring can be estimated at \$34,006 per ton of VOC. With a maximum VOC concentration expected from all remaining equipment at this source of 20 ppm, it can be assumed that control costs for any remaining equipment would not be economically feasible. A summary of the results of the cost analysis are presented in **Table 8**. Details of the financial evaluation for each control option may be found in Appendix B of the revised BACT analysis dated August 11, 2023.

Table 8: Cost Analysis of VOC Control Options - Calendars, Extruders, and Cement Stations					
Control Scenario	Overall Control Efficiency (%)	VOC Emission Reduction (tons per year)	Annualized Control Cost (\$)	Cost Effectiveness (\$/ton)	
Three New Cement Stations – 65.8 tons of VOC available for control					
One RTO per cement station	98%	64.5	\$1,401,833	\$21,723	
One RTO for all stations, no concentrator	98%	64.5	\$764,619	\$11,855	
One RTO for all stations with	95%	62.6	\$799,211	\$12,776	

Table 8: Cost Analysis of VOC Control Options - Calendars, Extruders, and Cement Stations								
Control Scenario	Overall Control Efficiency (%)	VOC Emission Reduction (tons per year)	Annualized Control Cost (\$)	Cost Effectiveness (\$/ton)				
concentrator								
One boiler for all stations with concentrator	95%	62.6	\$921,387	\$14,729				
One boiler per cement station, no concentrator	80.8%	21.9	\$681,627	\$31,132				
Extruders								
Existing and new extruders: One RTO	98%	51.0	\$685,174	\$13,446				
Calenders								
Existing and new calendars: One RTO	98%	20.1	\$685,174	\$34,006				

To summarize, based upon a cost per ton of VOC removal of \$11,849 for the most cost-effective control scenario, BATO considers the cost of VOC capture and control to be prohibitively expensive for the cement stations. Likewise, the cost per ton of VOC removal for the extruders and calenders, which is higher than the cost per ton for the cement stations, is also considered cost prohibitive. Thus, the application of control technology is regarded as economically infeasible for control of VOC emissions from the new cement stations, extruders, and calenders.

P2 has no negative economic, environmental, or energy impacts.

VI.1.1.5 Select BACT

BATO proposed that BACT for VOC emissions from this source (which includes the new cement stations, extruders, and calenders) will be good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC materials, cleaning up spills, minimizing cleaning with VOC compounds, and establishing a VOC emission limit of 116.08 tons during any period of 12 consecutive months.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, a VOC emission limit of 116.08 tons during any period of 12 consecutive months, and good VOC work practices are established as BACT for VOC.

Compliance with this emission limitation shall be demonstrated by calculation of actual VOC emissions on a monthly and 12 consecutive month basis. Compliance with the work practice requirements shall be assured by the development and implementation of a work practice plan to minimize VOC emissions from this source.

VI.1.2 VOC BACT Analysis – Rubber Mixing and Remilling (89-0077-05)

This source consists of mixers which process raw materials into stock rubber. VOC and HAP are emitted from material usage at this source. Silane is a significant contributor to VOC emissions. PM is emitted from the transfer of raw materials to the mixers from day bins and super sacks. There are five existing mixers and four new mixers proposed for this expansion project.

The review described in Sections VI.1.1.1 and VI.1.1.2 and summarized in **Table 7** is also applicable to these operations. BATO reviewed the RBLC database as part of the BACT analysis for this project and found six tire manufacturing plants which had undergone BACT analysis in the database. BATO identified four instances where RTO control was required for operations similar to those included in this source.

VI.1.2.1 Identify Available Control Technologies

BATO provided the following list of technologies as being applicable for the control of VOC emissions from the mixers:

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

- Thermal Oxidation (e.g., RTO)
- Adsorption (e.g., activated carbon tower)
- RTO plus Zeolite concentrators
- Condenser Unit
- Boilers (existing)
- Absorption (e.g., wet scrubbing)
- Alternative Materials (i.e., silane replacement)
- Work Practice Standards (P2)

VI.1.2.2 Eliminate Infeasible Options

The discussion in Section VI.1.1.2 is applicable to the rubber mixing operation. In addition, BATO has identified specific challenges with utilizing most add-on control technologies with this equipment. The capture efficiency for VOC emissions from the mixers is estimated at 85% because the lower "batch out" door of each mixer has a configuration that must be open during production, and the area cannot be effectively hooded. A large amount of air would be required to collect the VOC emissions from this part of the process, resulting in a large volume of air with a small concentration of VOC. Types of VOC controls other than those listed above were considered by BATO, but those controls have not been used and proven effective in the tire production industry.

A review of the control options listed above is provided in Section VI.1.1.2, with additional relevant analysis added here as necessary.

For the reasons discussed in section VI.1.1.2, use of the following control options is considered technically feasible to control VOC emissions from the mixers:

- Thermal Oxidation (RTO)
- Boilers
- P2

For the reasons discussed in section VI.1.1.2, use of the following control options is considered technically infeasible for control of VOC emissions from the mixers:

- Adsorption: BATO noted that carbon adsorbers have not been successful for controlling VOC emissions from tire manufacturing operations because solid adsorption media are susceptible to plugging by the PM given off by the process. While the mixers are vented first to dust collectors for PM control, the tire processing oils would not be able to be removed from the carbon.
- RTO plus Zeolite Concentrator
- Condenser Units
- Absorption (e.g., scrubbers)
- Alternative Materials (e.g., silane replacement)

VI.1.2.3 Rank Remaining Control Technologies by Control Effectiveness

Following review of the available control technologies, thermal oxidation (RTO or boiler) with and without concentrators and work practice standards remained as technically feasible control options. The remaining VOC control options, ranked by control effectiveness, are shown in **Table 9**.

Table 9: Ranked VOC Control Options – Rubber Mixing and Remilling					
Control Option	Control Efficiency				
RTO/Boiler	98%				
RTO/Boiler with concentrator	95%				
P2	Unquantified				

A review of the energy, environmental, and economic impacts from the use of these controls are presented in the next

section.

VI.1.2.4 Evaluate Most Effective Controls

Thermal Oxidation (RTO) Economic Impact Analysis: BATO evaluated the economic impact of using an RTO in various configurations: four mixers with four RTOs, four mixers with two RTOs, two mixers with two RTOs with all silane usage occurring in those two mixers, four mixers with one RTO and concentrator system, and four mixers plus two existing mixers with one RTO and concentrator system. Utilization of boilers for control for two mixers was also considered. BATO notes that the facility currently has no restrictions on silane usage, and that such restrictions would limit the facility's ability to meet customer demand and would constrain the overall production capacity of the facility. However, operational flexibility concerns aside, BATO reviewed the cost of the configurations mentioned above. A summary of the results of this analysis are presented in **Table 10**. Details of the financial evaluation may be found in Appendix B of the revised BACT analysis dated August 11, 2023.

Table 10: Cost Analysis of VOC Control Options – Rubber Mixing and Remilling									
Control Scenario	Overall Control Efficiency (%) ¹	VOC Emission Reduction (tons per year)	Annualized Control Cost (\$)	Cost Effectiveness (\$/ton)					
Four new mixers, each with an RTO	83.3%	66.9	\$3,286,468	\$40,912					
Four new mixers, two RTOs	83.3%	66.9	\$2,471,350	\$36,959					
Two mixers, one RTO, all silane is processed in the two mixers	83.3%	138.5	\$1,235,675	\$8,922					
Four new mixers, one RTO with concentrator system	80.8%	64.8	\$833,667	\$12,861					
Four new mixers and two existing mixers, RTO with concentrator system	80.8%	97.2	\$1,188,241	\$12,221					
Two new mixers, boiler control	20.9%	8.43	\$341,740	\$40,535					

1. Capture efficiency is estimated at 85% due to the fact that the lower "batch out" door of the mixer has a configuration that must be open for production. This design cannot be effectively hooded. The capture efficiency for boiler control is 22% based on the limited portion of mixer exhaust that the boilers can accommodate.

The lowest cost per ton of VOC removal, \$8,922, is obtained when evaluating the use of one RTO to control emissions from two mixers when all silane is processed in those two mixers. As noted above and in the BACT analysis provided by the facility, there are currently no restrictions on how the mixers are used, or what type of rubber can be processed in each mixer. The capability to mix any type of rubber compound in any mixer is necessary for BATO to be able to achieve the purpose and the capacity proposed for this expansion project. As such, the lowest cost per ton operating scenario is not considered feasible for this project. Additionally, the second lowest cost per ton of VOC removal, \$12,221, is considered by BATO to be prohibitively expensive. Thus, the application of control technology is regarded as economically infeasible for control of VOC emissions from the new mixers.

P2 has no negative economic, environmental and energy impacts.

VI.1.2.5 Select BACT

BATO proposed that BACT for VOC emissions from this source be good work practices, such as storing VOCcontaining materials in closed tanks or containers, use of low-VOC materials, cleaning up spills, and minimizing cleaning with VOC compounds, and establishing a VOC emission limit of 80.27 tons during any period 12 consecutive months.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, a VOC emission limit of 80.27 tons during any period of 12 consecutive months and good VOC work practices are established as BACT for VOC.

Compliance with this emission limitation shall be demonstrated by calculation of actual VOC emissions on a monthly

and 12 consecutive month basis. Compliance with the work practice requirements shall be assured by the development and implementation of a work practice plan to minimize VOC emissions from this source.

VI.1.3 VOC BACT Analysis – Tire Curing (89-0077-22)

This source consists of multiple trenches where green tires are cured. VOC and HAP are emitted from the tires during the curing process. The proposed modification is to construct two additional tire curing trenches. Each tire curing trench has two curing lines.

The review described in Sections VI.1.1.1 and VI.1.1.2 and summarized in **Table 7** is also applicable to these operations. BATO reviewed the RBLC database as part of the BACT analysis for this project and found six tire manufacturing plants which had undergone BACT analysis in the database. No instances where add on control technology was required as BACT were identified for the types of emission units included in this source.

VI.1.3.1 Identify Available Control Technologies

BATO provided the following list of technologies as being applicable for the control of VOC emissions from the new tire curing trenches:

- Thermal Oxidation (e.g., RTO)
- Adsorption (e.g., activated carbon tower)
- RTO plus Zeolite concentrators
- Condenser Unit
- Boilers (existing)
- Absorption (e.g., wet scrubbing)
- Work Practice Standards (P2)

VI.1.3.2 Eliminate Infeasible Options

The discussion in Section VI.1.1.2 is also applicable to the tire curing operation. A review of the control options listed above is provided in Section VI.1.1.2, with additional relevant analysis added here as necessary.

The highest VOC concentration from the tire curing operations is estimated by BATO to be less than 20 ppm, which is the threshold at which add-on controls are considered feasible. At such a low concentration, the following control technologies are considered technically infeasible for control of VOC emissions from the tire curing operation:

- Thermal Oxidation (RTO)
- Adsorption
- Condenser Units
- Absorption (e.g., scrubbers)
- Boilers (existing)

RTO plus Zeolite Concentrator: For the reasons discussed in Section VI.1.1.2, the use of an RTO with a concentrator system has proven successful for control of VOC emissions in the tire industry. The most feasible option for add-on controls for the tire curing operation is the use of a single RTO and zeolite concentrator system with three concentrator wheels for each new tire curing trench. The use of an RTO with zeolite concentrator system was determined to be technically feasible for control of VOC emissions from the tire curing operation.

P2: For the reasons discussed in Section VI.1.1.2, P2 is considered technically feasible for control of VOC emissions from the tire curing operation.

VI.1.3.3 Rank Remaining Control Technologies by Control Effectiveness

Following review of the available control technologies, only thermal oxidation (RTO) with a concentrator system and P2 remained as technically feasible control options. The remaining VOC control options, ranked by control effectiveness, are shown in **Table 11**.

Table 11: Ranked VOC Control Options – Tire Curing					
Control Option Control Efficiency					
RTO with concentrator	95%				
P2	Unquantified				

A review of the energy, environmental, and economic impacts from the use of these control options are presented in the next section.

VI.1.3.4 Evaluate Most Effective Controls

Thermal Oxidation (RTO) Economic Impact Analysis: BATO evaluated the economic impact of using an RTO with concentrators set up for each new curing trench. The results of this analysis are presented in **Table 12**. Details of the financial evaluation may be found in Appendix B of the revised BACT analysis dated August 11, 2023.

Table 12: Cost Analysis of VOC Control Options – Tire Curing								
Overall Control ScenarioOverall ControlVOC Emission ReductionAnnualized Control CostCost EffectivenessControl ScenarioEfficiency (%)(tons per year)(\$)(\$/ton)								
RTO with concentrator system, one for each new curing trench	95%	33.2	\$2,696,434	\$81,277				

To summarize, based upon a cost per ton of VOC removal of \$81,277, BATO considers the cost of VOC capture and control to be prohibitively expensive. Thus, the application of this control technology is regarded as economically infeasible for control of VOC emissions from the tire curing operation.

P2 has no negative economic, environmental, and energy impacts.

VI.1.3.5 Select BACT

BATO proposed that BACT for VOC emissions from the tire curing operation be good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC materials, cleaning up spills, and minimizing cleaning with VOC compounds, and establishing a VOC emission limit of 34.92 tons during any period of 12 consecutive months.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, a VOC emission limit of 34.92 tons during any period of 12 consecutive months and good VOC work practices are established as BACT for VOC.

Compliance with this emission limitation shall be demonstrated by calculation of actual VOC emissions on a monthly and 12 consecutive month basis. Compliance with the work practice requirements shall be assured by the development and implementation of a work practice plan to minimize VOC emissions from this source.

VI.1.4 VOC BACT Analysis – Powerhouse (89-0077-10)

This source consists of two existing 75 MMBtu/hr boilers and one 10.3 MMBtu/hr hydronic heater. The proposed modification is the addition of one 75 MMBtu/hr boiler. All units primarily utilize natural gas but are capable of utilizing No. 2 fuel oil as a backup fuel. VOC emissions from the boilers are a result of incomplete combustion of natural gas and No. 2 fuel oil. It is noted that the boilers at the BATO - Warren Plant will be operated as gas-fired boilers under 40 CFR 63, Subpart JJJJJJ – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources, which will limit the use of No. 2 fuel oil in the boilers to periods of natural gas curtailment, gas supply interruption, startups, or during periodic testing, maintenance, or operator training on liquid fuel.

BATO reviewed the RBLC as part of the BACT analysis for recent determinations for small (<100 MMBtu/hr) industrial gas-fired boilers.

VI.1.4.1 Identify Available Control Technologies

The following technologies were identified by BATO for control of VOC from the new boiler.

- Catalytic oxidation
- Clean fuel and good combustion practices

VI.1.4.2 Eliminate Infeasible Options

Catalytic Oxidation: Catalytic oxidation is a post-combustion control technology which promotes the oxidation of CO to CO₂ and VOC to CO₂ and water via a catalyst. These devices are typically operated between 500°F and 1250°F. Operating temperatures that are too low result in a low control efficiency and temperatures that are too high can result in catalyst damage. The exhaust from the proposed boiler would require preheating for efficient VOC control. This control technology is considered technically feasible.

Good Combustion Practices: The use of good combustion practices optimizes combustion in the natural gas combustors. Adequate temperature and oxygen are required to ensure complete combustion occurs which will minimize CO emissions. Good combustion practices are considered technically feasible.

VI.1.4.3 Rank Remaining Control Technologies by Control Effectiveness

Both control technologies identified were determined to be technically feasible. Those control options, ranked by control effectiveness, are shown in **Table 13**.

Table 13: Ranked VOC Control Options – Powerhouse					
Control Option Control Efficiency					
Catalytic oxidation	50%				
Good combustion practices	Unquantified				

A review of the energy, environmental, and economic impacts from the use of this control are presented in the next section.

VI.1.4.4 Evaluate Most Effective Controls

Catalytic Oxidation Economic Impact Analysis: BATO evaluated the economic impact of using catalytic oxidation for the new boiler. The control cost was found to be \$45,393 per ton of VOC reduced. Thus, the application of this control technology is regarded as economically infeasible for control of VOC emissions from this source. Details of the financial evaluation may be found in the Step 2 of the revised BACT analysis dated August 11, 2023.

Clean fuel and good combustion practices have no negative economic, environmental and energy impacts.

VI.4.1.5 Select BACT

BATO proposed that BACT for VOC emissions from this source be the use of clean fuels and good combustion practices, including annual tune ups, and establishing a VOC emission limit of 1.77 tons during any period of 12 consecutive months.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, a requirement to use only natural gas and No. 2 fuel oil, a requirement to perform annual tune ups, and a VOC emission limit of 1.77 tons during any period of 12 consecutive months is established as BACT for VOC.

Compliance with the VOC emission limitation and the good combustion practices shall be assured by fuel usage records and tune-up records.

VI.1.5 VOC BACT Analysis - Insignificant Emission Units

The proposed project includes several emission units with low uncontrolled emissions which would not typically need to be included in a Title V permit. In lieu of a full "top-down" analysis, abbreviated BACT analyses were performed, including a comparison to RBLC search results, when available. The following existing activities which have emissions of VOC will undergo the addition of new equipment due to the proposed expansion project.

VI.1.5.1 Tire Repair

Small amounts of rubber are removed by grinding and are replaced with uncured rubber. These areas are then spot cured. VOC is emitted from the rubber grinding, usage of tire repair paint, and spot curing. Additional equipment to perform this operation is included in this expansion project. For the new equipment, BATO proposes best industry practices to minimize VOC emissions from this activity and a VOC limit of 0.04 tons during any period of 12 consecutive months.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, best industry practices and a VOC limit of 0.04 tons during any period of 12 consecutive months is established as BACT for VOC.

Compliance with this emission limit and work practice requirement shall be assured by calculating actual or potential emissions from this source and maintaining documentation of industry best practices utilized for this source.

VI.1.5.2 Oil Storage Tanks

Three oil storage tanks with a capacity no greater than 30,000 gallons, would be added as part of this expansion project. BATO proposed submerged fill, good work practices, light-colored tank exteriors, and a VOC emission limit of 0.02 tons during any period of 12 consecutive months (total for all three tanks) as BACT.

Pursuant to TAPCR 1200-03-09-.01(4)(j)3, good work practices, submerged filling, a light-colored tank exterior, and a VOC emission limit of 0.02 tons during any period of 12 consecutive months are established as BACT for VOC.

Compliance with this emission limit and work practice requirements shall be assured by maintaining documentation of work practice standards which are utilized to minimize emissions from this activity, documentation that these tanks are installed with submerged fill, and by maintaining a light-colored exterior.

VII. <u>Air Quality Analysis</u>

VII.1 Introduction and Project Overview

This section of the PSD Analysis describes the assessment of ambient impacts resulting from the increase in emissions from the proposed permitting action (installation of new equipment and increased utilization of existing equipment).

The tire manufacturing facility in Warren County is about 3.2 miles northeast of downtown Morrison and about 6.7 miles southwest of downtown McMinnville off State Route 55. The facility is about 62 miles southeast of downtown Nashville, Tennessee and about 52 miles north-northwest of downtown Chattanooga, Tennessee. The area is considered a Class II area and is located near the western foot of the Cumberland plateau in Middle Tennessee. The closest Class I area is the Mammoth Cave National Park (MCNP) in south central Kentucky, which is located approximately 164 km (101.8 miles) to the north of the facility. **Figures 1** and **2** show the location of the BATO - Warren Plant.

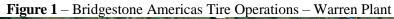


Figure 2 – Bridgestone Americas Tire Operations – Warren Plant at 725 Bridgestone Dr. in Morrison, TN

This analysis evaluated emissions of the criteria pollutants regulated under the Prevention of Significant Deterioration (PSD) regulations of 40 CFR 52.21. The criteria pollutant analysis was conducted to ensure that the proposed project will not threaten any National Ambient Air Quality Standard (NAAQS) or increments for all criteria pollutants proposed to be emitted above the PSD thresholds of 40 CFR 52.21(b)(23).

Table 5 (see Section IV) shows the net emissions increases from the project compared to the PSD applicability levels for those pollutants emitted at the facility, which require an initial modeling analysis of the facility's projected emissions. Emissions greater than the applicability level necessitate preliminary modeling analyses for those pollutants. As required by the PSD regulations, after it is determined that a facility has significant impacts, a typical air quality impact assessment may consist of some or all the following steps:

- 1. Determination of the Significant Impact Are (SIA), if any, for each pollutant with a Class II Significant Impact Level (SIL)
- 2. monitoring *de minimis* analysis for the proposed emission increase.

Also, when proposed new impacts are significant:

- 3. a comprehensive PSD increment consumption analysis for the surrounding Class II area, and any Class I Areas close enough to have significant impacts,
- 4. a comprehensive Ambient Air Quality Standards impact analysis, and
- 5. an additional airshed impact assessment of the effects on Visibility, Soils, Vegetation, Associated Growth, and Nonattainment Areas, as well as Class I area Air Quality Related Values (AQRVs), if applicable.

The emission rate of PM_{10} is below the significant emission rate (SER) of 15 tons/yr for PSD applicability, and it is also below the SER threshold for total or filterable PM of 25 tons/yr, while $PM_{2.5}$ emissions are below the SER of 10 tons/yr. Also, since emissions from the proposed facility processes are below the respective SERs for NO_X and SO₂, significant

secondarily formed $PM_{2.5}$ is not an anticipated air pollutant. Hence, all forms of PM may be considered below the SER thresholds for PM, which makes further PM analysis unnecessary for this permit application.

On the other hand, since the emission rate of VOC is above the SER of 40 tons/yr for PSD applicability, EPA guidance recommends that proposed emission increases of both VOC and NO_X be used to estimate ozone (O_3) impacts using Modeled Emission Rates for Precursors (MERPs), even though the emission rate for NO_X is below the SER (40 tons/yr).

Since this facility is only a major PSD source for VOC, many of the typical ambient PSD analysis steps involving refined modeling with the latest version of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) gaussian dispersion model were unnecessary for this analysis. For this case, only an analysis using MERPs was necessary to evaluate the facility's impact on O_3 creation from the sources proposed increases in VOC and NO_x emissions.

VII.2 Class II Modeling: Single-Source Impact Analysis

The following sections summarize the methodology used to evaluate the facility's air quality impacts in Class II areas. The analysis described was performed in accordance with the EPA "Guideline on Air Quality Models" (GAQM, contained in 40 CFR Part 51, Appendix W) (EPA, 2017a), the New Source Review (NSR) Workshop Manual (EPA, 1990), all applicable EPA clarification memorandums and guidance documents, and direction and regulatory guidance provided by the TDEC and EPA Region IV. The modeling analysis focused on demonstrating that the ambient impact of proposed emissions from the BATO - Warren Plant expansion project will be in compliance with all applicable NAAQS and PSD Class II increments.

VII.2.1 Dispersion Modeling Methodology

Since VOC emissions are the target of this analysis, EPA's work to define a screening methodology to evaluate precursor emission impacts on O_3 formation using EPA's work with photochemical grid modeling (PGM) methods was relied on for this analysis, instead of using the AERMOD model, which is typically used to determine predicted impacts in the Class II area surrounding the facility.

In December 2016, the EPA developed a simple screening methodology to estimate single source impacts on secondary pollutants which they described as Modeled Emission Rates for Precursors or MERPs. MERPs reflect levels of increased precursor emissions that are not expected to cause a significant contribution to O_3 for PSD applications. A MERP can relate:

- VOC emissions to O₃; and
- NO_X emissions to O₃.

MERPs modeling methods are intended to conservatively estimate secondary pollutant impacts, in what is also termed a Tier 1 screening analysis, to demonstrate ambient compliance before a more refined and resource intensive Tier 2 analysis, using detailed photochemical grid modeling, is necessary.

The EPA December 2016 guidance memorandum provided a framework on how to develop source-specific or sitespecific MERPs. The guidance document did not endorse a specific MERP value, though it did provide illustrative MERPs from the EPA's modeling of two hypothetical sources in various locations across the United States.

EPA's initial 2016 MERPs guidance memorandum was finalized by EPA in April of 2019. Tennessee has also provided more customized MERPs guidance for sources in Tennessee since 2019. According to EPA and Tennessee guidance, sources are required to estimate both the impacts of primarily emitted and secondarily formed pollutants as part of the PSD program. This is normally done using a Tier 1 MERPs analysis first, and if a Tier 1 analysis fails to demonstrate ambient compliance, a Tier 2 analysis using photochemical grid modeling techniques may be used, if necessary.

A conservative Tier 1 screening for secondary impacts due to precursor pollutants for O_3 was conducted using Tennessee's guidance for use of MERPs. Since there are no PSD increments for O_3 , the analysis was limited to testing compliance with the NAAQS and corresponding Significant Impact Level (SIL) for O_3 .

VII.2.2 Assessment of Secondary Pollutant Impacts

EPA guidance for permit modeling projects that trigger NSR review must consider secondarily formed impacts along with primary emission impacts. Since O_3 is not a primary pollutant, but instead generated from precursor pollutants, the project emissions increase was evaluated for secondary O_3 formed from both precursors: NO_X and VOC.

The BATO - Warren Plant project triggered major NSR for VOC, so EPA and TDEC guidance requires consideration of O_3 formation from both VOC emissions as well as NO_X emissions.

The Federal guidelines for secondarily formed pollutant impact assessment describe the following two-tiered approach:

- 1. Tier 1 involves using known relationships between precursor emissions and a source's impacts to qualitatively assess the impact of O_3 and secondary $PM_{2.5}$ formation.
- 2. Tier 2 requires a more detailed analysis and could involve application of a reactive pollutant model to determine the impacts.

EPA (EPA 2021b) published draft guidance for an approach to Tier 1 demonstrations based on MERPs. BATO used MERPs guidance, and other qualitative factors, to evaluate the project's potential O₃ impacts with respect to the NAAQS.

Per the TDEC MERPs Guidance, "once either one of the precursor pollutants to $PM_{2.5}$ or O_3 triggers an analysis because their emissions are above the PSD SER, then emissions of the other precursor pollutant must be included in the analysis to determine the synergistic impact that both pollutants have together, even though the other pollutant's emissions may fall below the SER."

A MERPs analysis was conducted to demonstrate that the project would not be expected to contribute significantly to concentrations of O_3 , as shown in the sections below. Conservative estimates of O_3 produced from the project were simply compared to the O_3 SIL.

VII.2.3. Ozone Assessment

EPA MERPs guidance provides modeling results representing the maximum downwind O_3 concentrations due to NO_X and VOC emissions from hypothetical sources. EPA conducted photochemical modeling of hypothetical sources using emission rates of 500, 1,000, and 3,000 tons/yr of both NO_X and VOC for various locations throughout the United States.

TDEC's MERPs Guidance (TDEC, 2019) was developed based on an in-depth technical review of the EPA's hypothetical source modeling and resultant MERPs (at the time) as they pertain specifically to sources and O_3 formation phenomena in the State of Tennessee. TDEC identified the most conservative (lowest) MERPs values by precursor (NO_X and VOC) and pollutant to establish "default" MERPs values for PSD applicants in Tennessee. The default MERPs values provided in **Table 14** are the most conservative values for hypothetical sources and can be used for Tier 1 demonstrations in Tennessee without further justification.

Table 14: Default MERPs Values (tons/yr) forTennessee PSD Applications				
Precursor 8-hour O ₃				
NO _X	156			
VOC	1,542			

However, as an even more conservative estimate, BATO selected the lowest MERPs values for any source in the Ohio Valley, Southern or Southeastern United States from EPA's MERPs guidance. These emission levels represent the lowest emission rates that have not created a significant impact on O_3 concentrations across these areas, including Tennessee, based on the EPA's latest MERPs study. Hence, if the proposed BATO – Warren Plant expansion has emissions lower than the lowest emitting modelled source, which has proven not to cause a significant impact, then the BATO – Warren Plant expansion will not cause a significant impact on O_3 .

MERPs values derived from the EPA model results for the "Lowest, median, and highest illustrative MERP values (tons per year) by precursor, pollutant and climate zone" may be found in Table 4-1 of EPA's memorandum titled: "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and $PM_{2.5}$ under the PSD Permitting Program" and dated April 30, 2019. **Table 15** shows the lowest MERPs values for 8-hr O₃ per pollutant. These values were extracted from the worst-case scenarios of stack release height (high or low), emissions category (500, 1,000 or 3,000 tons/yr), and location.

Table 15: Lowest MERPs Values (tons/yr), 8-hr O ₃ Ohio Valley Climate Zone				
Precursor	8-hour O ₃			
NO _X	126			
VOC	1,159			

Using Tennessee's MERPs guidance, the VOC net emission increase shown in **Table 5** (344.56 tons/yr) is compared to the lowest MERP value of 1,159 tons/yr, as shown in **Table 15**. These values, along with 35.59 tons/yr of NO_X emissions from **Table 5** and the lowest MERP value for NO_X of 126 tons/yr (shown in **Table 15**), can be used to conservatively estimate the impact of the proposed increase in comparison to the EPA SIL for O₃.

VII.2.4 Single-Source Impact Assessment Results

Summary results for each significantly emitted pollutant and averaging time.

 $\underline{O_3}$ – The NAAQS for O₃ is 70 parts per billion (ppb), which equates to 140 micrograms per cubic meter (µg/m³), for an 8-hour average. The SIL for O₃ is 1 ppb. Since O₃ is a secondary pollutant formed in the atmosphere by precursor VOC and NO_X pollutants, the BATO – Warren Plant expansion was evaluated using single source MERPs methodology to demonstrate that the proposed expansion will not cause or contribute to a violation of the NAAQS for O₃.

The secondary O_3 impact assessment is compared to the established SIL for O_3 of 1 ppb. The MERPs values for the Ohio Valley Climate Zone (**Table 15**) are used in the following equation provided in the TDEC guidance¹ to determine if the emission increases from the proposed project at BATO – Warren Plant will result in secondary impacts that are above the SIL.

$$\frac{EMIS_NOx}{MERP_NOx} + \frac{EMIS_VOC}{MERP_VOC} < 1$$

For the Class II significant impact analysis, the maximum predicted impact was compared to the only pertinent PSD Class II SIL, which was the SIL for O_3 . The impacts for the Tier 1 secondary pollutant analysis scenario are summarized below.

Since the source does not emit primary O_3 but emits both precursors to secondary O_3 formation, the analysis centers around the two precursors VOC and NO_X. Using the equation above, the MERPs values provided in **Table 15**, and the VOC and NO_X values provided in **Table 5**, the sum of the computed ratios for VOC and NO_X is less than one as seen in the following calculation.

 $\frac{27.51 \text{ tons/yr of NOx}}{126} + \frac{344.56 \text{ tons/yr of VOC}}{1,159} = 0.218 + 0.297$ 0.218 + 0.297 = 0.515

0.515 < 1

¹ TN Guidance on the Use of EPAs MERPs to Account for Secondary Formation in Tennessee_11222019.pdf

Based on the MERPs calculation, the net emission increase of VOC from the proposed expansion at the BATO – Warren Plant would be expected to have an impact less than the SIL of 1 ppb for O_3 . As a result, any further cumulative analysis for VOC is unnecessary to approve the company's ambient assessment for VOC.

Additionally, since the predicted O_3 value is less than the threshold value of 1, the use of a background O_3 concentration in a more refined cumulative evaluation for O_3 (described on page 13 of the Tennessee MERPs guidance) is also unnecessary. With this said however, since the background would be 60 ppb and the NAAQS is 70 ppb, any impact as low as the 1 ppb SIL would not be expected to threaten air quality in the area (i.e., 60 + 0.58 = 60.58 is still less than 70 ppb).

VII.4 Class I Area Ambient Air Quality Impact Assessment

Class I areas are federally protected areas for which more stringent air quality standards apply to protect unique natural, cultural, recreational, and/or historic values. Analyses to support the PSD application for the BATO – Warren Plant Class I area ambient air quality impact assessment include the following:

- 1. Determination of the facility potential pollutant emission quantities relative to PSD significant emission rates as defined in PSD rules (40 CFR 52.21).
- 2. Determination of the source location and distance within 300 km of any Class I area. Facility impacts at Class I areas located beyond 300 km from the PSD source are considered insignificant.
- 3. Determination of compliance with the Federal Land Manager (FLM) AQRVs in addressing regional haze visibility and acidic deposition.
- 4. Determination of whether facility impacts at Class I areas located within 300 km from the PSD source are considered significant. If so, a determination of compliance with the EPA's NAAQS and PSD increments for those triggered criteria pollutants that have Class I area increments.

BATO completed the first two steps above by identifying which pollutant increases were significant and which Class I areas were within 300 km of the facility. The company provided discussion of the impact the proposed expansion would have on the Class I AQRVs and on the Class I SILs in Section IV of their application dated June 21, 2023.

Correspondence between the Division and the FLMs indicated that there would be no significant impact to AQRVs in the Class I areas within 300 km of the source. The company's ambient analysis also demonstrates that there is no significant impact to Class I increment, or any of the NAAQS standards at these areas.

VII.4.1 Initial Screening Criteria for AQRVs

PSD Class I areas are designated in 40 CFR Part 81 as areas of special national or regional value from a natural, scenic, recreational, or historic perspective. The PSD Class I areas that are most proximate to the project site are mandatory Federal Class I areas, which include the following areas in existence on August 7, 1977:

- International parks.
- National wilderness areas which exceed 5,000 acres in size.
- National memorial parks which exceed 5,000 acres in size; and
- National parks which exceed 6,000 acres in size.

These areas are administered by the National Park Service (NPS), U.S. Fish and Wildlife Service (USFWS), or the U.S. Forest Service (USFS). These Federal Land Managers (FLM) have the authority and responsibility to protect AQRVs in Class I areas, and to consider, in consultation with the permitting authority, whether a proposed major emitting facility will have an adverse impact on such values. Class I AQRVs for which PSD modeling is typically conducted include visibility impairment, O_3 effects on vegetation, and effects of sulfur and nitrogen deposition on soils and surface waters.

Class I area impact analyses consist of:

- An air quality impact analysis,
- A visibility impairment analysis, and
- An analysis of impacts on other AQRVs such as impacts to flora and fauna, water, and cultural resources.

The FLMs developed an initial screening criteria, Q/D, to determine if sources greater than 50 km away from a Class I area need to perform any further Class I AQRV impact analyses. The Q/D ratio is calculated by summing the annual SO_2 , NO_X , PM_{10} , and sulfuric acid (H_2SO_4) emissions (in tons per year, based on 24-hour maximum allowable emissions and adjusted as if the source were operated for 8,760 hours per year), then dividing by the distance (in kilometers) to the nearest Class I area. If the Q/D value is less than or equal to 10, the source is considered to have negligible impacts on AQRVs in the Class I area and no further analyses are needed.

The following Class I areas are located within 300 km of the facility (shown with the approximate distance to the facility listed):

- Cohutta Wilderness Area (~ km)
- Mammoth Cave National Park (~ 164 km)
- Joyce Kilmer-Slickrock Wilderness Area (~170 km)
- Great Smoky Mountain National Park (~172 km)
- Sipsey National Wilderness Area (~ 197 km)

The Class I AQRV analysis was prepared in accordance with the Federal Land Managers' Air Quality Related Values Work Group (FLAG) Phase I Report – Revised (2010) and utilizing the Q/D screening criteria described above. A summary of the AQRV analysis for the Class I Areas of concern can be found in **Table 16**.

The total of all AQRV-impairing emissions which could impact Class I areas, including PM_{10} , SO_2 , NO_X , and H_2SO_4 , is approximately 776.0 tons/yr.

Table 16: Q/D ratios for Class I Areas within 300 km of BATO – Warren Plant								
Class I Area D (km) Q/D								
Cohutta Wilderness Area	134.4	5.77						
Mammoth Cave National Park	163.9	4.73						
Joyce Kilmer-Slickrock Wilderness Area	170.2	4.56						
Great Smoky Mountain National Park	172.3	4.50						
Sipsey Wilderness Area	197.4	3.93						

The Q/D ratios for each of the Class I Areas are well below the threshold of 10; therefore, it is presumed there are no adverse impacts from the proposed project, and no further analysis is required.

VII.4.2 Class I SILs Analysis

Since there is no SIL for VOC, other than a MERPs analysis for O_3 to compare predicted O_3 impacts to the O_3 SIL, there is no requirement to conduct a Class I SILs analysis. Since the MERPs analysis above indicated that impacts would be significantly less than the SIL for O_3 in any Class II area in Tennessee, any impacts at greater ranges to the Class I areas would also be expected to be less than the O_3 SIL.

VIII. <u>Additional Impacts Analysis</u>

PSD applies to new major sources or major modifications at existing sources located in an area where the air quality is classified as attainment (or unclassifiable) with the NAAQS for pollutants emitted from the proposed project. BATO – Warren Plant is a major source of VOC, a precursor to O_3 . BATO – Warren Plant is located in the city of Morrison, county of Warren in the state of Tennessee, which is designated attainment for O_3 .

A PSD major source subject to PSD review is required to conduct an air quality analysis and an additional impacts analysis, among other requirements. Pursuant to 40 CFR §52.21(o), the additional impacts analysis consists of three parts: growth analysis, soils and vegetation impacts analysis, and visibility impairment analysis. Each of these analyses is addressed below.

VIII.1 Growth Analysis The impact on air quality resulting from any commercial or industrial growth associated with this project was evaluated. The purpose of the growth analysis is to (1) predict how much new growth associated with the proposed project is likely to result in emissions and then (2) to estimate the emissions that will result from the associated growth.

The proposed project adds capability to produce more tires and will result in a modest increase in the number of employees at the plant. BATO plans to follow its normal practice of hiring from the existing workforce in the local area. BATO expects no measurable impact on air quality from growth in local employment associated with this project.

The proposed project will also result in a modest increase in transportation activities, primarily due to the flow of materials to the plant and shipment of tires from the plant. Carbon black will be mainly received via railcar. The remaining materials are received via truck transportation, on paved roadways. Shipments are also made via truck transportation on paved roadways. BATO expects that the modest increase in transportation activities will have negligible impact to ambient air quality.

Construction activities associated with the proposed project will be temporary. The construction activities to build the expansion necessary to contain the new units will principally consist of temporary placement of modular construction offices, routine building construction activities, and equipment installation. These activities will result in negligible impacts to ambient air quality.

As a result, negligible additional emissions are associated with the anticipated modest growth associated with the proposed project.

VIII.2 Soils, Vegetation, and Near-field Visibility Analysis

Per the requirements of 40 CFR Part 52.21(o), BATO is required to evaluate the potential impairment to visibility, soils and vegetation that could occur because of the proposed project. BATO must also address the potential air quality impacts predicted for the area as a result of general commercial, residential, industrial, and other growth associated with the source or modification. Discussions regarding these potential additional impacts are provided below.

VIII.2.1 Class II Area Visibility Impairment Analysis

The visibility impairment analysis addressed here is distinct from the potential need for a visibility analysis required for Class I areas. Since BATO – Warren Plant is a VOC source that impacts O_3 which is the transparent gaseous component of smog, then no visible impact is expected from this project. No further visibility evaluation using predictive modeling is warranted.

VIII.2.2 Soils and Vegetation Analysis

PSD regulations require an analysis to assess the potential impacts to soils and vegetation. The analysis evaluates the maximum predicted short-term concentrations for the proposed project relative to the EPA-recommended screening concentrations (see A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals [EPA, 1980]). The impacts affecting soils and vegetation are from SO₂, NO_x, and H₂S, pollutants which have potential to acidify soils and deposit on foliage, but there would be no impacts from VOC on these resources.

IX. <u>Conclusions and Conditions of Approval</u>

The proposed PSD project has an emission potential for VOC of more than the significant PSD level at maximum operating rate and maximum hours of operation. It is, therefore, a major source of criteria pollutants and subject to review under the regulations for the Prevention of Significant Deterioration contained in 1200-03-09-.01(4). The proposed emission limitations and pollution prevention procedures satisfy the requirement to apply BACT as required by the PSD regulations. The BACT requirements are incorporated into the permit to be issued for the proposed modification. The proposed changes will not result in ambient impacts that would exceed any NAAQS or PSD Increments and will not cause or contribute to adverse impacts on AQRVs in nearby Class I areas.

After review of the information submitted with the PSD application, it is concluded that the proposed modification qualifies for approval, subject to the terms and conditions of the proposed PSD construction permit (Appendix B).

APPENDIX A

Application for Proposed PSD Construction Permit

A copy of the application was provided electronically to EPA.

An electronic copy of the application is available on the Air Pollution Control Permits & Inspections Data Viewer

APPENDIX B

Draft PSD Construction Permit 981102

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

APPENDIX C

Emission Summaries for PSD Construction Permit 981102

Source 89-0077-02 Railcar and Trailer Unloading, Storage, and Handling

·		0 /	U	Pe	ermit Number:	981102
Source Status: New Modific	ation	☐ Expansion⊠	Relocat	ion Permit S	Status: New 🖂	Renewal
PSD NSPS NESHAPs	Prev	vious Permit Nı	imber:	Construction	Operati	ng <u>569874</u>

	Pounds/Hour				Tor	ns/Year	Date of	Applicable Standard	
Pollutant	Actual	Potential	Allowable	Actual	Potential	Allowable	Net Change	Data	TAPCR 1200-03-
PM/PM ₁₀	3.91	3.91	3.91	1.78	1.78	1.78	-33.70	6/21/2023	0901(4) and 0701(5)
PM _{2.5}	0.90	0.90	0.90	0.41	0.41	0.41	-	6/21/2023	0901(4) and 0701(5)

1. PM emissions are controlled by dust collectors.

2. The net change in PM emissions is based on the Title V permit allowable of 8.1 pounds per hour (35.47 tons per year).

3. Allowable emissions requested by the permittee in the agreement letter dated $\frac{1}{x}$.

Source 89-0077-04 Manufacturing and Material Usage

Permit Number: 981102

Source Status:	New	Modification	Expansion	Relocation	Permit Status:	New	Renewal
----------------	-----	--------------	-----------	------------	----------------	-----	---------

PSD⊠ NSPS□ NESHAPs□	Previous Permit Number:	Construction	Operating	569874
---------------------	--------------------------------	--------------	-----------	--------

	Р	ounds/Ho	our	Tons/Year			Date of	Applicable Standard	
Pollutant	Actual	Potential	Allowable	Actual	Potential	Allowable	Net Change	Data	TAPCR 1200-03-
VOC				261.17	261.17	261.17	112.51	6/21/2023	0901(4)(j)(3) and 0707(2)
Single HAP					<9.9		-	6/21/2023	0707(2)
Total HAP					<24.9		-	6/21/2023	0707(2)

1. The VOC BACT limit for this source is 116.08 tons per 12 consecutive months and only applies to the new equipment to be installed at this source.

2. The net change in VOC emissions is the project emissions increase for this source. The current Title V permit includes a facility-wide VOC emission limit, and no source-specific VOC limit.

Source 89-0077-05 Rubber Mixing and Remilling

Permit Number: 981102

Source Status: New Modification Expansion Relocation Permit Status: New Renewal

PSD NSPS NESHAPs Previous Permit Number: Construction Operating 569874

	Р	ounds/Ho	ur	Tons/Year				Date of	Applicable Standard
Pollutant	Actual	Potential	Allowable	Actual	Potential	Allowable	Net Change	Data	TAPCR 1200-03-
PM/PM ₁₀	38.00	38.00	38.00	11.32	11.32	11.32	-100.37	6/21/2023	0901(4) and 07- .01(5)
PM _{2.5}	8.74	8.74	8.74	2.60	2.60	2.60	-	6/21/2023	0901(4)
VOC				180.62	180.62	180.62	163.72	6/21/2023	0901(4)(j)3
Single HAP					<9.9		-	6/21/2023	0707(2)
Total HAP					<24.9		-	6/21/2023	0707(2)

1. The VOC BACT limit for this source is 80.27 tons per 12 consecutive months and only applies to the new mixers to be installed at this source.

2. The net change in PM emissions is based on the Title V permit allowable of 25.5 pounds per hour (111.69 tons per year).

3. The net change in VOC emissions is the project emissions increase for this source. The current Title V permit includes a facility-wide VOC emission limit, and no source-specific VOC limit.

Source 89-0077-10 Powerhouse

Permit Number: 981102

569874

Source Status: New Modification Expansion Relocation Permit Status: New Renewal

PSD NSPS NESHAPs Previous Permit Number: Construction Operating

	Р	ounds/Ho	our		Tons	/Year		Date of	Applicable Standard
Pollutant	Actual	Potential	Allowable	Actual	Potential	Allowable	Net Change	Data	1200-03-
PM	5.55	5.55	5.55	15.96	15.96	16.0	2.50	6/21/2023	0607(7)
PM ₁₀ /PM _{2.5}	1.77	1.77	5.55	15.96	15.96	16.0	-	6/21/2023	0601(7)
SO_2	35.80	35.80	35.80	78.5	78.5	78.5	-99.4	6/21/2023	1401(3)
СО	25.55	25.55	25.55	84.87	84.87	84.9	27.05	6/21/2023	0603(2)
NO _X	40.04	40.04	40.04	85.34	85.34	85.34	-33.56	6/21/2023	0603(2)
VOC	1.67	1.67	1.67	5.56	5.56	5.56	1.77	6/21/2023	0901(4)(j)3 and 0603(2)
Single HAP					<9.9		-	6/21/2023	0707(2)
Total HAP					<24.9		-	6/21/2023	0707(2)

1. The VOC BACT limit for this source is 1.77 tons per 12 consecutive months and only applies to the new boiler to be installed at this source.

2. The net change in PM, SO₂, and NO_X emissions are based on the limits specified in the current Title V permit.

3. The net change in VOC and CO emissions are the project emissions increases for this source. The current Title V permit includes a facility-wide VOC emission limit, and no source-specific VOC limit. The current permit does not include a CO limit.

Source 89-0077-22 Tire Curing

Permit Number:	981102

Source Status: New Modification Expansion Relocation Permit Status: New Renewal	Source Status:	New	Modification	Expansion	Relocation	Permit Status:	New	Renewal
---	----------------	-----	--------------	-----------	------------	----------------	-----	---------

PSD NSPS NESHAPs Previous Permit Number: Construction Operating 569874

	Р	ounds/Ho	our	Tons/Year				Date of	Applicable Standard
Pollutant	Actual	Potential	Allowable	Actual	Potential	Allowable	Net Change	Data	1200-03-
VOC				104.77	104.77	104.77	66.43	6/21/2023	0901(4)(j)(3) and 0707(2)
Single HAP					<9.9		-	6/21/2023	0707(2)
Total HAP					<24.9		-	6/21/2023	0707(2)

1. The VOC BACT limit for this source is 34.92 tons per 12 consecutive months and only applies to the new curing lines to be installed at this source.

2. The net change in VOC emissions is the project emissions increase for this source. The current Title V permit includes a facility-wide VOC emission limit, and no source-specific VOC limit.

APPENDIX D

Public Notice

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

APPENDIX E

PSD Determination Calculations

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

APPENDIX F

Dispersion Modeling Correspondence

Message String 1

From: Howard, Chris <Howard.Chris@epa.gov>

Sent: Monday, March 13, 2023, 9:25 AM

To: Richard Smrz <Richard.Smrz@tn.gov>

Cc: Haidar Alrawi <Haidar.Alrawi@tn.gov>; Lusky, Katy <Lusky.Kathleen@epa.gov>; Gillam, Rick <gillam.rick@epa.gov>; Shepherd, Lorinda (she/her/hers) <Shepherd.Lorinda@epa.gov> Subject: [EXTERNAL] EPA Region 4 of Ozone Analysis for 89-0077 Bridgestone Americas Tire Ops in Morrison

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. *** Richard,

Thank you for providing us with the opportunity to review the air quality analysis for Bridgestone Americas. We have reviewed the ozone analysis performed by the applicant and we have no comments. It should be noted that these comments do not include any comments that the EPA Region 4 ARD Permits Section may have regarding permitting or BACT issues.

Thanks!

-Chris

Christopher M. Howard Regional Meteorologist US EPA Region 4 - Atlanta 404/562-9036 <u>Howard.chris@epa.gov</u>

From: Richard Smrz <<u>Richard.Smrz@tn.gov</u>>
Sent: Friday, March 3, 2023 1:21 PM
To: Howard, Chris <Howard.Chris@epa.gov>; Monteith, Richard <Monteith.Richard@epa.gov>; aq_nepa@fws.gov
Cc: 'Tim_Allen@fws.gov' <Tim_Allen@fws.gov>; 'Catherine_Collins@fws.gov' <Catherine_Collins@fws.gov>; Ming, Jaron E
<jaron_ming@fws.gov>; ghazal.majidi-weese@usda.gov; melanie.pitrolo@usda.gov; john_vimont@nps.gov; kirsten_king@nps.gov;
Haidar Alrawi <Haidar.Alrawi@tn.gov>
Subject: FW: PSD application for 89-0077 Bridgestone Americas Tire Ops in Morrison
Attached: FINAL 02.01.2023 BATO PSD Permit App - (public)_redacted.pdf

USEPA Region 4 staff and Federal Land Managers,

Please see the attached PSD application we received from Bridgestone Americas Tire Ops in Morrison, Tennessee. Please send any comments you might have back to Haidar and me. Thank you all in advance for reviewing it.

Richard A. Smrz | Environmental Consultant

Air Pollution Control Division, Regulatory Development and Complex Sources Section Permit Modeling Program Knoxville Environmental Field Office 3711 Middlebrook Pike, Knoxville, TN 37921-6538 Office: 865-594-5567, Receptionist: 865-594-6035 E-mail: Richard.Smrz@tn.gov

Message String 2

From: Ghazal Majidi-Weese - FS, Asheville - FS, NC <<u>ghazal.majidi-weese@usda.gov</u>>

Sent: Thursday, April 27, 2023 2:48 PM

To: Shepherd, Lorinda <<u>Shepherd.Lorinda@epa.gov</u>>

Cc: King, Kirsten L <<u>kirsten king@nps.gov</u>>; Bae, Estelle <<u>Bae.Estelle@epa.gov</u>>; Haidar Alrawi <<u>Haidar.Alrawi@tn.gov</u>> Subject: [EXTERNAL] PSD Permit Application FLM Notification - Bridgestone Americas Tire Operations, LLC - EPA Permit # PSD-TN-244

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Dear Lori:

Thank you for sending the information regarding the Bridgestone Americas Tire Operations, LLC proposed project in Morrison, Warren County, TN. Based on the emission rates and distances from the Class I areas listed below, the United States Department of Agriculture (USDA) anticipates that modeling would not show any significant additional impacts to Air Quality Related Values (AQRV) at the Class I areas administered by the USDA Forest Service. Therefore, we are not requesting that any Class I AQRV analyses be included in the PSD permit application. Our screening of this analysis does not indicate agreement with any AQRV analysis protocols or conclusions applicants may make independent of Federal Land Manager review. Please note that we are specifically addressing the need for an AQRV analysis for Class I areas managed by the USDA Forest Service.

Class I Area	Distance to Facility (km)	Annual Emissions (tpy ¹)
Cohutta Wilderness	131	64.8
Joyce Kilmer Wilderness	175	64.8
Sipsey Wilderness	200	64.8

1. Sulfur dioxide, nitrogen oxides, total fine particulate matter (PM, PM₁₀, and PM_{2.5}), and sulfuric acid mist.

The state and/or EPA may have a different opinion regarding the need for a Class I increment analysis. Should the emissions or the nature of the project change significantly, please contact myself, Gisele Majidi-Weese (ghazal.majidi-weese@usda.gov, 828-337-2323) of the USDA Forest Service so that we might re-evaluate the project proposal.

Thank you for keeping us informed and involving the USDA Forest Service in the project review.

Regards, Gisele

Gisele Majidi-Weese, PE (she/her) Air Resource Specialist / Engineer Forest Service Southern Region mobile: 828-337-2323 ghazal.majidi-weese@usda.gov Asheville, NC 28801 www.fs.fed.us

Caring for the land and serving people

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of

this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

APPENDIX G

Draft Permit Correspondence

PSD Preconstruction Review and Preliminary Determination Bridgestone Americas Tire Operations, LLC 89-0077 Draft

APPENDIX H

Response to EPA/Public Comments on Draft Permit

From:	<u>Burnett, Terri</u>
То:	APC Permitting
Cc:	Hunter Hill
Subject:	[EXTERNAL] Bridgestone Americas, LLC 89-0077_981102 BATO PSD revision documents - Redacted
Date:	Wednesday, August 16, 2023 9:19:41 AM
Attachments:	image003.png
	BATO 2023 PSD APP - REVISED BACT ANALYSIS(08.09.2023)-PUBLIC redacted.pdf
	Appendix B BACT Cost Analysis Pages-PUBLIC redacted.pdf

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Good morning,

I have attached the revisions requested by TDEC for the facilities PSD permit application. One item of note has been redacted.

The confidential documentation is being sent via USPS.

Please let me, or Hunter Hill <u>hunter@stevensehs.com</u>, know if you require any further items.

Best regards,

Terri Burnett

Sr Environmental Engineer Warren County Plant 725 Bridgestone Drive Morrison, TN 37357 Bridgestone Americas, Inc. Office: +1 (931) 668-5500 x1033 Mobile: +1 (325) 214-4219

WRIDGESTONE **Bridgestone Americas Tire Operations**

725 Bridgestone Drive Morrison, TN 37357

August 11, 2023

Ms. Michelle Owenby, Director Division of Air Pollution Control Tennessee Department of Environment and Conservation William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243

Re: Bridgestone Americas Tire Operations, LLC – Warren Plant Emissions Source Reference Number 89-0077 BACT Analysis – Revised August 2023

Dear Ms. Owenby:

This letter transmits a revised BACT analysis for the Prevention of Significant Deterioration (PSD) permit application package submitted in June 2023.

BATO revised the original February 2023 application in response to TNAPC's request for additional information dated May 26, 2023. This revised BACT analysis is provided in response to TNAPC's second request dated July 26, 2023. With this submittal, BATO has revised the proposed BACT limits, such that the BACT limits only apply to the new equipment associated with the expansion project.

I have reviewed the enclosed submittal in its entirety. I hereby certify to the best of my knowledge, and based on information and belief formed after reasonable inquiry, the statements and information contained in the document are true, accurate and complete.

Please contact Spencer Hissam (Stevens EHS Consulting, 615-772-3865) or Ms. Terri Burnett (615-668-5500, X1033) if you have any questions or need additional information.

Sincerely,

Tim Painter

Plant Manager Bridgestone Americas Tire Operations, LLC Warren Plant

V. BEST AVAILABLE CONTROL TECHNOLOGY (BACT)

As part of PSD review, the applicant must demonstrate that the new or modified emission units meet Best Available Control Technology (BACT) for the pollutants for which a significant net emissions increase occurs.⁴

The only pollutant for which the Project results in a significant net emissions increase is VOC. A BACT analysis is required for VOC emissions from all manufacturing equipment with increased VOC emissions related to the project.

BACT is an emission limitation based on the maximum degree of reduction for each pollutant subject to the PSD requirements taking into account the energy, environmental, and economic impacts on the source. This analysis is conducted in accordance with the *"Top-Down"* guidance in the 1990 draft EPA *New Source Review Workshop Manual* (the Manual).

Reductions may be determined through the application of available control technologies, process design, and/or operational limitations. Such reductions may be necessary to demonstrate that the emissions remaining after application of BACT will not cause or contribute to significant deterioration of air quality, thereby protecting public health and the environment.

The "Top-Down" approach in the Manual is summarized as the following 5-step process:

- **Step 1:** Identify all control technologies.
- **Step 2:** Eliminate technically infeasible options.
- **Step 3:** Rank remaining control technologies by control effectiveness.
- **Step 4:** Evaluate the most effective controls and document results.
- **Step 5:** Select BACT.

BACT does not apply to any existing emission units that will experience increased utilization or debottlenecking, but not a physical change or operational change. This is in accordance with 40 CFR 52.21(j)(3):

(3) A major modificaon shall apply best available control technology for each regulated NSR pollutant for which it would result in a significant net emissions increase at the source. This requirement applies to each proposed emissions unit at which a net emissions increase in the pollutant would occur as a result of a physical change or change in the method of operaon in the unit.

Additionally, pursuant to TAPCR 1200-03-09-.01(4)(b)2.(i)(VI), "an increase in the hours of operation or in the production rate, unless such a change would be prohibited under a legally enforceable permit condition which was established after January 6, 1975, or under regulations of this Division 1200-03," is not a physical change or a change in the method of operation.

Thus, BACT does not apply to the existing units as a result of this expansion, and this analysis focuses on BACT as it applies to the new equipment proposed for the expansion.

⁴ Tennessee Air Pollution Control Rule 1200-03-09-.01(4)(j)2.

BACT – Gas-Fired Boilers

VOC emissions from the new proposed boiler result from incomplete combustion caused when some of the fuel is only partially burned.

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for natural gas combustion sources:

No.	Control Alternative	Control Alternative Category
1	Catalytic oxidation	Add-on control
2	Clean fuel and good combustion	Proper operation

The most stringent control technology used to control CO emissions from combustion is catalytic oxidation, and these catalytic oxidation systems are also used to reduce VOC and organic HAP emissions. As the exhaust gas contacts the catalyst, the catalyst promotes the oxidation of CO and hydrocarbon compounds to form carbon dioxide (CO₂) and water (H₂O) as follows:

 $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2 + \text{heat} [320 \text{ Btu/ft}^3]; \text{ or}$

 $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + heat [907 Btu/ft^3] (if methane is present).$

BATO did not identify any lower emitting fuels or burner configuration technologies that would reduce VOC emissions from the proposed boiler.

Step 2: Eliminate technically infeasible options.

Catalytic oxidation of VOC in the exhaust of the boiler tubes would require a catalyst bed. Such systems are available, and can be installed as a modular unit in the boiler exhaust duct or stack. For a catalytic oxidation system to operate correctly, the exhaust gas must contain an amount of excess O_2 (typically 15%) and must be within a particular temperature range (typically between $500^{\circ}F - 1250^{\circ}F$) depending on the type of catalyst material used. Exhaust gas temperatures that are too high may cause permanent damage to the catalyst, while operating temperatures that are too low result in a lower CO conversion efficiency. In the case of the natural gas boiler chosen, the exhaust temperature is less than the low end of the temperature window, and would require reheating of the flue gas. This would increase natural gas use and associated criteria pollutant emissions and be cost-prohibitive. The oxidation catalyst would also convert CO emissions to CO_2 . Installing a boiler VOC emissions control technology that will result in an increase in CO_2 emissions runs counter to the CO_2 emissions reduction goals of the current EPA administration. AP-42 Section 1.4 does not list catalytic oxidation as a control technology for natural gas boilers. The potential VOC emissions from the new 75.0 MMBtu/hr boiler are less than 2 tpy.

A search of EPA's RBLC was performed that included recent VOC BACT determinations for small industrial gas-fired boilers. BACT is generally good combustion practices for small gas-

fired boilers. Although a few entries noted flue gas recirculation was used, this is a NO_x control technology, not a VOC control technology. One result of the RBLC search was a 100 MMBtu/hr natural gas-fired auxiliary boiler at the Nemadji Trail Energy Center in Wisconsin. This unit was installed as part of a utility power generation plant, and the facility triggered PSD review for NO_x, CO, PM, VOC, and CO_{2e}. After reviewing the BACT analysis in the preliminary determination for this source, the BACT selected for this boiler was an oxidation catalyst; however, it was primarily selected for control of CO emissions in the PSD review, and it would not have been economically feasible for the control of VOC alone. According to the preliminary determination for this source, on pg 41, "an oxidation catalyst system for this size unit would require a total capital investment of \$147,225. The annual cost of operating this oxidation catalyst system would be \$80,801." When considering the cost for an oxidation catalyst system for a 75 MMBtu/hr boiler at BATO compared to this 100 MMBtu/hr boiler, it is conservative to estimate the annual cost of operating a similar system will be at least half as much or \$40,400. Assuming a control efficiency of 50% for this system, on an annual basis, just 0.89 tons per year of VOC would be removed at a cost of \$45,393 per ton of pollutants removed. Additional removal of CO emissions as a result of installing such a system on the proposed boiler is not required to be considered when determining BACT for VOC emissions. Thus, add-on VOC controls were determined to be not economically feasible.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

The only remaining control technology is good combustion practices & controls; and there are no environmental, energy, or economic impacts that would weigh against its use. Proper burner design and boiler tuning will minimize the VOC generated in the products of combustion. No add-on controls were considered feasible or were found in research of similar sources at other tire manufacturing plants. Furthermore, no auxiliary equipment is needed for this control option on commercial and industrial boilers with proper maintenance of the burner/boiler package and burning only clean gas as fuel. Therefore, annual tune ups are considered good combustion practices.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the proposed boiler to be clean fuels and good combustion practices. The BACT limit for VOC emissions from this boiler is 1.77 tons per year.

BACT – Mixing, Extruding, Calendaring, Cementing, and Curing

VOC emissions result from oils added to the rubber compounds in the mixers, solvent usage in the cement stations; and the vulcanization process in the curing presses.

MIXING Source 05

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for mixing:

No.	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or multiple RTOs	Add-on control
2	Zeolite concentrators plus an RTO	Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbon Tower	Add-on control
7	Alternative Materials (silane	Source reduction
	replacement)	
8	Best Work Practices	No Control (PP)

A search of EPA's RACT/BACT/LAER Clearinghouse (RBLC) was conducted in December 2022 to identify the emission control technologies that were imposed by permitting authorities as BACT within the past ten years for emission sources comparable to the proposed expansion at the BATO facility. The RBLC search results returned several BACT Analysis performed at tire manufacturing facilities focused on the rubber mixing process primarily. The RBLC search results were compared to permits issued to other tire manufacturers to capture any additional permitted controls that may be required, but not included in the RBLC search results. A summary of the RBLC database search results is provided in the table below.

RBLC Search Results

Process Type: 99.015 Rubber Tire Manufacturing and Retreading

Regulated Pollutant VOC

Facility Name	State	Permit Date	Last Updated	Process Name	BACT Control Method
Cooper Tire & Rubber Company	AR	09/10/2019	11/10/2020	Upgrade Mixer #8	RTO
Bridgestone Aiken County PSR Plant	SC	05/15/2017	05/15/2017	Mixers, Milling, Extrusion equipment,	Work Practice Requirements

Facility Name	State	Permit Date	Last Updated	Process Name	BACT Control Method
				Curing, Final Inspection, Boiler(B2)	
Goodyear Tire & Rubber Company	KS	02/13/2017	08/10/2017	Mixer	RTO
Goodyear Tire & Rubber Company	VA	12/03/2014	05/05/2016	Rubber Mixing	RTO
Michelin US8 Facility	SC	12/13/2012	05/05/2016	Rubber Mixing	Work Practice Requirements for solvent usage and handling
Goodyear Tire and Rubber Co Lawton Tire Plant	OK	10/10/2012	11/07/2016	Banbury Mixing	RTO

Step 2: Eliminate infeasible options.

The most common add-on VOC control measure applicable to these emission units is the use of a regenerative thermal oxidizer (RTO) to destroy VOC in the exhaust of the emission source. These units employ a design that efficiently retains heat generated in the combustion chamber. The RTO is the most commonly utilized add-on control technology for the following reasons:

- (1) The control efficiency provided by an RTO is comparable to other types of add-on control units;
- (2) Due to the efficiency of the unit, the RTO has a limited impact to the environment. They require less supplemental fuel and electricity. They do not produce other wastes, such as scrubber water or hazardous waste;
- (3) They function effectively in almost any normal production scenario; and
- (4) They are often the most cost-effective control measure.

There may be specific challenges with utilizing most add-on control technologies. Capture efficiency for VOC emissions from Rubber Mixers is estimated at 85% and in summary is due to the fact that the lower "Batch Out" door of the mixer has a configuration that must be open for production, and cannot be effectively hooded. A large amount of air is required to collect the small portion of VOC generated and released from the "Batch Out" door. This large air flow would result in a dilute air stream with a small amount of VOC, and is usually exhausted to atmosphere without control. (See Appendix C for more detailed information on Rubber Mixer Capture Efficiency). Controls other than an RTO may be available such as recuperative thermal oxidizers, regenerative catalytic thermal oxidizers, flares, wet scrubbers, and biofiltration; however, these controls have not been used and proven effective in the tire industry. One example is that recuperative thermal oxidation has not been used in the tire industry because of the low concentration emission stream loading and highly variable flow. These specific challenges are described below, but the RTO is assumed to be the most effective and economical of the add-on

controls. A condenser unit has not been demonstrated as effective at any tire plants for control of mixer emissions, and would not likely provide sufficient control of the low concentration, high flow exhaust stream from the mixer process. In addition, the VOCs condensed out of the exhaust flow would require disposal or further control with destruction. Therefore, BATO has not considered refrigerated VOC condensers further for this BACT analysis.

Existing boilers at the facility could control a small volume of Mixer exhaust flow, but not more than 7,000 scfm of Mixer exhaust flow per boiler (based on boiler rating of 75 MMBtu/hr requiring 14,100 scfm of combustion air at 15% excess air and 11.5 scf of air per scf of natural gas burned). With the current design basis of the Mixer exhaust (31,659 dscfm) going to either a Clay, Carbon Black, or Pigment dust collector for particulate matter emission control and material collection, control of only 7,000 cfm of exhaust air on two mixers would be ineffective.

Based on our review of the RBLC and knowledge of the industry, absorbers/wet scrubbers have not been determined effective and have not been installed for control of VOC emissions from mixing at tire plants. Although ethanol is a large component of the mixing VOC emissions and is water soluble, this technology is not feasible for the BATO Warren plant because the exhaust flow from mixing is extremely high. Absorbers are best suited to high concentration, low-flow applications for VOC control. Additionally, the plant does not have a way to treat the wastewater effluent that would result from the use of this technology since there is no wastewater treatment system onsite. Therefore, wet scrubber/absorption technology was not considered further.

Adsorption with activated carbon is another VOC emissions control technology in which VOCs are attracted to and bind to the surface of activated carbon and remain in the carbon until it is desorbed or reclaimed. A well designed adsorber system is capable of achieving 95% to 98% control efficiency at input concentrations between 500 and 2,000 ppm in air (US EPA, May 1999. CATC Technical Bulletin). An adsorber becomes nearly useless when inlet concentration gets so low that the VOC will not be effectively adsorbed. Explosions or fires in the carbon bed may occur if the concentration of the organics in the waste gas is not maintained substantially below the LEL of the specific compound being controlled. Carbon adsorbers have not been successful for controlling VOC emissions from tire manufacturing operations because solid adsorption media are susceptible to plugging by the PM given off by the process. While BATO's mixers are vented first to dust collectors for PM control, the tire processing oils would not be able to be removed from carbon. Furthermore, carbon adsorption would produce two waste streams as the carbon beds become saturated and replaced and the recovered solvent containing VOCs is not able to be reused. Therefore, carbon adsorption is determined to be not technically feasible.

A few Goodyear tire plants have installed RTO's for VOC emissions from mixing. It is our understanding (based on a review of permitting documents) that the RTOs were installed in part to respond to a compliance order and in part to allow them maximum flexibility to increase silane usage and emissions. However, it does appear from review of the available information that the Goodyear facilities have limited their operational flexibility by specifying what materials are to be mixed in each mixer at each plant and only applying RTO control to certain mixers that have the highest emission rates (e.g., RTOs are only feasible on certain mixers if production is constrained in a certain way).

Because other tire plants have installed RTOs for mixing, BATO considered RTOs on each of the 4 new mixers with a proportional amount of silane usage for each mixer. A second scenario considered was installing 2 larger RTO's on 2 pairs of new mixers each using a proportional amount of silane per year. It's possible that particulate in the exhaust of the mixers would blind a concentrator wheel; however, BATO has considered the option to install a combined system in series that would accept all exhausts from the 4 new mixers in the concentrator wheel(s) and exhaust to a single RTO. Another configuration that was considered was a system exhausting 4 new mixers and 2 existing mixers to three concentrator wheels in series with a single RTO. Each of these configurations shows a BACT control cost >\$12,000/ton VOC Emissions avoided as shown in Appendix B. In addition, BATO considered the option to install an RTO on 2 of the new mixers and assumed that these 2 mixers would be selected to process all Silane for the facility. The BATO Warren permit does not currently limit how each of its mixers is used. Tread can be mixed in any mixer. Flexibility in operations is needed in the plant to allow capability to be able to mix any type of rubber compound in any mixer and to be able to use the tire "recipe" components necessary to produce the types of tires their customers demand and to be able to reach the design capacity. The type and amount of silane used in BATO's tires has changed over time and BATO has experienced an increase in demand for tires that are manufactured using silane. Silane is added during the tread mixing process in order to impart certain characteristics to the rubber (tread) being mixed. Ethanol is emitted as the silane reacts with the rubber compound in the presence of high temperature and moisture. BATO has not evaluated redesigning the mixing process so that only certain mixers are used for mixing activities with higher VOC emissions potential using silane. We do not believe that redesigning or constraining the process in that way is required as part of a BACT analysis and would limit the overall production capability of the plant. Continued operational flexibility and lack of restriction on product flow within the plant is vital to maintaining BATO's current production rates and product quality. A review of the cost of each of these configurations mentioned above proved to be excessive as shown in Appendix B.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Based on this analysis, mixing emissions would be most effectively controlled by an RTO; however, this add-on control technology is not economically feasible based on the cost to install and operate the equipment. All other add-on control technologies listed are considered not technically feasible. Best work practices have been chosen as the best alternative to add-on control technologies for VOC emissions from Mixing.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the new mixing units is no control. Good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC materials where possible, cleaning up spills, and minimizing cleaning with VOC compounds should be implemented as BACT to control VOC emissions from all equipment associated with Source 05. BATO proposes an emission limit of 80.27 TPY as BACT for Source 05. This limit was chosen based on a total of 18.444 TPY of VOC emissions based on emissions factors for Banbury Mixing and a total of 162.17 TPY of VOC emissions from Silane injection at

the mixers. Together these total 180.62 TPY, and since there are 4 new mixers out of a total of 9 mixers, 180.62 x (4 New/ 9 Total) = 80.27 TPY.

MANUFACTURING & MATERIAL USAGE Source 04

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emissions controls for milling, calendars, extruding, and cement stations.

No.	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or multiple RTOs	Add-on control
2	Zeolite concentrators plus an RTO	Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbon Tower	Add-on control
7	Alternative Materials (silane replacement)	Source reduction
8	Best Work Practices	No Control (PP)

The RBLC search described previously applies to these sources and to tire curing as well, and did not identify any additional control technologies as BACT.

Step 2: Eliminate infeasible options.

As with mixing emissions, the most effective add-on VOC control measure applicable to these emission units is the use of an RTO to destroy VOC in the exhaust of the emission source. This is due to the high control efficiency of RTO's, the overall efficiency of RTO's using less electricity and less fuel, the ability to control emissions without generating a waste such as scrubber water or hazardous wastes. RTO's function effectively in normal production scenarios, and they are often the most cost-effective control measure. A condenser unit has not been demonstrated as effective at any tire plants for control of manufacturing emissions, and would not likely provide sufficient control of the low concentration, high flow exhaust streams required to capture emissions from the milling, calendaring, extruding, and cement station processes. In addition, the VOCs condensed out of the exhaust flow would require disposal or further control with destruction. Therefore, BATO has not considered refrigerated VOC condensers further for this BACT analysis.

The milling, calendaring, and extruding processes that are currently fugitive, would require a large volume of exhaust air in order to be effectively captured and the existing boilers are only able to accept a small volume of exhaust air for control inside the combustion chamber as described in the section for Mixing emissions. Control of the low concentration and low volume relative to the overall volume of exhaust air that must be captured would be ineffective at controlling emissions from these sources.

For the new cement stations, with a current design basis that includes exhausting at an approximate flowrate of 11,000 cfm per cement station, BATO chose to evaluate two possible configurations for control with the existing boilers. The first configuration includes a single Zeolite concentrator wheel for all three new cement stations followed by one of the existing boilers for control. This configuration includes a conservative estimate of the required ductwork of 1,403 feet which is the minimum straight-line distance from the nearest new cement station to the boilers. We conservatively assumed 100% capture for this configuration, and cost of control was not economically feasible based on 95% control efficiency of the Concentrator & Boiler control system. The second configuration assumes that each of 3 new cement station can be exhausted separately to each of the two existing boilers and to the third proposed boiler. This configuration assumes that at least 1,403 feet of ductwork will be needed for each new cement station to be exhausted to the boiler area (total ductwork of 4,209 feet). For optimal boiler performance, we originally assumed this configuration would only be able to capture about 35% of the Cementer emissions based on the boilers being rated at 75 MMBtu/hr which equates to approximately 73,500 scf/hr of natural gas combusted. (Originally, we estimated total Capture/control efficiency = 35% Capture x 95% VOC Destruction = 33.3%). With a design of 15% excess air, it takes about 11.5 scf of air per scf of natural gas combusted. Therefore 14,100 scfm of combustion air per boiler is required at maximum heat input. The full exhaust flow rate volume from each Cementer of 11,000 cfm could not be completely vented to the boilers for control since boilers operate at different intervals than the Cementers and since clean combustion air is also necessary for proper boiler operation. For the sake of this analysis, we assumed a most conservative maximum capture efficiency for Cementer Exhaust to the Boilers of 85% and 95% VOC destruction efficiency (Overall control = 80.8%), and the cost of control for this configuration remains above \$12,000 per ton of VOC emissions avoided. (See Appendix B).

Absorbers/wet scrubbers have not been determined effective and have not been installed for control of VOC emissions from manufacturing operations at tire plants. Although the VOC emissions are water soluble, this technology is not feasible for the BATO Warren plant because the exhaust flow required to capture emissions from milling, calendaring and extruding is extremely high. Absorbers are best suited to high concentration, low-flow applications for VOC control. Additionally, the plant does not have a way to treat the wastewater effluent that would result from the use of this technology since there is no wastewater treatment system onsite. Therefore, wet scrubber/absorption technology was not considered further.

As described previously, activated carbon adsorption becomes nearly useless when inlet concentration gets so low that the VOC will not be effectively adsorbed. No BACT determinations were found that include the use of carbon filtration to control emissions from rubber processing and manufacturing operations at tire manufacturing plants. Therefore, adsorption with activated carbon is considered not technically feasible.

An argument can be made that the highest VOC concentration from any of the rubber processing equipment including milling, extrusion, and calendaring is less than 20 ppm. At such a low concentration, none of the above listed add on control technologies are technically feasible. As described in EPA's Air Pollution Control Technology Fact Sheet for Thermal Incinerators, an inlet stream concentration of 1000 ppm VOC will be reduced to approximately 20 ppm when a 98% destruction efficiency is assumed. The extruders are not currently vented to any control devices

due to negligible PM. However, it may be technically feasible to construct a hood to capture VOCs from all existing and new extruders in order to control the 52.0 tons/year of VOC emissions generated by the extruders. If we conservatively assumed that only 30,000 scfm of exhaust flow were needed to capture these emissions and vented to a single RTO, the estimated cost of avoided emissions would be greater than \$8,000 per ton and therefore, economically infeasible. This analysis is included in Appendix B. BATO considered the feasibility of installing a smaller RTO to control VOCs from just the new extruders, but this cost would be on the same order of the above analysis of all the extruders and control even fewer total emissions per year. The next highest contribution of VOC emissions from rubber processing equipment is 20.56 tons/year from calendaring and could also feasibly be vented to an RTO for control of VOC emissions though it is not currently. We assume this process would also require at least 30,000 scfm of exhaust flow to capture these emissions for venting to the RTO. Therefore, the same control cost would be applied with even less tons of avoided emissions and control is not economically feasible.

The above argument can certainly be applied to the remaining equipment in source 04 Manufacturing and Material Usage with no processes from these operations with a VOC concentration that is likely higher than 10-20 ppm. At such a low concentration, none of the above listed add on control technologies are technically feasible. The achievable emission reduction is approximately 20 ppm resulting from 98% reduction of an inlet stream of 1000 ppm per the EPA's Air Pollution Control Technology Fact Sheet.

For the 5 existing cement stations and 3 additional new cement stations, BATO evaluated RTOs for each station, a single RTO to control all 8 cement stations, a single RTO to control the 3 new cement stations, and a VOC concentrator in conjunction with an RTO to control the 3 new cement stations. Cost analyses for each configuration are included in Appendix B and show that the cost of avoided emissions are greater than \$8,000 per ton of avoided emissions and are therefore, economically infeasible.

BATO has not identified acceptable alternative materials that may be used in the rubber compounds or as cement that can provide the same quality necessary for our products. Poor tire quality can result in unsafe tire construction.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Based on this analysis, there are no technically feasible and economically feasible add-on control technologies for VOC available for the Source 04 operations. Best work practices is the only remaining control option.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the milling, calendars, extruding, and cement stations is no control. Good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC tire sprays and mold release products, cleaning up spills, and minimizing cleaning with VOC compounds should be implemented as BACT to control VOC

emissions from all equipment associated with Source 04. BATO proposes an emission limit of 116.08 TPY as BACT for Source 04. The total future potential VOC emissions for existing and new equipment for Source 04 is 261.17 TPY, and the contribution of VOC emissions from new equipment is equivalent to the ratio of the additional 4 new mixers to the total of 9 mixers. 261.17 TPY x (4 New/ 9 Total) = 116.08 TPY.

TIRE CURING Source 22

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for tire curing.

No.	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or multiple RTOs	Add-on control
2	Zeolite concentrators plus an RTO	Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbon Tower	Add-on control
7	Best Work Practices	No Control (PP)

Step 2: Eliminate infeasible options.

The highest VOC concentration from the tire curing operations is likely less than 20.0 ppm. This is lower than the 20 ppmv threshold at which add-on controls are feasible. At such a low concentration, none of the above listed add on control technologies are technically feasible. As referenced above in the BACT analysis for Source 04 Manufacturing & Material Usage, the achievable emission reduction is approximately 20 ppm resulting from 98% reduction of an inlet stream of 1000 ppm. The most feasible option for add-on controls is a zeolite concentrator system of three concentrator wheels with a single RTO. BATO evaluated the cost to install two of these systems for control of VOC emissions captured over the 2 new curing bays. The cost was determined to be not economically feasible, and the analysis is provided in Appendix B.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Best work practices with no add-on controls is the only remaining control alternative, and we propose BACT for VOC emissions from tire curing to be best work practices.

Step 5: Select BACT.

As described above, BATO reviewed the RBLC, recent permits, and relevant industry standards. Based on the low concentration of VOC, BACT for VOC from tire curing operations is proposed to be good work practices with no add-on controls. These practices will include storing VOC-containing materials in closed tanks or containers, cleaning up spills, and minimizing cleaning with VOC compounds. BATO proposes an emission limit of 34.92 TPY as BACT for new equipment installed for Tire Curing (Source 22). Total Tire Curing VOC emissions are estimated at 104.77 TPY future potential, and the 2 new curing bays will account for one third of the total curing emissions from 6 curing bays.

Table 2: Summary of Control Cost Analyses					
Emission Unit	Control Configuration	VOC Emissions Avoided (tpy)	Annualized Control Cost (\$)	Cost Effectiveness (\$/ton)	
	8 Stations: RTO for each Station	172.1	\$3,738,220	\$21,723	
	8 Stations: One RTO No Concentrator	172.1	\$3,203,927	\$18,619	
89-0077-04: Cement Stations	3 New Stations: One RTO No Concentrator	64.5	\$764,619	\$11,849	
	3 New Stations: Concentrator + One RTO	62.6	\$799,211	\$12,776	
	3 New Stations: Concentrator + Boiler	62.6	\$957,963	\$15,314	
	3 New Stations: Controlled in 3 Boilers	53.2	\$791,357	\$14,883	
89-0077-04: Extruders	Extruders – Individual RTO	51.0	\$685,174	\$13,446	
	Proportional Silane Use - RTOs on all 4 new Mixers	16.7 (per mixer)	\$685,174 (per mixer)	\$40,987	
00 0077 05.	Proportional Silane Use - RTOs on pairs of Mixers (626&627; 328&329)	33.4 (per mixer pair)	\$2,433,734 (per mixer pair)	\$72,792	
89-0077-05: Mixers 621, 622, 623, 624, 625, 626, 627, 328,	Total Silane Used in 2 mixers – single RTO	138.5	\$2,433,734	\$17,572	
and 329	Concentrator & RTO system on 4 new mixers	64.8	\$833,667	\$12,861	
	Concentrator & RTO system on 4 new mixers & 2 existing mixers	97.2	\$1,188,241	\$12,221	
	2 New Mixers: Controlled in existing boilers	8.43	\$341,740	\$40,535	
89-0077-22: Tire Curing	2 Concentrator & RTO systems for the new curing bay	33.2	\$2,696,434	\$81,277	

BACT Insignificant Activities

If we assume that BACT has a threshold of economic feasibility of \$8,000/ton of avoided emissions and is technically achievable for any of the listed insignificant activities. And if we

assume that the control technology selected is able to achieve at least 98% control efficiency of VOC emissions. Then, the highest annual cost of control would be \$2,352 for the Portable Diesel Air compressors and it would only remove 0.29 tons/year of VOC's. BATO is not aware of any VOC control technologies that are able to be operated for less than \$2,500/year and applicable to the listed insignificant activities at the facility. BATO will continue to implement good and best industry practices to minimize VOC emissions from all insignificant activities at this facility. These practices are briefly described below for each of the insignificant activities with VOC emissions that will likely see some increased utilization.

Solvent Storage Tank: The solvent storage tank is an existing unit, and BACT is not required for existing units.

Tire Spraying (Dopers): Calculations for VOC Emissions from this activity are included in the Material Processing calculation and VOC Summary table. This Material is Inside Tire Spray Chem-Trend ML-3114 and has a low VOC Weight Fraction of 0.002 (0.2%). The SDS for this material is attached following the description of Insignificant Activities in the application. Use of Low-VOC materials is considered BACT for this activity. BATO proposes a BACT limit of 0.84 TPY for new Tire Spraying VOC emissions resulting from the expansion.

Cement Spraying: VOC emissions from this activity are accounted for in the Cement Stations above for our Source 04 BACT Analysis. PM emissions are less than 1 ton/year and are described in the Insignificant Activities section in the application. Use of Low-VOC materials and best work practices are proposed as BACT for VOC emissions from Cement Spraying. BATO proposes a BACT limit of 0.37 TPY for new Cement Spraying VOC emissions resulting from the expansion.

Tire Repair: For tire repairs, an average of 2% of tires require repairs, an average of 45 grams (less than 0.1 lbs) of rubber is removed, and 45 grams of rubber has to be cured onto the repair. The emission factor for rubber curing is 2.24 E-04 lb VOC per lb of rubber. The emission factor for rubber grinding is 1.59 E-02 lb VOC per lb of rubber removed. Assuming **Example 1** — the VOC emissions from this activity are 0.080 Ton/year. BATO uses best industry practices to maintain Tire Repair emissions this low. These practices are considered BACT for this activity. BATO proposes a BACT limit of 0.08 TPY for Tire Repair.

Final Inspection Marking: Typically, final inspection marking is completed with a dot matrix marking system utilizing the orange and yellow ink products shown in the Material Processing – Solvent Usage Table and VOC Summary in the permit application. These VOC emissions are accounted for in the Source 04 BACT analysis above, and the minimum amount of ink is used to mark the tires for final inspection. In the description of Insignificant Activities in the application, we accounted for an additional volume of Spray Paint cans for Final Inspection marking. This activity is not typical, and only occurs if the Dot Matrix machine was not functional. BATO will implement best work practices and using the minimum amount of ink to mark tires for final inspection will be considered BACT for this activity. BATO proposes a BACT limit of 2.23 TPY for new Final Inspection Marking VOC emissions resulting from the expansion.

Oil Storage Tanks: BATO will add a new RM010 Tank, a new RS012 Tank, and a new WS019 Tank – all are specified to be the identical size and contents to the existing oil storage tanks. With these additional storage tanks, VOC emissions are estimated to increase from 0.030 TPY to 0.044 TPY. Emissions from storage tanks are kept to a minimum with good work practices, submerged filling, and light-colored tanks to prevent breathing losses from solar warming. These practices are considered BACT for the oil storage tanks. The proposed BACT limit for new storage tanks is 0.02 TPY.

Tire Testing Room: No VOC emissions are claimed from the Tire Testing Room activities, so this source is not included in the BACT analysis.

Two Electron Beam Generators (Precure machine): VOC emissions are included in the emission factors for Curing, and therefore, this activity is already accounted for above in our BACT Analysis for Source 22. Additionally, there will not be any new Precure machines associated with the expansion.

Mold Cleaning: No VOC emissions are claimed or expected from this activity and only particulate matter emissions are included in the description of Insignificant Activities in the application.

Tread Grinders: The BATO Warren Plant does not use Tread Grinders at this facility. This activity is no longer included in the description of Insignificant Activities in the permit application.

Inside Day Bins: Day Bins have bin vent filters for Particulate Matter emissions from carbon black and pigment transfers. No VOC emissions are claimed from this activity, so this source is not included in the BACT Analysis.

The remaining activities listed below, which are Categorical Insignificant Activities, are not expected to experience any increased utilization as part of this expansion. The emergency diesel engines, emergency diesel fire pumps, and gasoline storage tank are existing units. BATO uses best industry practices with submerged filling on fuel storage tanks; proper operation and maintenance on diesel air compressors, natural gas generator, and space heaters; best practices are in place to maintain and operate the water cooling towers. The best industry practices are in place for solvent management from the Parts Washers. No VOC emissions are expected from the PPE Vacuum Stations.

1.	Two 30,000 gallon #2 Fuel Oil Storage Tanks	TAPCR 1200-3-904(5)(f)17
2.	300 gallon Diesel Tanks (2)	TAPCR 1200-3-904(5)(f)17
3.	300 gallon Kerosene Tank	TAPCR 1200-3-904(5)(f)17
4.	300 gallon Gasoline Tank	TAPCR 1200-3-904(5)(f)17
5.	Portable Diesel Air Compressors	TAPCR 1200-3-904(5)(f)37

6.	Standby Diesel Emergency Generator	TAPCR 1200-3-904(5)(f)37
7.	Standby Natural Gas Generator	TAPCR 1200-3-904(5)(f)37
8.	Diesel Powered Emergency Water Pumps	TAPCR 1200-3-904(5)(f)37
9.	Two 550 gallon Diesel Tanks	TAPCR 1200-3-904(5)(f)17
10.	Space Heaters	TAPCR 1200-3-904(5)(f)14
11.	Water Cooling Towers	TAPCR 1200-3-904(5)(f)15
12.	Parts Washer	TAPCR 1200-3-904(5)(f)76
13.	Personal Protective Equipment Vacuum Stations	TAPCR 1200-3-904(5)(f)94

Table 3: SUMMARY OF BACT ANALYSIS FOR VOC'S				
Emission Source	VOC Emission Limit	Control Technology		
Source 04	116.08 tons/yr	Best work practices		
Manufacturing & Material				
Usage				
Source 05	80.27 tons/yr	Best work practices		
Material Handling and Mixer				
Charging				
Source 10	1.77 tons/yr	Use of clean fuels, good		
Three Boilers & One		combustion practices, and		
Hydronic Heater		efficient boiler design		
Source 22	34.92 tons/yr	Best work practices		
Tire Curing				
Insignificant Activities		Best industry practices as		
(Highest VOC = Portable		described in Insignificant		
Diesel Air Compressors)		Activities section above		
Tire Spraying (Dopers)	0.84 tons/year	Low-VOC materials		
Cement Spraying	0.37 tons/year	Low-VOC materials and best		
		work practices		
Tire Repair	0.08 tons/year	Best work practices		
Final Inspection Marking	2.23 tons/year	Best work practices and use		
		minimum amount of ink		
Oil Storage Tanks	0.02 tons/year	Best industry practices,		
	-	submerged filling, and light-		
		colored tanks		

Warren County Expansion - BACT Info

Mixer - VOC Control of Baghouse Exhaust

	RTO Size - CFM	30,000 CFM	64,000 CFM
Annual cost of RTO		\$685,174	\$2,433,734

Total No. of	
Mixers	
9	

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

Air flow rate for baghouse 30,000 scfm Vent one mixer to a single RTO Direct Costs Cost Factor/Comments Cost Purchased Equipment Costs Equipment Cost (EC)orig \$612,100 Durr Estimate in 8.9.2019 Email Equipment Cost (EC)updated \$875,000 Durr Estimate updated in 01.09.2023 Email Freight 0.05*EC \$43,750 Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Taxes 0.03*EC \$26,250 Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) 0.10*EC \$87,500 Instrumentation Total Purchased Equipment Costs (PEC) = \$1,032,500 Scaled this to a 2022 Basis using the Chemical Engineering plant cost index **Direct Installation Costs** Foundations and Supports 0.08*PEC \$82.600 Table 2.8 of the OAQPS Control Cost manual 0.14*PEC \$144,550 Table 2.8 of the OAQPS Control Cost manual Handling and Erection 0.04*PEC 0.02*PEC Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual Electrical \$41,300 Piping Insulation for Ductwork \$20,650 0.01*PEC \$10,325 Table 2.8 of the OAQPS Control Cost manual Painting 0.01*PEC \$10,325 Table 2.8 of the OAQPS Control Cost manual Site Preparation Unknown (unknown at this time) Retrofit Factor \$0 Control Equipment Installed on new mixers Total Direct Installation Costs (DC) = \$309,750 Indirect Installation Costs 0.10*PEC \$103,250 Table 2.8 of the OAQPS Control Cost manual Engineering \$51,625 \$103,250 Construction and Field Expenses 0.05*PEC Table 2.8 of the OAQPS Control Cost manual 0.10*PEC Table 2.8 of the OAQPS Control Cost manual **Contractor Fees** 0.02*PEC \$20,650 Table 2.8 of the OAQPS Control Cost manual Start-up Performance test 0.01*PEC \$10.325 Table 2.8 of the OAQPS Control Cost manual 0.03*PEC Table 2.8 of the OAQPS Control Cost manual Contingencies \$30,975 Total indirect Installation Costs (IC) = \$320,075 Total Installed Cost (PEC + DC + IC) = \$1.662.325 **Ductwork** Based on new control device west of mixing building 30 feet \$29,639 Reference 2, scaled Total Capital Cost (TCC) TCC =\$1,691,964 Direct Annual costs Cost Factor/Comments Cost \$0.0425 0.0425 \$/kWh Warren Co 39 kW for fan \$14,560 Elec. Cost= Electricity Cost T. Burnett email 12.28.2022 Operation= 8.760 hr/yr Fuel Cost \$182 313 Fuel use 33.974 MMBtu/vr 5.37 /MMBtu gas cost \$ 2022 Warren Co gas cost T. Burnett email 12.28.2022 Operating Labor 1 hr/shift \$36,474 Operator Ś 33.31 /hr T. Burnett email 12.28.2022 \$5.471 15% of operating labor. Reference 3 Supervisor Maintenance 1 hr/shift \$41,435 \$ 37.84 /hr T. Burnett email 12.28.2022 Labor \$41.435 100% of maintenance labor, Reference 3 Material Indirect Annual Costs Reference 3 Table 2.10 C = operating labor + \$74,889.13 0.6 * C Overhead maintenance costs 2% TCC Administration \$23,850 Property Taxes \$11,925 1% TCC \$11,925 1% TCC Insurance 7.00% Interest Rate Years for Loan 10 Capital Recovery (Annualized Capital Cost) \$240,897,56

Total Annual Cost

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 30,000 scfm based on controlling a single Mixer in August 2019.

They additionally provided a second budgetary cost estimate for an individual RTO rated for 30,000 scfm to control a single

Mixer in January 2023. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process

\$685,174

Engineer, May 2016. (Includes Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

Air flow ra	te for baghouse	x 2 = 64,000	scfm		Vent two mixers to a single RTO	
Direct Cos Purchased	s <u>ts</u> I Equipment Costs		Cost		Cost Factor/Comments	
	Equipment Cost (EC)orig		\$2,240,000	2002 Dollars	Regenerative Oxidizers. (fact shee	Clean Air Technology Center Fact Sheet for t presents a capital cost range of \$35- ed the minimum to estimate the capital cost
	Equipment Cost (EC)scaled		\$4,714,792	2022 Dollars	Scaled this to a 2022 Basis using th CE Index in 2022 = 821.3 CE Index in 2002 = 390.2	ne Chemical Engineering plant cost index
	Freight	0.05*EC _b	\$235,740		Table 2.8 of the OAQPS Control Co	ost manual (0.05 * Equip cost)
	Taxes	0.03*EC _b	\$141,444		Table 2.8 of the OAQPS Control Co	
	Instrumentation Total	0.10*EC _b Purchased Equipment Costs (PEC) =	\$471,479 \$5,563,455		Table 2.8 of the OAQPS Control Co	ost manual (0.1 * Equip cost)
D ¹						
Direct Inst	allation Costs Foundations and Supports	0.08*PEC	\$445,076.40		Table 2.8 of the OAQPS Control Co	ost manual
	Handling and Erection	0.14*PEC	\$778,884		Table 2.8 of the OAQPS Control Co	
	Electrical	0.04*PEC	\$222,538.20		Table 2.8 of the OAQPS Control Co	
	Piping Insulation for Ductwork	0.02*PEC 0.01*PEC	\$111,269 \$55,635		Table 2.8 of the OAQPS Control Co Table 2.8 of the OAQPS Control Co	
	Painting	0.01*PEC	\$55,635		Table 2.8 of the OAQPS Control Co	
	Site Preparation		Unknown		(unknown at this time)	
	Retrofit Factor = 0%		\$0		Control Equipment Installed on ne	w mixers
		Fotal Direct Installation Costs (DC) =	\$1,669,037			- so this is conservative to assume \$0
	· · · · ·	iotal Direct installation Costs (DC) -	\$1,009,057			
Indirect Ir	stallation Costs	0.40*050	6556 DAG		Table 2.0 - fabre 04.000 fabre 1.0	
	Engineering Construction and Field Expenses	0.10*PEC 0.05*PEC	\$556,346 \$278,173		Table 2.8 of the OAQPS Control Co Table 2.8 of the OAQPS Control Co	
	Contractor Fees	0.10*PEC	\$556,346		Table 2.8 of the OAQPS Control Co	
	Start-up	0.02*PEC	\$111,269		Table 2.8 of the OAQPS Control Co	
	Performance test	0.01*PEC	\$55,635		Table 2.8 of the OAQPS Control Co	
	Contingencies Te	0.03*PEC otal indirect Installation Costs (IC) =	\$166,904 \$1,724,671		Table 2.8 of the OAQPS Control Co	ost manual
			., ,			
	т	otal Installed Cost (PEC + DC + IC) =	\$8,957,163			
<u>Ductwork</u>		1000 feet	\$987,956		Based on new control device west Reference 2, scaled	of mixing building
<u>Total Capi</u>	tal Cost (TCC)	TCC =	\$9,945,118			
Direct An			Cost		Cost Factor/Comments	
	Electricity Cost	83 kW for fan	\$31,061		Elec. Cost= \$0.0425	0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
					Operation= 8,760	hr/yr
	Fuel Cost		\$389,203			7 MMBtu/yr /MMBtu
						2022 Warren Co gas cost T. Burnett email 12.28.2022
	Operating Labor	41-11-0	Ann 1			
	Operator \$	1 hr/shift 33.31 /hr	\$36,474		T. Burnett email 12.28.2022	
	Supervisor		\$5,471		15% of operating labor, Reference 3	
	Maintenance Labor \$	1 hr/shift 37.84 /hr	\$41,435		T. Burnett email 12.28.2022	
	Material		\$41,435		100% of maintenance labor, Reference	e 3
Indirect A	nnual Costs Overhead		\$74,889.13	5	Reference 3 Table 2.10 0.6 * C	C = operating labor + maintenance costs
	Administration		\$198,902	,	2% TCC	
	Property Taxes		\$198,902 \$99,451		2% TCC 1% TCC	
	Insurance		\$99,451		1% TCC	
	Interest Pate	7.000/				
	Interest Rate Years for Loan	7.00% 10				
Total Ann	Years for Loan Capital Recovery (Annualized Cap	10	\$1,415,961.09 \$2,433,73 4			

Basis: 1) EPA's RTO Fact Sheet for oxidizers, www.epa.gov/catc/clean-air-technology-center-products#factsheets , states capital cost range of an RTO is \$35-140/scfm, minimum of range selected.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
 EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

	126,636	scfm			
virect Costs urchased Equipment Costs		Cost	Cost Factor/Comr	<u>ments</u>	
Quoted RTO Equipment Cos	t (EC _a)	\$2,160,000	Durr Ectimato in 0 17 2	010 Empili	or 200,000 flow rate = \$2,160,000
Scaled RTO Equipment Cost	(EC _h)	\$1,367,669			RTO flowrate/Larger RTO Flowrate)
Freight	0.05*ECh	\$68,383	Table 2.8 of the OAQPS	Control Co	ost manual (0.05 * Equip cost)
Taxes	0.03*EC _b	\$41,030			ost manual (0.03 * Equip cost)
Instrumentation	0.10*EC _b otal Purchased Equipment Costs (PEC) =	\$136,767 \$1,613,849	Table 2.8 of the OAQPS	Control Co	ost manual (0.1 * Equip cost)
1	star Purchased Equipment Costs (PEC) =	\$1,015,649			
irect Installation Costs	0.00*050	6422 427 22	T-11-20-51-0000		
Foundations and Supports Handling and Erection	0.08*PEC 0.14*PEC	\$129,107.93 \$225,939	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Electrical	0.04*PEC	\$64,553.97	Table 2.8 of the OAQPS		
Piping	0.02*PEC 0.01*PEC	\$32,277	Table 2.8 of the OAQPS		
Insulation for Ductwork Painting	0.01*PEC 0.01*PEC	\$16,138 \$16,138	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Site Preparation		Unknown	(unknown at this time)		
Retrofit Factor		\$0	Install on new mixers		
	Total Direct Installation Costs (DC) =	\$484,155			
direct Installation Costs Engineering	0.10*PEC	\$161,385	Table 2.8 of the OAQPS	Control C	ost manual
Construction and Field Expe		\$80,692	Table 2.8 of the OAQPS		
Contractor Fees	0.10*PEC	\$161,385	Table 2.8 of the OAQPS	Control Co	ost manual
Start-up Performance test	0.02*PEC	\$32,277	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Performance test Contingencies	0.01*PEC 0.03*PEC	\$16,138 \$48,415	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
-	Total indirect Installation Costs (IC) =	\$500,293			
	Total Installed Cost (PEC + DC + IC) =	\$2,598,297			
<u>ictwork</u>			Based on new control d	levice west	of mixing building
	120 feet	\$118,555	Reference 2, scaled		
otal Capital Cost (TCC)	TCC =	\$2,716,852			
irect Annual costs		Cost	Cost Factor/Comments	<u>.</u>	
Electricity Cost	165 kW for fan	\$61,459		\$0.0425	0.0425 \$/kWh Warren Co 2022 cost
			Operation=	8,760	T. Burnett email 12.28.2022 hr/yr
Fuel Cost		\$77,011	Fuel use	14,341	MMBtu/yr
			gas cost \$	5.37	/MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor		400.000			
Operator \$	1 hr/shift 33.31 /hr	\$36,474	T. Burnett email 12.28.202	22	
Supervisor	,	\$5,471	15% of operating labor, Re		
Maintenance	1 hr/shift	\$41,435	T. Rurpott ameil 12 20 200	22	
Labor \$	37.84 /hr	¢11 435	T. Burnett email 12.28.202		a 3
Material		\$41,435	100% of maintenance labo	, reierenc	
direct Annual Costs Overhead		\$74,889.13	Reference 3 Table 2.10 0.6 * C		C = operating labor + maintenance cost
Administration		\$54,337	2% TCC		
Property Taxes		\$54,337 \$27,169	2% TCC 1% TCC		
Insurance		\$27,169	1% TCC		
Interest Rate	7.00%				
Years for Loan	10				
Capital Recovery (Annualize	d Capital Cost)	\$386,818.58			
		\$833,667 80.27	Control Device Capture 85%		Control 95%
otal Annual Cost	Silane at 4 new Mixers (fnv)				
otal Annual Cost Rubber VOC and EtOH from			Efficiency =		Efficiency =
otal Annual Cost	om 4 new Mixers (tpy)	15.45 64.82	Efficiency =		Efficiency =

flowrates with no scaling factor was used to scale the cost. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high cost of

Towrates with no scaling factor was used to scale the cost. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high co control. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials) 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

rect Costs		Cost	Cost Factor/Comments	
chased Equipment Costs				
Quoted RTO Equipment Cost (EC _a)		\$2,160,000	Durr Estimate in 9.17.2019 Email for 200,000 flow for a system with three concentrator wheels with	
Freight	0.05*ECb	\$108,000	Table 2.8 of the OAQPS Control Cost manual (0.0	
Taxes Instrumentation	0.03*EC _b 0.10*EC _b	\$64,800 \$216,000	Table 2.8 of the OAQPS Control Cost manual (0.0 Table 2.8 of the OAQPS Control Cost manual (0.1	
	irchased Equipment Costs (PEC) =			Equip cost,
ct Installation Costs				
Foundations and Supports	0.08*PEC	\$203,904.00	Table 2.8 of the OAQPS Control Cost manual	
Handling and Erection Electrical	0.14*PEC 0.04*PEC	\$356,832 \$101,952.00	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual	
Piping	0.02*PEC	\$50,976	Table 2.8 of the OAQPS Control Cost manual	
Insulation for Ductwork Painting	0.01*PEC 0.01*PEC	\$25,488	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual	
rainting	0.01 PEC	\$25,488		
Site Preparation		Unknown	(unknown at this time)	
Retrofit Factor		\$0	Install on new mixers	
То	tal Direct Installation Costs (DC) =	\$764,640		
rect Installation Costs				
Engineering Construction and Field Exponence	0.10*PEC	\$254,880	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual	
Construction and Field Expenses Contractor Fees	0.05*PEC 0.10*PEC	\$127,440 \$254,880	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual	
Start-up	0.02*PEC	\$50,976	Table 2.8 of the OAQPS Control Cost manual	
Performance test Contingencies	0.01*PEC 0.03*PEC	\$25,488 \$76,464	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual	
	al indirect Installation Costs (IC) =	\$76,464 \$790,128	Table 2.6 OF THE OAQPS CONTROL COST MANUAL	
Tot	tal Installed Cost (PEC + DC + IC) =	\$4,103,568		
<u>ctwork</u>			Based on new control device west of mixing build	ing
	180 feet	\$177,832	Reference 2, scaled	
al Capital Cost (TCC)	TCC =	\$4,281,400		
ect Annual costs		Cost	Cost Factor/Comments	
Electricity Cost	248 kW for fan	\$92,189		/arren Co 2022 cost
			T. Burnett email Operation= 8,760 hr/yr	12.28.2022
Fuel Cost		\$115,517	Fuel use 21,511 MMBtu/yr	
Tuer Cost		<i>Ş</i> 113,317	gas cost \$ 5.37 /MMBtu 2022 Warren Co T. Burnett email	
Operating Labor				
Operator \$	1 hr/shift 33.31 /hr	\$36,474	T. Burnett email 12.28.2022	
Supervisor		\$5,471	15% of operating labor, Reference 3	
Maintenance Labor \$	1 hr/shift 37.84 /hr	\$41,435	T. Burnett email 12.28.2022	
Material		\$41,435	100% of maintenance labor, Reference 3	
lirect Annual Costs			Reference 3 Table 2.10	
Overhead		\$74,889.13	0.6 * C C = operating la	oor + maintenance costs
Administration		\$85,628	2% TCC	
Property Taxes		\$42,814	1% TCC 1% TCC	
Insurance		\$42,814	1/0 100	
Interest Rate Years for Loan	7.00% 10			
Capital Recovery (Annualized Capi	tal Cost)	\$609,575.04		
al Annual Cost Rubber VOC and EtOH from Silane	at 4 new Mixers + 2 evicting	\$1,188,241 120.41	Control Device Capture 85% Control	95%
Mixers (tpy) Controlled VOC Emissions from 4 r	Ŭ	23.18	Efficiency = Efficiency =	
(tpy)				
VOC Emissions Avoided (tpy)		97.23		

total exhaust volume of 200,000 cfm (estimated - \$2,160,000) in September 2019. It is assumed that a similarly sized unit would be able to control the exhaust volume from 6 Mixers (4 New Mixers and 2 Existing Mixers) totaling nearly 200,000 cfm. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high cost of control.
2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONTROL COSTS FOR MIXING - BOILER CONTROL BRIDGESTONE WARREN CO

Air flow rate for Mixer = Total Air flow rate able to be vented for 2 Mixe	31,659 s ers = 14,000 s		Vent a single Mixer to a boiler for control. Vent 2 separte streams from Mixers to existing boilers for control.
Direct Costs Purchased Equipment Costs		<u>Cost</u>	Cost Factor/Comments
Equipment Cost (EC) Freight Taxes Instrumentation Total Pur	0.05*EC 0.03*EC 0.10*EC chased Equipment Costs (PEC) =	\$10,000 \$500 \$300 \$1,000 \$11,800	Min. Cost associated with the installation of a booster fan. (Reference 1) Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
Direct Installation Costs			
Foundations and Supports Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.08*PEC 0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$944 \$1,652 \$472 \$236 \$118 \$118	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
Tota	al Direct Installation Costs (DC) =	\$3,540	
Indirect Installation Costs Engineering Construction and Field Expenses Contractor Fees Start-up Performance test Contingencies Tota	0.10*PEC 0.05*PEC 0.10*PEC 0.02*PEC 0.01*PEC 0.03*PEC I indirect Installation Costs (IC) =	\$1,180 \$590 \$1,180 \$236 \$118 \$354 \$3,658	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Tota	al Installed Cost (PEC + DC + IC) =	\$18,998	
Ductwork	1780 feet	\$1,758,561	Chris Buchanan on 6.07.2023.(BATO Engineering Div. Manager) & Reference 2 Scaled
Total Capital Cost (TCC)	TCC =	\$1,777,559	
Direct Annual costs Electricity Cost	41 kW for fan	<u>Cost</u> \$15,365	Cost Factor/Comments Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$0	Fuel use 0 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator \$ Supervisor	1 hr/month 33.31 /hr	\$400 \$60	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance Labor \$	1 hr/month 37.84 /hr	\$454	T. Burnett email 12.28.2022
Material	·	\$454	100% of maintenance labor, Reference 3
Indirect Annual Costs Overhead		\$820.70	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration Property Taxes Insurance		\$35,551 \$17,776 \$17,776	2% TCC 1% TCC 1% TCC
Interest Rate Years for Loan Capital Recovery (Annualized Capit Total Annual Cost Rubber VOC and EtOH from Silane Controlled VOC Emissions from 2 n VOC Emissions Avoided (tpy) BACT Cost (\$/Ton of VOC Emission	at 2 new Mixers (tpy) ew Mixers (tpy)	\$253,084.40 \$341,740 40.14 31.71 8.43 \$40,535	Control Device Capture 22% Control 95% Efficiency = Efficiency =

Basis:

1) Engineering Judgement used to estimate cost of booster fan. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes 2) Goal Estimation and Materials)
 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR EXTRUDING BRIDGESTONE WARREN CO

Air flow rate for Extruding (minimum) = 30,000 scfm Vent Extruders to a single RTO Direct Costs Cost Factor/Comments Cost Purchased Equipment Costs Equipment Cost (EC)orig \$612,100 Durr Estimate in 8.9.2019 Email Equipment Cost (EC)updated \$875,000 Durr Estimate updated in 01.09.2023 Email Freight 0.05*EC \$43,750 Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) Taxes 0.03*EC \$26,250 0.10*EC \$87,500 Instrumentation Total Purchased Equipment Costs (PEC) = \$1,032,500 Scaled this to a 2022 Basis using the Chemical Engineering plant cost index **Direct Installation Costs** Foundations and Supports 0.08*PEC \$82.600 Table 2.8 of the OAQPS Control Cost manual 0.14*PEC \$144,550 Table 2.8 of the OAQPS Control Cost manual Handling and Erection 0.04*PEC 0.02*PEC Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual Electrical \$41,300 Piping Insulation for Ductwork \$20,650 0.01*PEC \$10,325 Table 2.8 of the OAQPS Control Cost manual Painting 0.01*PEC \$10,325 Table 2.8 of the OAQPS Control Cost manual Site Preparation Unknown (unknown at this time) Retrofit Factor \$0 Control Equipment Installed on new mixers Total Direct Installation Costs (DC) = \$309,750 Indirect Installation Costs 0.10*PEC \$103,250 Table 2.8 of the OAQPS Control Cost manual Engineering \$51,625 \$103,250 Construction and Field Expenses 0.05*PEC Table 2.8 of the OAQPS Control Cost manual 0.10*PEC Table 2.8 of the OAQPS Control Cost manual **Contractor Fees** 0.02*PEC \$20,650 Table 2.8 of the OAQPS Control Cost manual Start-up Performance test 0.01*PEC \$10.325 Table 2.8 of the OAQPS Control Cost manual 0.03*PEC Table 2.8 of the OAQPS Control Cost manual Contingencies \$30,975 Total indirect Installation Costs (IC) = \$320,075 Total Installed Cost (PEC + DC + IC) = \$1.662.325 **Ductwork** Based on new control device west of mixing building 30 feet \$29,639 Reference 2, scaled Total Capital Cost (TCC) TCC =\$1,691,964 Direct Annual costs Cost Factor/Comments Cost \$0.0425 0.0425 \$/kWh Warren Co 39 kW for fan \$14,560 Elec. Cost= Electricity Cost T. Burnett email 12.28.2022 Operation= 8.760 hr/yr Fuel Cost \$182 313 Fuel use 33,974 MMBtu/yr 5.37 /MMBtu gas cost \$ 2022 Warren Co gas cost T. Burnett email 12.28.2022 Operating Labor 1 hr/shift \$36,474 Operator Ś 33.31 /hr T. Burnett email 12.28.2022 \$5.471 15% of operating labor. Reference 3 Supervisor Maintenance 1 hr/shift \$41,435 \$ 37.84 /hr T. Burnett email 12.28.2022 Labor \$41.435 100% of maintenance labor, Reference 3 Material Indirect Annual Costs Reference 3 Table 2.10 C = operating labor + \$74,889.13 0.6 * C Overhead maintenance costs Administration \$23,850 2% TCC Property Taxes \$11,925 1% TCC 1% TCC \$11,925 Insurance 7.00% Interest Rate Years for Loan 10 \$240,897,56 Capital Recovery (Annualized Capital Cost) **Total Annual Cost** \$685,174 Total VOC Emissions avoided = Total Emissions * 98% Dest. Efficiency 50.96 Tons VOC Avoided

Economic Feasibility \$/ton avoided. \$13,446

1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 30,000 scfm based on controlling a single Mixer in August 2019.

They additionally provided a second budgetary cost estimate for an individual RTO rated for 30,000 scfm to control a single Mixer

in January 2023. We applied the same cost for control of extruders. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process

Engineer, May 2016. (Includes Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

Summary - Cement Station Control Cost Analysis

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

Air flow rate for Cement Station = 11,000 scfm cement station to an RTO for control. Ven Direct Costs Cost Cost Factor/Comments Purchased Equipment Costs 2019 Dollars Durr Estimate in 11.08.2019 Email - Reference 1 Equipment Cost (EC₃) \$360.000 Equipment Cost (EC_b) \$490,980 2022 Dollars Durr Estimate in 11.08.2019 Email - (Scaled to 2022) 602.2 is the 2019 (August) CE Plant Cost Index 821.3 is the 2022 (September) CE Plant Cost Index 0.05*EC_b Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Freight \$24,549 0.03*ECh \$14,729 Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Taxes Instrumentation 0.10*ECb \$49,098 Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) Total Purchased Equipment Costs (PEC) = \$579,356 Direct Installation Costs 0.08*PEC \$46,348.49 Table 2.8 of the OAQPS Control Cost manual Foundations and Supports Handling and Erection 0.14*PEC Table 2.8 of the OAQPS Control Cost manual \$81,110 Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual Electrical 0.04*PEC \$23,174.24 0.02*PEC \$11,587 Piping Insulation for Ductwork 0.01*PEC \$5,794 Table 2.8 of the OAQPS Control Cost manual Painting 0.01*PEC \$5,794 Table 2.8 of the OAQPS Control Cost manual Site Preparation Unknown (unknown at this time) Retrofit Factor \$0 Install on new cement stations Total Direct Installation Costs (DC) = \$173,807 Indirect Installation Costs 0.10*PEC Table 2.8 of the OAQPS Control Cost manual Engineering \$57,936 Construction and Field Expenses Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual 0.05*PEC \$28,968 Contractor Fees 0.10*PEC \$57,936 Start-up 0.02*PEC \$11.587 Table 2.8 of the OAQPS Control Cost manual Performance test 0.01*PEC \$5,794 Table 2.8 of the OAQPS Control Cost manual Contingencies 0.03*PEC \$17,381 Table 2.8 of the OAQPS Control Cost manual Total indirect Installation Costs (IC) = \$179,600 Total Installed Cost (PEC + DC + IC) = \$932,763 Ductwork Based on new control device west of mixing building \$138,314 140 feet Reference 2, scaled Total Capital Cost (TCC) TCC = \$1,071,077 **Direct Annual costs** Cost Cost Factor/Comments 14 kW for fan \$5,339 Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost Electricity Cost T. Burnett email 12.28.2022 Operation= 8.760 hr/vr \$66.894 12.457 MMBtu/vr Fuel Cost Fuel use 5.37 /MMBtu gas cost \$ 2022 Warren Co gas cost T. Burnett email 12.28.2022 Operating Labor 1 hr/shift \$36,474 Operator Ś 33.31 /hr T Burnett email 12 28 2022 \$5,471 15% of operating labor, Reference 3 Supervisor 1 hr/shift Maintenance \$41,435 Ś 37.84 /hr T. Burnett email 12.28.2022 Labor \$41,435 100% of maintenance labor, Reference 3 Material Reference 3 Table 2.10 Indirect Annual Costs \$74,889.13 C = operating labor + maintenance costs Overhead 0.6 * C Administration \$21,422 2% TCC 1% TCC **Property Taxes** \$10,711 1% TCC \$10,711 Insurance Interest Rate 7.00% Years for Loan 10 \$152,497.28 Capital Recovery (Annualized Capital Cost) **Total Annual Cost** \$467,278

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 11,000 scfm based on controlling a single cement station in November 2019.
 Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

Air flow rate for Cement Station =	33,000 5	scfm		Vent cement stations to a single RTO for control.
Direct Costs Purchased Equipment Costs		Cost		Cost Factor/Comments
Equipment Cost (EC)orig		\$1,155,000	2002 Dollars	Reference 1 - Minimum of the EPA Clean Air Technology Center Fact Sheet for Regenerative Oxidizers. (fact sheet presents a capital cost range of \$35- 140/scfm; we conservatively applied the minimum to estimate the capital cost
Equipment Cost (EC)scaled		\$2,431,065	2022	of a standalone RTO. Scaled this to a 2022 Basis using the Chemical Engineering plant cost index CE Index in 2022 = 821.3
			Dollars 2023	CE Index in 2002 = 320.2 CE Index in 2002 = 390.2 Durr Estimated cost of RTO for a single Mixer at approx. 30,000 cfm updated
Most Conservative Updated L Freight	ow estimate of Equipment Cost (EC _c) 0.05*EC _c	\$875,000 \$43,750	Dollars	01.09.2023 Email Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC	\$26,250		Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation T	0.10*EC _c Total Purchased Equipment Costs (PEC) =	\$87,500 \$1,032,500		Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) =sum of most conservative EC + Freight + Taxes + Instrumentation
Direct Installation Costs				
Foundations and Supports Handling and Erection	0.08*PEC 0.14*PEC	\$82,600.00 \$144,550		Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Electrical	0.04*PEC	\$41,300.00		Table 2.8 of the OAQPS Control Cost manual
Piping	0.02*PEC	\$20,650		Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork	0.01*PEC 0.01*PEC	\$10,325		Table 2.8 of the OAQPS Control Cost manual
Painting Site Preparation	0.01 PEC	\$10,325 Unknown		Table 2.8 of the OAQPS Control Cost manual (unknown at this time)
Retrofit Factor = 0%		\$0		Install on existing cement stations. Per EPA Cost Manual a retrofit
				factor of up to 50% is appropriate - so this is conservative to assume \$C
	Total Direct Installation Costs (DC) =	\$309,750		
ndirect Installation Costs	0.10*PEC	¢102.250		
Engineering Construction and Field Expen		\$103,250 \$51,625		Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$103,250		Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$20,650		Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$10,325		Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC Total indirect Installation Costs (IC) =	\$30,975 \$320,075		Table 2.8 of the UAQPS Control Cost manual
	Total Installed Cost (PEC + DC + IC) =	\$1,662,325		
Ductwork	250 feet	\$246,989		Based on new control device west of mixing building Reference 2, scaled
Total Capital Cost (TCC)	TCC =	\$1,909,314		
Direct Annual costs		Cost		Cost Factor/Comments
Electricity Cost	43 kW for fan	\$16,016		Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost
Lectrony cost				T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$200,683		Fuel use 37,371 MMBtu/yr
				gas cost \$ 5.37 //MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor				
Operator \$	1 hr/shift 33.31 /hr	\$36,474		T. Burnett email 12.28.2022
Supervisor		\$5,471		15% of operating labor, Reference 3
Maintenance	1 hr/shift 37.84 /hr	\$41,435		T. Burnett email 12.28.2022
Labor \$		\$41,435		100% of maintenance labor, Reference 3
Labor \$ Material		+ -= , -= =		
		\$74,889.1	3	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Material ndirect Annual Costs Overhead		\$74,889.13		
Material ndirect Annual Costs Overhead Administration Property Taxes		\$74,889.1 \$38,186 \$19,093	5 3	0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC
Material n <u>direct Annual Costs</u> Overhead Administration		\$74,889.13 \$38,186	5 3	0.6 * C C = operating labor + maintenance costs 2% TCC
Material ndirect Annual Costs Overhead Administration Property Taxes Insurance Interest Rate	7.00%	\$74,889.1 \$38,186 \$19,093	5 3	0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC
Material ndirect Annual Costs Overhead Administration Property Taxes Insurance	10	\$74,889.1 \$38,186 \$19,093	5 3 3	0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC

1) EPA's RTO Fact Sheet for oxidizers, www.epa.gov/catc/clean-air-technology-center-products#factsheets, states capital cost range of an RTO is \$35-140/scfm, minimum of Basis: range selected.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
 EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

		0 scfm	Vent ement stations to a single concentrator and a single RTO for contro		
irect Costs		Cost	Cost Factor/Comments		
urchased Equipment Costs					
Equipment Cost (EC)		\$950,000	Durr Estimate in 11.12.2019 Email		
Freight	0.05*EC	\$47,500	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)		
Taxes	0.03*EC	\$28,500	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)		
Instrumentation	0.10*EC = otal Purchased Equipment Costs (PEC)	\$95,000 = \$1,121,000	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)		
		- ,1,121,000			
irect Installation Costs					
Foundations and Supports	0.08*PEC	\$89,680.00	Table 2.8 of the OAQPS Control Cost manual		
Handling and Erection	0.14*PEC	\$156,940	Table 2.8 of the OAQPS Control Cost manual		
Electrical	0.04*PEC	\$44,840.00	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual		
Piping Insulation for Ductwork	0.02*PEC 0.01*PEC	\$22,420 \$11,210	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual		
Painting	0.01*PEC	\$11,210	Table 2.8 of the OAQPS Control Cost manual		
	0.01 120	Ş11,210			
Site Preparation		Unknown	(unknown at this time)		
Retrofit Factor		\$0	Install on new mixers		
	Total Direct Installation Costs (DC) =	= \$336,300			
direct Installation Costs					
Engineering	0.10*PEC	\$112,100	Table 2.8 of the OAQPS Control Cost manual		
Construction and Field Exper		\$56,050	Table 2.8 of the OAQPS Control Cost manual		
Contractor Fees	0.10*PEC	\$112,100	Table 2.8 of the OAQPS Control Cost manual		
Start-up	0.02*PEC	\$22,420	Table 2.8 of the OAQPS Control Cost manual		
Performance test	0.01*PEC	\$11,210	Table 2.8 of the OAQPS Control Cost manual		
Contingencies	0.03*PEC Total indirect Installation Costs (IC) =	\$33,630 = \$347,510	Table 2.8 of the OAQPS Control Cost manual		
	Total munect instanation costs (ic) -	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Total Installed Cost (PEC + DC + IC) =	= \$1,804,810			
<u>ictwork</u>	30 feet	\$29,639	Minimum estimate of require ductwork. Reference 2, scaled		
tal Capital Cost (TCC)	TCC =	\$1,834,449			
rect Annual costs		Cost	Cost Factor/Comments		
Electricity Cost	65 kW for fan	\$24,023	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost		
			T. Burnett email 12.28.2022 Operation= 8,760 hr/yr		
Fuel Cost		\$20,068	Fuel use 3,737 MMBtu/yr		
		<i>\$</i> 20,000	gas cost \$ 5.37 //MBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022		
Operating Labor	4 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	626 474			
Operator \$	1 hr/shift 33.31 /hr	\$36,474	T. Burnett email 12.28.2022		
ې Supervisor	55.51 /11	\$5,471	15% of operating labor, Ref 3		
	1 hr/shift	\$41,435			
Maintenance Labor \$	37.84 /hr	\$41,455	T. Burnett email 12.28.2022		
Material		\$41,435	100% of maintenance labor, Reference 3		
direct Annual Costs			Reference 3 Table 2.10		
Overhead		\$74,889.13	0.6 * C C = operating labor + maintenance costs		
Administration		\$36,689	2% TCC		
Property Taxes		\$18,344	1% TCC		
Insurance		\$18,344	1% TCC		
Zeolite Replacement (Once):					
		\$219,696	By Durr \$200,000 per rotor + \$15,000 freight, scaled from original estimat		
Zeolite Renlacement Materia		<i>\$213,030</i>	Unknown		
Zeolite Replacement Materia Zeolite Replacement Labor C		64.467			
	4 rotor	\$1,167	Assumed equal to Aiken PSR waste Disposal Cost is \$0.19/lb		
Zeolite Replacement Labor C Zeolite Disposal Cost Interest Rate	7.00%	6	Assumed equal to Alken PSK waste Disposal Cost is \$0.19/10		
Zeolite Replacement Labor C Zeolite Disposal Cost	7.00%	6	Assumed equal to Aiken PSK waste Disposal Cost is \$0.19/ib		

1) Durr Systems Inc. provided a budgetary cost estimate for a disc concentrator system and single RTO rated for 33,000 scfm based on controlling three cement stations in November 2019. Basis:

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

ir flow rate for Cement Station =	33,000	scim	Vent ement stations to a sin	gle concentrator and to a boiler for contro
irect Costs urchased Equipment Costs		Cost	Cost Factor/Comments	
Equipment Cost (EC)		\$775,186		budgetary data from Durr Systems Inc.
Freight Taxes	0.05*EC 0.03*EC	\$38,759		Cost manual (0.05 * Equip cost)
		\$23,256		Cost manual (0.03 * Equip cost)
Instrumentation To	0.10*EC otal Purchased Equipment Costs (PEC) =	\$77,519 \$914,720	Table 2.8 of the UAQPS Contro	Cost manual (0.1 * Equip cost)
		,		
ect Installation Costs Foundations and Supports	0.08*PEC	\$73,178	Table 2.8 of the OAQPS Contro	Cost manual
Handling and Erection Electrical	0.14*PEC 0.04*PEC	\$128,061 \$36,589	Table 2.8 of the OAQPS Contro Table 2.8 of the OAQPS Contro	
Piping	0.04 PEC	\$18,294	Table 2.8 of the OAQPS Contro	
Insulation for Ductwork	0.01*PEC	\$9,147	Table 2.8 of the OAQPS Contro	
Painting	0.01*PEC	\$9,147	Table 2.8 of the OAQPS Contro	
-				
Site Preparation		Unknown	(unknown at this time)	
Retrofit Factor		\$0	Install on new mixers	
	Total Direct Installation Costs (DC) =	\$274,416		
rect Installation Costs				
Engineering	0.10*PEC	\$91,472	Table 2.8 of the OAQPS Contro	Cost manual
Construction and Field Expens		\$45,736	Table 2.8 of the OAQPS Contro	
Contractor Fees	0.10*PEC	\$91,472	Table 2.8 of the OAQPS Contro	Cost manual
Start-up	0.02*PEC	\$18,294	Table 2.8 of the OAQPS Contro	
Performance test	0.01*PEC	\$9,147	Table 2.8 of the OAQPS Contro	Cost manual
Contingencies	0.03*PEC	\$27,442	Table 2.8 of the OAQPS Contro	Cost manual
	Total indirect Installation Costs (IC) =	\$283,563		
	Total Installed Cost (PEC + DC + IC) =	\$1,472,699		
twork			Deced on contine emissions for	
			Based on venting emissions fro	m cementer to existing boller.
	1403 feet	\$1,386,102	Reference 2, scaled	5
	1403 feet an (BATO Engineering Div. Manager) ema			-
<u>ictwork</u> Chris Buchana t <u>al Capital Cost (TCC)</u>				-
Chris Buchana tal Capital Cost (TCC <u>)</u>	an (BATO Engineering Div. Manager) ema	ail 6.07.2023 indica \$2,858,801	tes a minimum distance between	-
Chris Buchana tal Capital Cost (TCC) ect Annual costs	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u>	ates a minimum distance between	Cementing and Boilers of 1,403 feet
Chris Buchana al Capital Cost (TCC)	an (BATO Engineering Div. Manager) ema	ail 6.07.2023 indica \$2,858,801	tes a minimum distance between	Cementing and Boilers of 1,403 feet
Chris Buchana al Capital Cost (TCC) ect Annual costs	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u>	ates a minimum distance between	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost
Chris Buchana tal Capital Cost (TCC) ect Annual costs Electricity Cost	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr
Chris Buchana tal Capital Cost (TCC) ect Annual costs	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u>	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr
Chris Buchana <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu
Chris Buchana <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr
Chris Buchana al <u>Capital Cost (TCC)</u> ect <u>Annual costs</u> Electricity Cost Fuel Cost	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 S/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost
Chris Buchana <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost	an (BATO Engineering Div. Manager) em	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 S/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan	ail 6.07.2023 indica \$ 2,858,801 <u>Cost</u> \$16,016 \$0	ttes a minimum distance between <u>Cost Factor/Comments</u> Elec. Cost= \$0.0425 Operation= 8,760 Fuel use	Cementing and Boilers of 1,403 feet 0.0425 S/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost
Chris Buchana al <u>Capital Cost (TCC)</u> ect Annual costs Electricity Cost Fuel Cost Fuel Cost Operating Labor Operator	an (BATO Engineering Div. Manager) em TCC = 43 kW for fan 1 hr/shift	ail 6.07.2023 indica \$ 2,858,801 <u>Cost</u> \$16,016 \$0	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ 5	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Fuel Cost Operating Labor Operator S	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016 \$0 \$36,474 \$5,471	ttes a minimum distance between Cost Factor/Comments Elec. Cost= \$0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Fuel Cost Operating Labor Operator S	an (BATO Engineering Div. Manager) em TCC = 43 kW for fan 1 hr/shift	ail 6.07.2023 indica \$2,858,801 \$16,016 \$0 \$36,474	ttes a minimum distance between Cost Factor/Comments Elec. Cost= \$0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana tal Capital Cost (TCC) eet Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435	ttes a minimum distance between Cost Factor/Comments Elec. Cost \$ 0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022	Cementing and Boilers of 1,403 feet 0.0425 S/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 <u>Cost</u> \$16,016 \$0 \$36,474 \$5,471	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 \$ 15% of operating labor, Reference \$ T. Burnett email 12.28.2022 \$ 100% of maintenance labor, Reference \$	Cementing and Boilers of 1,403 feet 0.0425 S/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435	ttes a minimum distance between Cost Factor/Comments Elec. Cost \$ 0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 \$ 15% of operating labor, Reference \$ T. Burnett email 12.28.2022 \$ 100% of maintenance labor, Reference \$ Reference 3 Table 2.10 \$	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ance 3
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Supervisor Maintenance Labor Supervisor Administration	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176	ttes a minimum distance between Cost Factor/Comments Elec. Cost= \$0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Reference 3 Table 2.10 0.6 * C 2% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ance 3
Chris Buchana al Capital Cost (TCC) Eect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material irect Annual Costs Overhead	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$41,435	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ance 3
Chris Buchana tal Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Goperating Labor Operator Supervisor Maintenance Labor \$ Material lirect Annual Costs Overhead	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176	ttes a minimum distance between Cost Factor/Comments Elec. Cost= \$0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Reference 3 Table 2.10 0.6 * C 2% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ance 3
Chris Buchana tal Capital Cost (TCC) Tect Annual costs Electricity Cost Fuel Cost Operator Supervisor Maintenance Labor Material direct Annual Costs Overhead Administration Property Taxes Insurance	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176 \$28,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ance 3
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Supervisor Maintenance Labor Supervisor Administration Property Taxes Insurance Zeolite Replacement (Once):	an (BATO Engineering Div. Manager) em TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$541,435 \$41,435 \$74,889,13 \$57,176 \$28,588 \$28,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Z. Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC 1% TCC 1% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 //MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ence 3 C = operating labor + maintenance costs
Chris Buchana al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement (Once):	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176 \$28,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Z. Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC 1% TCC 1% TCC	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 //MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ence 3 C = operating labor + maintenance costs
Chris Buchana al Capital Cost (TCC) Ett Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material rect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once):	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$541,435 \$41,435 \$74,889,13 \$57,176 \$28,588 \$28,588	ttes a minimum distance between Cost Factor/Comments Elec. Cost= \$0.0425 Operation= 8,760 Fuel use gas cost \$ 5 T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ence 3 C = operating labor + maintenance costs 15,000 freight, scaled from original estim
Chris Buchana al Capital Cost (TCC) Ett Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material rect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Material Zeolite Replacement Material	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176 \$28,588 \$228,588 \$228,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of science D0% of maintenance labor, Reference 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$ Unknown	Cementing and Boilers of 1,403 feet 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 3 ence 3 C = operating labor + maintenance costs 15,000 freight, scaled from original estim
Chris Buchana al Capital Cost (TCC) Ett Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Supervisor Maintenance Labor S Material itet Annual Costs Overhead Administration Property Taxes Logite Replacement (Once): Zeolite Replacement Labor Co Zeolite Replacement Labor Co	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr I Cost 4 rotor ost 4 rotor	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176 \$28,588 \$228,588 \$228,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of science D0% of maintenance labor, Reference 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$ Unknown	Cementing and Boilers of 1,403 feet O.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr O MMBtu/yr O MMBtu/yr T. Burnett email 12.28.2022 Gas cost T. Burnett email 12.28.2022 Gas cost C = operating labor + maintenance costs L5,000 freight, scaled from original estimated
Chris Buchana al Capital Cost (TCC) Eet Annual costs Electricity Cost Fuel Cost Guerator Operator Supervisor Maintenance Labor Supervisor Maintenance Labor Supervisor Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement (Material Zeolite Replacement (Mater	an (BATO Engineering Div. Manager) ema TCC = 43 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr I cost 4 rotor 20t 4 rotor 7.00% 10	ail 6.07.2023 indica \$2,858,801 Cost \$16,016 \$0 \$36,474 \$41,435 \$41,435 \$41,435 \$74,889.13 \$57,176 \$28,588 \$228,588 \$228,588	Cost Factor/Comments Elec. Cost= \$0.0425 Operation= \$,760 Fuel use gas cost \$ \$ T. Burnett email 12.28.2022 15% of operating labor, Reference T. Burnett email 12.28.2022 100% of maintenance labor, Reference T. Burnett email 12.28.2022 100% of science D0% of maintenance labor, Reference 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$ Unknown	Cementing and Boilers of 1,403 feet O.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr O MMBtu/yr O MMBtu/yr T. Burnett email 12.28.2022 Gas cost T. Burnett email 12.28.2022 Gas cost C = operating labor + maintenance costs L5,000 freight, scaled from original estimated

1) Durr Systems Inc. provided a budgetary cost estimate for an integrated Concentrator + RTO system rated for 33,000 scfm to control three (3) cement stations (\$950,000). This estimate was scaled and reduced to remove the cost of the RTO in the system. Basis:

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes a) Installation and Materials)
b) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONTROL COSTS FOR CEMENTING - BOILER CONTROL BRIDGESTONE WARREN CO

Air flow rate for Cement Station =	11,000 Sc	cfm	Vent ecement station to a boiler for control.
Direct Costs Purchased Equipment Costs		Cost	Cost Factor/Comments
Equipment Cost (EC)	0.05*50	\$10,000	Min. Cost associated with the installation of a booster fan. (Reference 1)
Freight Taxes	0.05*EC 0.03*EC	\$500 \$300	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation	0.10*EC	\$1,000	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
	Purchased Equipment Costs (PEC) =	\$11,800	Table 2.8 of the OAQPS Control Cost manual (0.1 Equip Cost)
		. ,	
Direct Installation Costs		6044	Table 2.0 of the OAODS Control Cost manual
Foundations and Supports	0.08*PEC	\$944	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Handling and Erection Electrical	0.14*PEC 0.04*PEC	\$1,652 \$472	Table 2.8 of the OAQPS Control Cost manual
Piping	0.02*PEC	\$236	Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork	0.01*PEC	\$118	Table 2.8 of the OAQPS Control Cost manual
Painting	0.01*PEC	\$118	Table 2.8 of the OAQPS Control Cost manual
-			
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
1	Fotal Direct Installation Costs (DC) =	\$3,540	
Indirect Installation Costs			
Engineering	0.10*PEC	\$1,180	Table 2.8 of the OAQPS Control Cost manual
Construction and Field Expenses	0.05*PEC	\$590	Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$1,180	Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$236	Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$118	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC	\$354	Table 2.8 of the OAQPS Control Cost manual
Т	otal indirect Installation Costs (IC) =	\$3,658	
Т	Total Installed Cost (PEC + DC + IC) =	\$18,998	
Ductwork			
	1403 feet 3ATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indica	Based on venting emissions from cementer to existing boiler. Reference 2, scaled ates a minimum distance between Cementing and Boilers of 1,403 feel
Total Capital Cost (TCC)	TCC =	\$1,405,100	
Direct Annual costs		Cost	Cost Factor/Comments
Electricity Cost	14 kW for fan	\$5,339	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost
		<i>\$3,555</i>	T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$0	Fuel use 0 MMBtu/yr
ruer cost		ΰ¢	gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor			
Operator	1 hr/month	\$400	
\$ Supervisor	33.31 /hr	\$60	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance	1 hr/month	\$454	
Labor \$	37.84 /hr		T. Burnett email 12.28.2022
Material		\$454	100% of maintenance labor, Reference 3
Indirect Annual Costs			Reference 3 Table 2.10
Overhead		\$820.70	0.6 * C C = operating labor + maintenance costs
Administration		\$28,102	2% TCC
Property Taxes		\$28,102 \$14,051	1% TCC
Insurance		\$14,051 \$14,051	1% TCC
Interest Rate	7.00%		
Years for Loan	10	¢200.054.59	
Capital Recovery (Annualized Cap	Dital Lost)	\$200,054.58	
Total Annual Cost		\$263,786	

Basis:

Engineering Judgement used to estimate cost of booster fan.
 Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
 EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

Curing VOC Control Analysis (Analyzing New Curing Bays Only for BACT Economic Feasibility)

\$/ton avoided emissions

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CURING BRIDGESTONE WARREN CO

Air flow rate for Curing Press Bay =	254,500	scfm	
Direct Costs Purchased Equipment Costs		Cost	Cost Factor/Comments
Quoted RTO Equipment Cost (EC)	\$2,160,000	
Scaled RTO Equipment Cost (E		\$2,496,022	Durr Estimate in 9.17.2019 Email for 200,000 flow rate = \$2,160,000 Scaled (Smaller RTO cost * (Larger RTO flowrate/Smaller RTO Flowrate)^0.0
Freight	0.05*EC _b	\$124,801	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC _b	\$74,881	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation	0.10*EC _b	\$249,602	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
1012	I Purchased Equipment Costs (PEC)	= \$2,945,306	
Direct Installation Costs Foundations and Supports	0.08*PEC	\$235,624.49	Table 2.8 of the OAQPS Control Cost manual
Handling and Erection	0.14*PEC	\$412,343	Table 2.8 of the OAQPS Control Cost manual
Electrical	0.04*PEC	\$117,812.24	Table 2.8 of the OAQPS Control Cost manual
Piping	0.02*PEC	\$58,906	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork Painting	0.01*PEC 0.01*PEC	\$29,453 \$29,453	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
Retroit Factor	Tabal Diversity in the Harting Caster (DC)		
	Total Direct Installation Costs (DC)	= \$883,592	
Indirect Installation Costs	0.40*050	6204 524	Table 2.0 of the OAODC Control Control Control
Engineering Construction and Field Expens	0.10*PEC es 0.05*PEC	\$294,531 \$147,265	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$294,531	Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$58,906	Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$29,453	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC Total indirect Installation Costs (IC)	\$88,359 = \$913,045	Table 2.8 of the OAQPS Control Cost manual
	Total Installed Cost (PEC + DC + IC)	= \$4,741,943	
Ductwork	30 feet	\$29,639	Based on new control device west of mixing building Reference 2, scaled
Total Capital Cost (TCC)	TCC :	= \$4,771,581	
Direct Annual costs		Cont	Cash Factor (Carrierante
Direct Annual costs		<u>Cost</u>	Cost Factor/Comments Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost
Electricity Cost	332 kW for fan	\$123,515	T. Burnett email 12.28.2022
			Operation= 8,760 hr/yr
Fuel Cost		\$154,769	Fuel use 28,821 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor			
Operator \$	1 hr/shift 33.31 /hr	\$36,474	T. Burnett email 12.28.2022
Supervisor	55.51 /11	\$5,471	15% of operating labor, Reference 3
Maintenance	1 hr/shift	\$41,435	
Labor \$	37.84 /hr		T. Burnett email 12.28.2022
Material		\$41,435	100% of maintenance labor, Reference 3
Indirect Annual Costs Overhead		\$74,889.13	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration		\$95,432	2% TCC
Property Taxes		\$47,716	1% TCC
Insurance		\$47,716	1% TCC
Interest Rate	7.00	%	
Years for Loan	1	.0	
		.0 \$679,365.85 \$1,348,217	

1) Durr Systems Inc. provided a budgetary cost estimate for an integrated system of three concentrator wheels vented to one common RTO for Curing Bays with a Basis: To be a system on the produced a backgroup of a second of an integrated system of integrated of the control where secret a backgroup of the control of calling equipment costs is to use a ratio of the equipment size with a scaling factor of 0.6. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high cost of control and low total of avoided emissions from Curing.
 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes

Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

2 of 2 emails

From: Terri Burnett <ftsystem@bfusa.com>
Sent: Wednesday, July 12, 2023 8:12 AM
To: Air.Pollution Control <Air.Pollution.Control@tn.gov>
Subject: [EXTERNAL] Bridgestone Americas 89-0077 - Redacted BATO PSD app updated

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Bridgestone Americas SFT Notification.

Greetings,

Attached is the updated BATO PSD Application (redacted) document. Updates encompass requested additions and updated calculations, per TDEC additional requests and requirements.

The confidential version has been received by TDEC - Air Division previously.

Please reach out if you have any questions or concerns.

Thank you,

Terri Burnett

Environmental Engineer

Bridgestone Americas, LLC - dba Warren plant

You have received a secure file message from Terri Burnett

Files attached to this message

Filename	Size	Checksum (SHA1)
FINAL 06.28.2023 BATO PSD Permit	28.8	
App - (public)_redacted.pdf	MB	31712ec27e0df3bc779424f13655ab6c323f9afc1df59ca23f3dad9c1c0f6381

Please click on the following link to download the attachments: https://sft.bfusa.com/message/UbxMvI5KxT8ABQS6Kx5IBu

This email or download link can not be forwarded to anyone else.

The attachments are available until: Friday, 11 August.

Message ID: UbxMvI5KxT8ABQS6Kx5lBu

Plain Text Plain Text (default)

Greetings,

Attached is the updated BATO PSD Application (redacted) document. Updates encompass requested additions and updated calculations, per TDEC additional requests and requirements.

The confidential version has been received by TDEC - Air Division previously.

Please reach out if you have any questions or concerns.

Thank you,

Terri Burnett

Environmental Engineer

Bridgestone Americas, LLC - dba Warren plant

You have received a secure file message from Terri Burnett The following files are attached to this message: - FINAL 06.28.2023 BATO PSD Permit App - (public)_redacted.pdf (28.8 MB), Checksum:

31712ec27e0df3bc779424f13655ab6c323f9afc1df59ca23f3dad9c1c0f6381 Please click on the following link to download the attachments: <u>https://sft.bfusa.com/message/UbxMvI5KxT8ABQS6Kx5IBu</u> This email or download link can not be forwarded to anyone else. The attachments are available until: Friday, 11 August Message ID: UbxMvI5KxT8ABQS6Kx5IBu

Bridgestone SFT Appliance: https://sft.bfusa.com

1 of 2 emails

From: Terri Burnett <ftsystem@bfusa.com>
Sent: Wednesday, July 12, 2023 8:12 AM
To: Air.Pollution Control <Air.Pollution.Control@tn.gov>
Subject: [EXTERNAL] Access Pass: sft.bfusa.com

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Bridgestone Americas SFT — Access Pass

You have recently received a Secure Message:

- From: <u>BurnettTerri@bfusa.com</u>
- Subject: Bridgestone Americas 89-0077 Redacted BATO PSD app updated
- Message ID: UbxMvI5KxT8ABQS6Kx5lBu
- Message URL: <u>https://sft.bfusa.com/message/UbxMvI5KxT8ABQS6Kx5lBu</u>

In order to access this message, please enter the following Access Pass in your Web Browser:

Access Pass: zQyk-eHcT-t1MA

Access Pass Email: <u>air.pollution.control@tn.gov</u>

Please note that this Access Pass is unique to your email: <u>air.pollution.control@tn.gov</u> and will be used to identify you as having accessed this message and downloaded any attachments. Please do not share this Access Pass.

Bridgestone SFT Appliance: https://sft.bfusa.com

725 Bridgestone Drive Morrison, TN 37357

June 14, 2023

Ms. Michelle Owenby, Director Division of Air Pollution Control Tennessee Department of Environment and Conservation William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243

Re: Bridgestone Americas Tire Operations, LLC – Warren Plant Emissions Source Reference Number 89-0077 PSD Permit Application – Revised June 2023

Dear Ms. Owenby:

This letter transmits a complete Prevention of Significant Deterioration (PSD) permit application package for an expansion project at Bridgestone Americas Tire Operations, LLC (BATO) in Morrison, Tennessee located in Warren County. This PSD application is submitted based on volatile organic compounds (VOC) being the only pollutant that triggers a requirement for a PSD permit. In summary, there are four (4) new rubber mixers, three (3) new cement stations, and one new 75 MMBtu/hr natural gas fired boiler. The attached permit application provides all the necessary documentation to complete a PSD permit application to request a construction permit.

BATO has revised the original February 2023 application in response to TNAPC's request for additional information dated May 26, 2023. Below, each item in TNAPC's request is shown in *Italics* with the response from BATO shown in **Bold** text.

Overall

Provide the actual monthly throughput data used in the baseline actual calculations (in pounds, gallons, scf, etc. per month). The data used for some of the calculations does not appear to match the data reported in the semiannual reports for that timeframe. Be sure to include actual monthly throughput data for carbon black, clay, and pigments for the railcar unloading, storage, and handling operation (Source 02) and the banbury mixers (Source 05) and natural gas/fuel oil use in just the boilers and heaters.

With this revised application, BATO is providing actual monthly throughput data used in the baseline actual emissions calculations from 2018 to 2019. An accurate accounting of all process input materials and fuels is included. The original application included data for the total Final Pigment Usage values used to calculate Particulate Emissions from the Final Pigment dust collector (B-DCEF-FP1) for the 2018 and 2019 Emissions Inventory reports using the EDL and SLEIS. The revised baseline actual emissions calculations use 2018 and 2019 Pigment totals to calculate actual emissions based on material throughput. To be more conservative and consistent with total Pigments used and tracked by BATO and reported in previous semiannual reports, the revised application includes total Pigment usage data instead of only Final Pigment usage data. This is a

Ms. Owenby June 14, 2023 Page 2

better estimate of actual PM emissions since the calculation includes the PM emissions from the Final Pigment dust collector (Source 02) and the Pigment dust collectors for mixers 621, 622 and 623 (Source 05).

Railcar Unloading and Storage (89-0077-02)

The material handled, in lb/yr, through the 621 and 623 day bins was 94,000,000 (baseline actual) [see pdf page 27 of the application]. The value used in the future actual calculations for these same day bins is only 36,242,733 lbs/yr [see pdf page 88 of the application]. Should this value instead be 144,970,932 lbs/yr? Please verify this value and update the calculations and tables as needed.

BATO mistakenly utilized the material handled amount for the 621 and 623 mixers in the calculations of material handled in the 621 and 623 day bins. In Railcar Unloading and Storage (Source 89-0077-02) BATO corrected the material handled, in lb/yr, through the 621 and 623 day bins to the correct amount for the future actual emissions calculations.

Manufacturing and Material Usage (89-0077-04)

What is the projected actual usage rate, in gal/yr of Solvent (includes cement)? The usage rate was not provided in the calculations, only the emission rate.

The projected actual usage rate of Solvent (includes cement) is provided in the revised application in gal/year.

Rubber Milling and Mixing (89-0077-05)

Will there be additional banbury mill vent exhausts associated with this project? What is the projected actual usage rate, in gal/yr of silane?

The expansion project will not include any additional banbury mill vent exhausts. The projected actual usage rate of Silane is provided in the application in gal/year.

The Title V renewal application (dated March 31, 2022) lists the following exhaust flow rates for the existing units associated with this source. These values are slightly different from those used to develop the emission factors used in your PSD determination calculations. Please verify which values are correct.

	Flow rate	Flow rate (dscfm)
	(dscfm)	Used in EF
Stack ID	Title V Renewal	Development
B-DCEF-621C	32,000	31,659
B-DCEF-621P	32,000	31,659
B-DCEF-622P	32,000	31,659
B-DCEF-623C	32,000	31,659
B-DCEF-623P	32,000	31,659
B-DCEF-624C	32,000	31,659
B-DCEF-625C	32,000	31,659
B-DCEF-625CL	32,000	31,659

Ms. Owenby June 14, 2023 Page 3

For each dust collector associated with Source 05, the correct flow rate was used in the calculation for emission factor development (31,659 dscfm). The flow rate value of 32,000 dscfm used in the Title V renewal application was the design flow rate in acfm for these dust collectors, and the calculation, converting to dscfm, takes into account an exhaust temperature of 70 °F and moisture content of 1%.

Boilers and Heater (89-0077-10)

Identify in the calculations for the existing boilers which emission rates are used in the PSD determination calculation (specify which calculations are Baseline Actual and which are Projected Actual or Future Potential). The calculations need to be revised as the existing boilers and heater are not equipped with low-NOx burners (based on previous permit applications). The calculations provided use the low-NOx emission factor for those units. Additionally, the emission factor for total PM should be used (filterable + condensable) for fuel oil combustion. The correct emission factor is 3.3 lb/1000 gal. The heat content of No.2 fuel oil is 140,000 Btu/gal (per AP-42).

For the proposed boiler, which must be equipped with low-NOx burners, you may use a NOx emission factor of 16 lb/1000 gal for fuel oil combustion (per Division guidance on low-NOx burners).

For existing boilers, the baseline actual emissions calculations are those emissions calculations based on the total NG and No.2 Fuel Oil Burned in 2018 and 2019. For the Future emissions for the PSD determination, it was chosen that the existing boilers projected actual emissions equaled the baseline actual emissions from 2018 and 2019. This is because the existing boilers are already utilized at their maximum capacity. Future Potential (PTE) was used for the proposed boiler. BATO reviewed equipment specifications and documentation in their records for the existing boilers, and determined that the burners on these two Babcock and Wilcox boilers are indeed Low NOx burners as indicated in the specification cut-sheets for the boilers included in this application.

With regard to the Insignificant Activities/Emission Units, BATO has addressed each of these activities in the revised BACT Analysis, and has provided an emission limit proposed as BACT for each source.

TNAPC stated in the May 26, 2023 request for additional information "BACT only applies to the new emission units associated with this expansion. The additional information requested below for each source only pertains to those new units. Any economic analysis which includes control of existing units may be removed from the updated BACT analysis."

Our understanding is that since due to the increased tire production, all existing emission units in manufacturing will experience higher throughputs, this BACT analysis must evaluate the emissions associated with the Project from both new and existing emission units. BATO does not see benefit in arguing that the expansion of the plant would not result in "debottlenecking" of existing emissions units. Therefore, the updated BACT analysis includes the existing units and the new units.

Each of the requested items that TNAPC noted for additional information necessary to include in the BACT analysis is addressed in this submission.

CONFIDENTIAL - CONTAINS TRADE SECRET INFORMATION

Ms. Owenby June 14, 2023 Page 4

Please contact Spencer Hissam (Stevens EHS Consulting, 615-772-3865) or Ms. Terri Burnett (615-668-5500, X1033) if you have any questions or need additional information.

Sincerely, Bridgestone Americas Tire Operations, LLC Warren Plant

1. h Burnett

Terri Burnett Senior Environmental Manager

725 Bridgestone Drive Morrison, TN 37357

June 14, 2023

Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243

Re: Permit Agreement Letter Bridgestone Americas Tire Operations, LLC – Warren Plant 725 Bridgestone Drive, Morrison, TN 37357 Emissions Source Reference Number 89-0077 / Permit No. 569874

Dear Ms. Owenby:

On behalf of Bridgestone Americas Tire Operations, LLC – Warren Plant (BATO-Warren), the following permit limitations are agreed upon for the proposed expansion of the rubber tire manufacturing operations at the above referenced facility:

- Maximum annual production shall not exceed during all intervals of 12-consecutive months.
- VOC emitted by this facility shall not exceed 553.8 tons during all intervals of 12-consecutive months.

The facility has elected to opt-out of being a major source of Hazardous Air Pollutants (HAPs).

- Any single HAP, listed pursuant to Section 112(b) of the Federal Clean Air Act, emitted by this facility shall not exceed 9.9 tons during all intervals of 12-consecutive months.
- Total HAPs emitted by this facility shall not exceed 24.9 tons during all intervals of 12-consecutive months.

The following limits are agreed upon avoid PSD/New Source Review.

- Particulate Matter emitted by this facility shall not exceed
 - o 44.90 tons PM_{Total} during all intervals of 12-consecutive months.
 - 44.90 tons PM₁₀ during all intervals of 12-consecutive months.
 - o 34.81 tons PM_{2.5} during all intervals of 12-consecutive months.
- SO₂ emitted by this facility shall not exceed 79.04 tons during all intervals of 12-consecutive months.
- NO_x emitted by this facility shall not exceed 110.02 tons during all intervals of 12-consecutive months.

Ms. Owenby February 1, 2023 Page 2

CO emitted by this facility shall not exceed 88.8 tons during all intervals of 12-consecutive months.

Source 89-0077-10

- Total heat input for this source (three boilers and one heater) shall not exceed 235.3 MMBtu/hr. .
- Total usage of No. 2 Fuel Oil shall not exceed 7,339,364 gallons during all intervals of 12-. consecutive months.

BATO-Warren shall demonstrate compliance with these limitations by:

- Recordkeeping of a monthly facility production log. •
- Recordkeeping of Monthly Total VOC emissions from the facility as indicated in • conditions E3-8, E5-1, E6-3, and E12-1 of the current permit.
- Recordkeeping of Monthly Total HAPs emissions from the facility as indicated in • condition E3-7 of the current permit.
- Maintenance of PM control devices and only operating with the use of PM control . devices.
- Recordkeeping of Monthly Fuel Usage / Emissions Log for Source 89-0077-10 (LOG 10) and Yearly Emissions Log for Source 89-0077-10 (LOG 11) with the method of calculations as indicated in condition E7-10 of the current permit.
- Only natural gas and No. 2 Fuel Oil shall be used as a fuel for source 89-0077-10. •

Should you have any questions or require additional information, please contact Terri Burnett via phone at 931-668-5500, X1033 or via e-mail at BurnettTerri@bfusa.com.

On behalf of BATO-Warren, I agree to the above limitations. I am authorized to represent and bind the facility in environmental affairs.

Sincerely,

Signature Name (printed) Tim Painter

Title Plant 1

Date 6-21-2-3

Bridgestone Americas Tire Operations, LLC Warren Plant

PSD PERMIT APPLICATION ENGINEERING REPORT FEBRUARY 2023 REVISED – JUNE 2023

PREPARED FOR: BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC 725 BRIDGESTONE DRIVE, MORRISON, TN 37357

EMISSIONS SOURCE REFERENCE NUMBER 89-0077 / PERMIT NO. 569874

PREPARED BY: Spencer Hissam, P.E. & Hunter Hill, P.E. Stevens EHS Consulting, LLC 121 Windham Drive Hendersonville, TN 37075 (615) 772-3865

TABLE OF CONTENTS

I.	Intr	oduction and Background
II.	Sco	pe of the Project4
	A.	New Units Required for the Project
	B.	Impacts on Existing Units
III.	E	missions Summary
IV.	R	egulatory Applicability
	A.	Prevention of Significant Deterioration
	B.	New Source Performance Standards
	C.	National Emissions Standards for Hazardous Air Pollutants
	D.	Tennessee Air Pollution Control Regulations
	E.	Compliance Assurance Monitoring (CAM) - 40 CFR 64
V.	Bes	t Available Control Technology (BACT) 11
VI.	A	mbient Air Impact Analysis
	A.	Ambient Air Monitoring
	B.	Ozone Analysis
	C.	Additional Impact Analysis

List of Tables

Table 1:	Emissions Increases	8
Table 2:	Summary of Control Cost Analyses	22
	Summary of BACT Analysis for VOC's	
Table 4:	Class I Area Q/D Calculation	29
Table 4:	Class I Area Q/D Calculation	29

- Appendix A Baseline Actual Emissions
- Appendix B BACT Cost Analyses
- Appendix C Discussion of Capture Efficiency for VOC from Rubber Mixers
- Appendix D Application Forms and Calculations
- Appendix E Process Flow Diagrams
- Appendix F Insignificant Activities

I. INTRODUCTION AND BACKGROUND

Bridgestone Americas Tire Operations, LLC (BATO) proposes a production expansion project (the Project) at its rubber tire manufacturing plant in Morrison, TN. The plant is an existing major source with a Title V operating permit (TVOP) issued by the Tennessee Division of Air Pollution Control (TNAPC), Permit 569874 effective October 16, 2017, through October 15, 2022. The plant submitted a Title V renewal application on April 6, 2022. The plant began operations in the early 1990's under TNAPC issued construction permits. The facility has implemented numerous small production expansion projects but has operated as a PSD minor source until 2017.

In 2017, BATO submitted an application requesting a construction permit to include injection of silane into certain rubber compounds to produce silica-based rubber. TNAPC issued a minor permit modification for that change on November 6, 2017. The allowable VOC emissions identified on that permit were in excess of the PSD applicability thresholds. Therefore, the plant became a major PSD source. VOC is regulated as a precursor for ground-level ozone formation. A major stationary source that is major for VOC or oxides of nitrogen is major for ozone.

The Project will include installation of new emissions units with the goal of increasing daily tire production capability to **second second se**

On May 26, 2023, BATO received an additional information request from Mr. Justin Dolzen from TNAPC. In response to this request, BATO is revising this application in an effort to address TNAPC's concerns.

II. SCOPE OF THE PROJECT

The objective of the Project is to increase the daily tire production capacity of the facility.

A. New Units Required for the Project

The Project will include the installation of additional units in the following permitted emission sources:

- 89-0077-02 *Railcar and Trailer Unloading, Storage, and Holding.* A new railcar unloading station and 10 new carbon black silos are proposed to be installed.
- 89-0077-04 Manufacturing and Material Usage. New Extruders, Calendars, and additional Cement Stations are proposed to be installed.
- 89-0077-05 Rubber Mixing and Milling. Four additional mixers (
 With fabric filter dust collectors for particulate control from Carbon Black loading (
 Dust Collectors for raw materials like clay and pigment are also proposed where needed. No new banbury mill vent exhausts will be installed for the expansion.
- 89-0077-10 Powerhouse. One additional 75 MMBtu/hr Boiler (PH-BEF-004.)
- 89-0077-22 *Tire Curing*. The installation of one (1) additional tire curing bay.

The Project is scheduled to begin actual construction in late 2023, with start-up expected for early-to late- 2025.

B. Impacts on Existing Units

In order to sustain increased tire production, all of the existing equipment associated with manufacturing operations will also experience increases in throughput and increased production rates.

The Diesel Driven Emergency Engines (89-0077-18 and -19), the Diesel Driven Fire Pump Engines (89-0077-20), and the Gasoline Storage Tank (89-007-21) are not affected by the Project. They are not included in the analysis.

III.EMISSIONS SUMMARY

The proposed Project will have the potential to emit regulated air pollutants including Particulate Matter (PM), PM_{10} , $PM_{2.5}$, sulfur dioxide (SO₂), oxides of nitrogen (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), and greenhouse gases [methane (CH₄), nitrous oxide (N₂O), and carbon dioxide (CO₂)]. A facility-wide emissions summary in included with the attached forms.

In the past, particulate emissions from Emissions Sources 02 and 05 were calculated using an extremely conservative mass balance, using assumptions for the percent of material vented from the process to the dust collection units. Additionally, assumptions were made regarding the size distribution of the emissions consistent with sieve analysis of the product. These emission rates were developed in this manner to determine compliance with Tennessee Air Pollution Control Rules and to calculate emission-based fees.

During the development of this permit application, BATO looked more closely at the calculation methodology to determine PSD applicability. Emission Factors were developed using the following assumptions:

- 1. A reasonable particulate matter exhaust grain loading of 0.01 gr/dscf from each dust collection system.
- 2. Flow rates for each dust collection system were based on the maximum design capacity for the individual system.
- 3. Material throughput rates for each process were based on the maximum hourly design capacity for the individual system.
- 4. A conservative assumption that PM_{10} emissions are equivalent to PM_{Total} .
- 5. An assumption that PM_{2.5} emissions are 23% of PM_{Total}. This particle distribution was taken from Appendix B-2, Generalized Particle Size Distributions, of AP-42.

A PM Emission Factor (lb PM/lb Matl) for each emission point was calculated by determining a maximum hourly emission rate (lb PM/hr), then diving that value by the maximum hourly throughput (lb Matl/hr). A table showing the development of these emission factors is included with the application forms.

These emission factors were used to calculate past actual emissions, potential emissions, and future actual emissions. In this manner, a net emission increase was determined using a consistent calculation methodology.

TNAPC requested that BATO verify the correct flow rate values for the existing dust collector units associated with Source 05. For each dust collector, the correct flow rate was used in the above calculation for emission factor development (31,659 dscfm). The flow rate value of 32,000 dscfm used in the Title V renewal application was the design flow rate in acfm for these dust collectors, and the calculation, converting to dscfm, takes into account an exhaust temperature of 70 °F and moisture content of 1%.

IV. REGULATORY APPLICABILITY

A. Prevention of Significant Deterioration

PSD is a preconstruction permit program. A PSD permit is required if the actual emissions increase associated with a project results in both a significant emissions increase <u>and</u> a significant net emissions increase,¹ determined in a two-step process. The Project is a "hybrid" project, because it involves both construction of new emission units and effects on existing emission units. The existing emission units, however, are not being physically modified as a result of the Project. The two-step process for hybrid projects is as follows:

<u>Step 1 – Increase from the Project</u> – Does the proposed project, by itself, result in a *significant emissions increase*? For new units, the increase is the potential to emit (PTE) for the new units.² For affected existing units, the increase equals the difference between projected actual emissions (PAE) and baseline actual emissions (BAE).

<u>Step 2 – Net Emissions Increase Across the Plant</u> – If the answer to Step 1 is "yes," does the proposed project also result in a *significant net emissions increase* considering contemporaneous and creditable projects undertaken in the preceding 5 years through when the proposed project becomes operational?

1. Potential to Emit – New Units

PTE means the maximum capacity of a stationary source to emit any air pollutant under its physical and operational design.³ The PTE for the new emission units associated with the Project is presented in the attached forms.

The calculation of PTE for the new units is straightforward. Unlike other stationary sources, such as certain chemical plants or utilities, the tire manufacturing plant does not have atypical emissions associated with startup or shutdown operations that require accounting in the analysis.

- **89-0077-02** New railcar unloading and silos Particulate emissions result from the unloading and storage of dry raw materials.
- **89-0077-04** New Cement Stations Emissions from the cement stations are VOC from the use of adhesive.
- **89-0077-05 626, 627, and** Particulate emissions result from the addition of dry raw materials. Emissions are estimated using a grain loading estimate to develop accurate emission factors as shown in the attached forms. Mixing and milling operations also emit VOC from rubber.
- 89-0077-10 Boiler #3 (75 MMBtu/hr) Products of combustion are estimated using AP-42 emission factors. The unit will fire natural gas with No. 2 fuel oil as a back-up. No. 2 Fuel oil combustion for this unit will be limited to 2,339,364 gallons per rolling 12 months.

¹ Tennessee Air Pollution Control Rule 1200-03-09-.01(4)(a)2.

² There is an exception for replacement units that is not applicable here.

³ Tennessee Air Pollution Control Rule 1200-03-09-.01(4)(b)5.

- **89-0077-22 Tire Curing** Emissions from the curing presses are VOC.
- 2. Projected Actual Emissions Existing Units
- **89-0077-02 Railcar and Trailer Unloading, Storage, and Holding** Particulate emissions from increased throughput of dry raw materials. In the original application, the material handled (lb/yr) through the 621 and 623 day bins was mistakenly indicated as the volume of material that is transferred at the 621 and 623 mixers. This volume has been increased in the revised calculations to show the accurate amount of projected material handled for these day bins.
- 89-0077-04 Cement Stations VOC emissions from increased production rates. The Maximum Projected actual usage rate of Solvent (includes cement) = Gal/year
 Gal/year.
- **89-0077-05 Mixers and associated Tire Manufacturing equipment** VOC emissions and Particulate emissions from increased production rates. The Maximum Projected actual usage rate of Silane = galygear.
- **89-0077-10 Boilers 1 and 2** assumed PAE = BAE in 2018 and 2019 for existing boilers. The existing boilers are already utilized at their maximum capacity in 2018 and 2019, and the new boiler is necessary for the expansion of the plant.

A summary of the projected actual emissions (*PAE*) for each affected emission unit is provided in Table 1 below. The facility agrees to limit plant-wide VOC emissions to no more than 553.8 tpy.

3. Baseline Actual Emissions

The representative, 24-month consecutive period selected to establish BAE is January 2018 through 2019. The calculations did not require any downward adjustments for noncompliance. BATO has operated in compliance with the limits expressed in its permits. Actual emissions calculations are included in Appendix A. BATO has also provided the actual monthly throughput data used in the baseline actual calculations (in pounds, gallons, scf, etc. per month). This data includes carbon black, clay, and pigments for the railcar unloading, storage, and handling operation (Source 02), the banbury mixers (Source 05), and natural gas/fuel oil use in just the boilers and heaters (Source 10).

TNAPC stated in their May 26, 2023 request for additional information that the existing boilers and heater **are not** equipped with low-NOx burners (based on previous permit applications). After review of the existing Boiler specifications from Babcock and Wilcox, these boilers **are in fact** equipped with Low-NOx burners. The Baseline Actual Emissions have been revised, however, to reflect the correct NOx emission factor for the Hydronic Heater Unit and the correct total PM emission factor for fuel oil combustion for each of the boilers and heater.

4. Summary of Step 1 NSR Analysis

The following table summarizes the results of the Step 1 calculus of the emissions increase:

	Table 1: Emissions Increases									
Railcar and T			0077-02 Trailer Unloading, and Holding		89-0077-05 Rubber Mixing and Milling			89-0077-10 Boilers and Heater		
	Baseline	Future	Increase	Baseline	Future	Increase	Baseline	Future	Increase	Increase
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Particulate Matter (PM _{Total})	1.14	1.78	0.64	5.73	11.32	5.59	1.75	6.84	5.09	11.31
Particulate Matter (PM _{10total})	1.14	1.78	0.64	5.73	11.32	5.59	1.75	6.84	5.09	11.31
Particulate Matter (PM _{2.5total})	0.26	0.41	0.15	1.32	2.60	1.29	1.75	6.84	5.09	6.52
Nitrogen Oxides (NO _x)	0.00	0.00	0.00	0.00	0.00	0.00	11.49	38.28	26.79	26.79
Carbon Monoxide	0.00	0.00	0.00	0.00	0.00	0.00	19.08	46.13	27.05	27.05
Sulfur Dioxide (SO ₂)	0.00	0.00	0.00	0.00	0.00	0.00	0.30	25.31	25.01	25.01
CO ₂ Equivalent (CO ₂ eq)	0	0	0	0	0	0	27,253	73,337	46,083	46,083
VOC*	0.00	0.00	0.00	206.18	553.8 (See Note)	347.57	1.25	3.02	1.77	349.35
Lead (Pb)	0.00	0.00	0.00	0.00	0.00	0.00	1.23E-04	1.68E-03	1.55E-03	1.55E-03
Note: * The VOC em 89-0077-04 89-0077-05 89-0077-22	4 Ma 5 Rul	nufacturin	g and Milling g and Mater g and Milling	ial Usage	al VOC fro	m:				

Increase = $PTE_{NewUnits} + PAE - BAE$

The results indicate that the increase in VOC emissions exceeds the significance threshold of 40 tons per year. The threshold is not exceeded for any other pollutant.

5. Step 2 – Net Emissions Increase Across the Plant

In this step, the project is evaluated to determine if it also results in a *significant <u>net</u> emissions increase* considering contemporaneous and creditable projects undertaken in the preceding 5 years through when the proposed project becomes operational.

The only contemporaneous project is the installation of new curing presses identified in an application for a Minor Permit Modification submitted in July 2018, for which TNAPC issued Minor Modification #3 on November 15, 2018. The VOC increase associated with this modification was 10.9 tpy. Therefore, the significant net emissions increase for VOC related to the Project is 349.38 tpy + 10.9 tpy = 360.3 tpy. This VOC increase exceeds the PSD significance

threshold of 40 tons per year. No other contemporaneous increases or decreases were identified to consider in the analysis.

6. Emissions Summary

The Project results in a significant net emissions increase of VOC (as a precursor to ozone formation), and triggers PSD review for VOC. Thus, a BACT analysis will be performed for the new VOC emitting units and an ambient air impact analysis will be performed for ozone.

B. New Source Performance Standards

There are no new NSPS applicable to the facility as a result of the Project. TAPCR 1200-03-16-.60 - Rubber Tire Manufacturing Industry and 40 CFR 60 Subpart BBB - Standards of Performance for the Rubber Tire Manufacturing. Both standards indicate that the "tire" has dimensions for the "bead diameter of less than or equal to 19.7" and "a cross-section dimension less than or equal to 12.8." BATO Warren tire beads are 22.5" in diameter or greater. Applicability requires that both criteria have to be met.

C. National Emissions Standards for Hazardous Air Pollutants

There are no new NESHAP applicable to the facility as a result of the Project. As stated in the attached agreement letter, BATO opted-out of major source classification for HAPs in order to avoid 40 CFR 63 Subpart XXXX (National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing).

D. Tennessee Air Pollution Control Regulations

There are no new regulations applicable to the facility as a result of the Project.

E. Compliance Assurance Monitoring (CAM) - 40 CFR 64

The dust collection units at this facility are exempt from the CAM rules because they meet the definition of "Inherent Process Equipment" as defined in 40 CFR 64.1. EPA guidelines provide three questions to determine whether a device must be treated as a control device or inherent to the process. These questions are explained in a letter dated November 27, 1995, from David Solomon, Acting Group Leader for the Integrated Implementation Group of the EPA Office of Air Quality Planning and Standards. The questions are as follows:

- 1. Is the primary purpose of the equipment to control air pollution?
- 2. Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?
- 3. Would the equipment be installed if no air quality regulations are in place?

The primary purpose of the dust collection units is for product recovery. Without the units, BATO would experience significant cost related to the loss of material. The units would be included in the design and operation of the facility if the air pollution regulations were not applicable. Therefore, BATO considers these units as inherent process equipment for the purposes of CAM applicability and are exempt from the CAM rule.

V. BEST AVAILABLE CONTROL TECHNOLOGY (BACT)

As part of PSD review, the applicant must demonstrate that the new or modified emission units meet Best Available Control Technology (BACT) for the pollutants for which a significant net emissions increase occurs.⁴

The only pollutant for which the Project results in a significant net emissions increase is VOC. A BACT analysis is required for VOC emissions from all manufacturing equipment with increased VOC emissions related to the project.

BACT is an emission limitation based on the maximum degree of reduction for each pollutant subject to the PSD requirements taking into account the energy, environmental, and economic impacts on the source. This analysis is conducted in accordance with the *"Top-Down"* guidance in the 1990 draft EPA *New Source Review Workshop Manual* (the Manual).

Reductions may be determined through the application of available control technologies, process design, and/or operational limitations. Such reductions may be necessary to demonstrate that the emissions remaining after application of BACT will not cause or contribute to significant deterioration of air quality, thereby protecting public health and the environment.

The "Top-Down" approach in the Manual is summarized as the following 5-step process:

- **Step 1:** Identify all control technologies.
- **Step 2:** Eliminate technically infeasible options.
- **Step 3:** Rank remaining control technologies by control effectiveness.
- **Step 4:** Evaluate the most effective controls and document results.
- **Step 5:** Select BACT.

⁴ Tennessee Air Pollution Control Rule 1200-03-09-.01(4)(j)2.

BACT – Gas-Fired Boilers

VOC emissions from the boilers result from incomplete combustion caused when some of the fuel is only partially burned.

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for natural gas combustion sources:

No.	Control Alternative	Control Alternative Category
1	Catalytic oxidation	Add-on control
2	Clean fuel and good combustion	Proper operation

The most stringent control technology used to control CO emissions from combustion is catalytic oxidation, and these catalytic oxidation systems are also used to reduce VOC and organic HAP emissions. As the exhaust gas contacts the catalyst, the catalyst promotes the oxidation of CO and hydrocarbon compounds to form carbon dioxide (CO₂) and water (H₂O) as follows:

 $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2 + \text{heat} [320 \text{ Btu/ft}^3]; \text{ or }$

 $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + heat [907 Btu/ft^3] (if methane is present).$

BATO did not identify any lower emitting fuels or burner configuration technologies that would reduce VOC emissions from the proposed boiler.

Step 2: Eliminate technically infeasible options.

Catalytic oxidation of VOC in the exhaust of the boiler tubes would require a catalyst bed. Such systems are available, and can be installed as a modular unit in the boiler exhaust duct or stack. For a catalytic oxidation system to operate correctly, the exhaust gas must contain an amount of excess O₂ (typically 15%) and must be within a particular temperature range (typically between 500°F – 1250°F) depending on the type of catalyst material used. Exhaust gas temperatures that are too high may cause permanent damage to the catalyst, while operating temperatures that are too low result in a lower CO conversion efficiency. In the case of the natural gas boiler chosen, the exhaust temperature is less than the low end of the temperature window, and would require reheating of the flue gas. This would increase natural gas use and associated criteria pollutant emissions and be cost-prohibitive. The oxidation catalyst would also convert CO emissions to CO₂. Installing a boiler VOC emissions control technology that will result in an increase in CO₂ emissions runs counter to the CO₂ emissions reduction goals of the current EPA administration. AP-42 Section 1.4 does not list catalytic oxidation as a control technology for natural gas boilers. The Boiler MACT does not require VOC emissions controls on gas-fired boilers. The potential VOC emissions from the new 75.0 MMBtu/hr boiler are less than 2 tpy. Consequently, due to the fact that this technology is not in use on small, natural-gas fired boilers, is not required by the federal Boiler MACT rule, and would not likely be effective at controlling such a low level of VOC emissions, this technology was eliminated from further consideration in this BACT analysis.

A search of EPA's RBLC was performed that included recent VOC BACT determinations for small industrial gas-fired boilers. BACT is generally good combustion practices for small gas-fired boilers. Although a few entries noted flue gas recirculation was used, this is a NO_x control technology, not a VOC control technology. One result of the RBLC search was a 100 MMBtu/hr natural gas-fired auxiliary boiler at the Nemadji Trail Energy Center in Wisconsin. This unit was installed as part of a utility power generation plant, and the facility triggered PSD review for NO_x, CO, PM, VOC, and CO_{2e}. After reviewing the BACT analysis in the preliminary determination for this source, the BACT selected for this boiler was an oxidation catalyst; however, it was primarily selected for control of CO emissions in the PSD review, and it would not have been economically feasible for the control of VOC alone. BACT for boilers at utility power plants is generally more stringent and not feasible as BACT for boilers in industrial applications.

Given the extremely low level of emissions from this boiler and corresponding low-level VOC concentration in the gas, add-on catalytic oxidation controls, while perhaps technically feasible on a theoretical basis, are not considered feasible in actual practice for external combustion sources fired with natural gas. Moreover, review of available control technologies for combustion sources at tire manufacturing plants provided no examples of add-on controls for the reduction of VOC emissions from natural gas-fired equipment. Thus, add-on VOC controls such as catalytic oxidation were determined not to be available and are considered to be technically infeasible.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

The only remaining control technology is good combustion practices & controls; and there are no environmental, energy, or economic impacts that would weigh against its use. Proper burner design and boiler tuning will minimize the VOC generated in the products of combustion. No add-on controls were considered feasible or were found in research of similar sources at other tire manufacturing plants. Furthermore, no auxiliary equipment is needed for this control option on commercial and industrial boilers with proper maintenance of the burner/boiler package and burning only clean gas as fuel. Therefore, annual tune ups are considered good combustion practices.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the boilers to be clean fuels and good combustion practices. The total VOC PTE from all new and existing boilers and one Hydronic Heater is 5.56 tons per year.

BACT – Mixing, Extruding, Calendaring, Cementing, and Curing

VOC emissions result from oils added to the rubber compounds in the mixers, solvent usage in the cement stations; and the vulcanization process in the curing presses.

MIXING Source 05

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for mixing:

No.	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or multiple RTOs	Add-on control
2	Zeolite concentrators plus an RTO	Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbon Tower	Add-on control
7	Alternative Materials (silane	Source reduction
	replacement)	
8	Best Work Practices	No Control (PP)

A search of EPA's RACT/BACT/LAER Clearinghouse (RBLC) was conducted in December 2022 to identify the emission control technologies that were imposed by permitting authorities as BACT within the past ten years for emission sources comparable to the proposed expansion at the BATO facility. The RBLC search results returned several BACT Analysis performed at tire manufacturing facilities focused on the rubber mixing process primarily. The RBLC search results were compared to permits issued to other tire manufacturers to capture any additional permitted controls that may be required, but not included in the RBLC search results. A summary of the RBLC database search results is provided in the table below.

RBLC Search Results

Process Type: 99.015 Rubber Tire Manufacturing and Retreading

Regulated Pollutant VOC

Facility Name	State	Permit Date	Last Updated	Process Name	BACT Control Method
Cooper Tire & Rubber Company	AR	09/10/2019	11/10/2020	Upgrade Mixer #8	RTO
Bridgestone Aiken County PSR Plant	SC	05/15/2017	05/15/2017	Mixers, Milling, Extrusion equipment,	Work Practice Requirements

Facility Name	State	Permit Date	Last Updated	Process Name	BACT Control Method
				Curing, Final Inspection, Boiler(B2)	
Goodyear Tire & Rubber Company	KS	02/13/2017	08/10/2017	Mixer	RTO
Goodyear Tire & Rubber Company	VA	12/03/2014	05/05/2016	Rubber Mixing	RTO
Michelin US8 Facility	SC	12/13/2012	05/05/2016	Rubber Mixing	Work Practice Requirements for solvent usage and handling
Goodyear Tire and Rubber Co Lawton Tire Plant	OK	10/10/2012	11/07/2016	Banbury Mixing	RTO

Step 2: Eliminate infeasible options.

The most common add-on VOC control measure applicable to these emission units is the use of a regenerative thermal oxidizer (RTO) to destroy VOC in the exhaust of the emission source. These units employ a design that efficiently retains heat generated in the combustion chamber. The RTO is the most commonly utilized add-on control technology for the following reasons:

- (1) The control efficiency provided by an RTO is comparable to other types of add-on control units;
- (2) Due to the efficiency of the unit, the RTO has a limited impact to the environment. They require less supplemental fuel and electricity. They do not produce other wastes, such as scrubber water or hazardous waste;
- (3) They function effectively in almost any normal production scenario; and
- (4) They are often the most cost-effective control measure.

There may be specific challenges with utilizing most add-on control technologies. Capture efficiency for VOC emissions from Rubber Mixers is estimated at 85% and in summary is due to the fact that the lower "Batch Out" door of the mixer has a configuration that must be open for production, and cannot be effectively hooded. A large amount of air is required to collect the small portion of VOC generated and released from the "Batch Out" door. This large air flow would result in a dilute air stream with a small amount of VOC, and is usually exhausted to atmosphere without control. (See Appendix C for more detailed information on Rubber Mixer Capture Efficiency). Controls other than an RTO may be available such as recuperative thermal oxidizers, regenerative catalytic thermal oxidizers, flares, wet scrubbers, and biofiltration; however, these controls have not been used and proven effective in the tire industry. One example is that recuperative thermal oxidation has not been used in the tire industry because of the low concentration emission stream loading and highly variable flow. These specific challenges are described below, but the RTO is assumed to be the most effective and economical of the add-on

controls. A condenser unit has not been demonstrated as effective at any tire plants for control of mixer emissions, and would not likely provide sufficient control of the low concentration, high flow exhaust stream from the mixer process. In addition, the VOCs condensed out of the exhaust flow would require disposal or further control with destruction. Therefore, BATO has not considered refrigerated VOC condensers further for this BACT analysis.

Existing boilers at the facility could control a small volume of Mixer exhaust flow, but not more than 7,000 scfm of Mixer exhaust flow per boiler (based on boiler rating of 75 MMBtu/hr requiring 14,100 scfm of combustion air at 15% excess air and 11.5 scf of air per scf of natural gas burned). With the current design basis of the Mixer exhaust (31,659 dscfm) going to either a Clay, Carbon Black, or Pigment dust collector for particulate matter emission control and material collection, control of only 7,000 cfm of exhaust air on two mixers would be ineffective.

Based on our review of the RBLC and knowledge of the industry, absorbers/wet scrubbers have not been determined effective and have not been installed for control of VOC emissions from mixing at tire plants. Although ethanol is a large component of the mixing VOC emissions and is water soluble, this technology is not feasible for the BATO Warren plant because the exhaust flow from mixing is extremely high. Absorbers are best suited to high concentration, low-flow applications for VOC control. Additionally, the plant does not have a way to treat the wastewater effluent that would result from the use of this technology since there is no wastewater treatment system onsite. Therefore, wet scrubber/absorption technology was not considered further.

Adsorption with activated carbon is another VOC emissions control technology in which VOCs are attracted to and bind to the surface of activated carbon and remains in the carbon until it is desorbed or reclaimed. A well designed adsorber system is capable of achieving 95% to 98% control efficiency at input concentrations between 500 and 2,000 ppm in air (US EPA, May 1999. CATC Technical Bulletin). An adsorber becomes nearly useless when inlet concentration gets so low that the VOC will not be effectively adsorbed. Explosions or fires in the carbon bed may occur if the concentration of the organics in the waste gas is not maintained substantially below the LEL of the specific compound being controlled. Carbon adsorbers have not been successful for controlling VOC emissions from tire manufacturing operations because solid adsorption media are susceptible to plugging by the PM given off by the process. While BATO's mixers are vented first to dust collectors for PM control, the tire processing oils would not be able to be removed from carbon. Furthermore, carbon adsorption would produce two waste streams as the carbon beds become saturated and replaced and the recovered solvent containing VOCs is not able to be reused. Therefore, carbon adsorption is determined to be not technically feasible.

A few Goodyear tire plants have installed RTO's for VOC emissions from mixing. It is our understanding (based on a review of permitting documents) that the RTOs were installed in part to respond to a compliance order and in part to allow them maximum flexibility to increase silane usage and emissions. However, it does appear from review of the available information that the Goodyear facilities have limited their operational flexibility by specifying what materials are to be mixed in each mixer at each plant and only applying RTO control to certain mixers that have the highest emission rates (e.g., RTOs are only feasible on certain mixers if production is constrained in a certain way).

Because other tire plants have installed RTOs for mixing, BATO considered RTOs on each of the 9 mixers with a proportional amount of silane usage for each mixer. A second scenario considered was installing 4 larger RTO's on 4 pairs of mixers each using a proportional amount of silane per year. It's possible that particulate in the exhaust of the mixers would blind a concentrator wheel; however, BATO has considered the option to install a combined system in series that would accept all exhausts from the 4 new mixers in the concentrator wheel(s) and exhaust to a single RTO. Another configuration that was considered was a system exhausting 4 new mixers and 2 existing mixers to three concentrator wheels in series with a single RTO. Each of these configurations shows a BACT control cost >\$12,000/ton VOC Emissions avoided as shown in Appendix B. In addition, BATO considered the option to install an RTO on 2 of the new mixers and assumed that these 2 mixers would be selected to process all Silane for the facility. The BATO Warren permit does not currently limit how each of its mixers is used. Tread can be mixed in any mixer. Flexibility in operations is needed in the plant to allow capability to be able to mix any type of rubber compound in any mixer and to be able to use the tire "recipe" components necessary to produce the types of tires their customers demand and to be able to reach the design capacity. The type and amount of silane used in BATO's tires has changed over time and BATO has experienced an increase in demand for tires that are manufactured using silane. Silane is added during the tread mixing process in order to impart certain characteristics to the rubber (tread) being mixed. Ethanol is emitted as the silane reacts with the rubber compound in the presence of high temperature and moisture. BATO has not evaluated redesigning the mixing process so that only certain mixers are used for mixing activities with higher VOC emissions potential using silane. We do not believe that redesigning or constraining the process in that way is required as part of a BACT analysis and would limit the overall production capability of the plant. Continued operational flexibility and lack of restriction on product flow within the plant is vital to maintaining BATO's current production rates and product quality. A review of the cost of each of these configurations mentioned above proved to be excessive as shown in Appendix B.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Based on this analysis, mixing emissions would be most effectively controlled by an RTO; however, this add-on control technology is not economically feasible based on the cost to install and operate the equipment. All other add-on control technologies listed are considered not technically feasible. Best work practices have been chosen as the best alternative to add-on control technologies for VOC emissions from Mixing.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the new mixing units is no control. Good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC materials where possible, cleaning up spills, and minimizing cleaning with VOC compounds should be implemented as BACT to control VOC emissions from all equipment associated with Source 05. BATO proposes an emission limit of 180.62 TPY as BACT for Source 05.

MANUFACTURING & MATERIAL USAGE Source 04

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emissions controls for milling, calendars, extruding, and cement stations.

No	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or RTOs	multiple Add-on control
2	Zeolite concentrators plus a	n RTO Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbo	on Tower Add-on control
7	Alternative Materials (silan	e Source reduction
	replacement)	
8	Best Work Practices	No Control (PP)

The RBLC search described previously applies to these sources and to tire curing as well, and did not identify any additional control technologies as BACT.

Step 2: Eliminate infeasible options.

As with mixing emissions, the most effective add-on VOC control measure applicable to these emission units is the use of an RTO to destroy VOC in the exhaust of the emission source. This is due to the high control efficiency of RTO's, the overall efficiency of RTO's using less electricity and less fuel, the ability to control emissions without generating a waste such as scrubber water or hazardous wastes. RTO's function effectively in normal production scenarios, and they are often the most cost-effective control measure. A condenser unit has not been demonstrated as effective at any tire plants for control of manufacturing emissions, and would not likely provide sufficient control of the low concentration, high flow exhaust streams required to capture emissions from the milling, calendaring, extruding, and cement station processes. In addition, the VOCs condensed out of the exhaust flow would require disposal or further control with destruction. Therefore, BATO has not considered refrigerated VOC condensers further for this BACT analysis.

The milling, calendaring, and extruding processes that are currently fugitive, would require a large volume of exhaust air in order to be effectively captured and the existing boilers are only able to accept a small volume of exhaust air for control inside the combustion chamber as described in the section for Mixing emissions. Control of the low concentration and low volume relative to the overall volume of exhaust air that must be captured would be ineffective at controlling emissions from these sources.

For the new cement stations, with a current design basis that includes exhausting at an approximate flowrate of 11,000 cfm per cement station, BATO chose to evaluate two possible configurations

for control with the existing boilers. The first configuration includes a single Zeolite concentrator wheel for all three new cement stations followed by one of the existing boilers for control. This configuration includes a conservative estimate of the required ductwork of 1,403 feet which is the minimum straight-line distance from the nearest new cement station to the boilers. We conservatively assumed 100% capture for this configuration, and cost of control was not economically feasible based on 95% control efficiency of the Concentrator & Boiler control system. The second configuration assumes that each of 3 new cement station can be exhausted separately to each of the two existing boilers and to the third proposed boiler. This configuration assumes that at least 1,403 feet of ductwork will be needed for each new cement station to be exhausted to the boiler area (total ductwork of 4,209 feet). For optimal boiler performance, we originally assumed this configuration would only be able to capture about 35% of the Cementer emissions based on the boilers being rated at 75 MMBtu/hr which equates to approximately 73,500 scf/hr of natural gas combusted. (Originally, we estimated total Capture/control efficiency = 35% Capture x 95% VOC Destruction = 33.3%). With a design of 15% excess air, it takes about 11.5 scf of air per scf of natural gas combusted. Therefore 14,100 scfm of combustion air per boiler is required at maximum heat input. The full exhaust flow rate volume from each Cementer of 11,000 cfm could not be completely vented to the boilers for control since boilers operate at different intervals than the Cementers and since clean combustion air is also necessary for proper boiler operation. For the sake of this analysis, we assumed a most conservative maximum capture efficiency for Cementer Exhaust to the Boilers of 85% and 95% VOC destruction efficiency (Overall control = 80.8%), and the cost of control for this configuration remains above \$12,000 per ton of VOC emissions avoided. (See Appendix B).

Absorbers/wet scrubbers have not been determined effective and have not been installed for control of VOC emissions from manufacturing operations at tire plants. Although the VOC emissions are water soluble, this technology is not feasible for the BATO Warren plant because the exhaust flow required to capture emissions from milling, calendaring and extruding is extremely high. Absorbers are best suited to high concentration, low-flow applications for VOC control. Additionally, the plant does not have a way to treat the wastewater effluent that would result from the use of this technology since there is no wastewater treatment system onsite. Therefore, wet scrubber/absorption technology was not considered further.

As described previously, activated carbon adsorption becomes nearly useless when inlet concentration gets so low that the VOC will not be effectively adsorbed. No BACT determinations were found that include the use of carbon filtration to control emissions from rubber processing and manufacturing operations at tire manufacturing plants. Therefore, adsorption with activated carbon is considered not technically feasible.

An argument can be made that the highest VOC concentration from any of the rubber processing equipment including milling, extrusion, and calendaring is less than 20 ppm. At such a low concentration, none of the above listed add on control technologies are technically feasible. As described in EPA's Air Pollution Control Technology Fact Sheet for Thermal Incinerators, an inlet stream concentration of 1000 ppm VOC will be reduced to approximately 20 ppm when a 98% destruction efficiency is assumed. The extruders are not currently vented to any control devices due to negligible PM. However, it may be technically feasible to construct a hood to capture VOCs from extruders in order to control the 52.0 tons/year of VOC emissions generated by the extruders.

If we conservatively assumed that only 30,000 scfm of exhaust flow were needed to capture these emissions and vented to a single RTO, the estimated cost of avoided emissions would be greater than \$8,000 per ton and therefore, economically infeasible. This analysis is included in Appendix B. The next highest contribution of VOC emissions from rubber processing equipment is 20.56 tons/year from calendaring and could also feasibly be vented to an RTO for control of VOC emissions though it is not currently. We assume this process would also require at least 30,000 scfm of exhaust flow to capture these emissions for venting to the RTO. Therefore, the same control cost would be applied with even less tons of avoided emissions and control is not economically feasible.

The above argument can certainly be applied to the remaining equipment in source 04 Manufacturing and Material Usage with no processes from these operations with a VOC concentration that is likely higher than 10-20 ppm. At such a low concentration, none of the above listed add on control technologies are technically feasible. The achievable emission reduction is approximately 20 ppm resulting from 98% reduction of an inlet stream of 1000 ppm per the EPA's Air Pollution Control Technology Fact Sheet.

For the 5 existing cement stations and 3 additional new cement stations, BATO evaluated RTOs for each station, a single RTO to control all 8 cement stations, a single RTO to control the 3 new cement stations, and a VOC concentrator in conjunction with an RTO to control the 3 new cement stations. Cost analyses for each configuration are included in Appendix B and show that the cost of avoided emissions are greater than \$8,000 per ton of avoided emissions and are therefore, economically infeasible.

BATO has not identified acceptable alternative materials that may be used in the rubber compounds or as cement that can provide the same quality necessary for our products. Poor tire quality can result in unsafe tire construction.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Based on this analysis, there are no technically feasible and economically feasible add-on control technologies for VOC available for the Source 04 operations. Best work practices is the only remaining control option.

Step 5: Select BACT.

BATO proposes that BACT for VOC emissions from the milling, calendars, extruding, and cement stations is no control. Good work practices, such as storing VOC-containing materials in closed tanks or containers, use of low-VOC tire sprays and mold release products, cleaning up spills, and minimizing cleaning with VOC compounds should be implemented as BACT to control VOC emissions from all equipment associated with Source 04. BATO proposes an emission limit of 261.17 TPY as BACT for Source 04.

TIRE CURING Source 22

Step 1: Identify all control technologies.

The following are potentially available technologies for VOC emission controls for tire curing.

No.	Control Alternative	Control Alternative Category
1	Thermal Oxidizer, RTO, or multiple RTOs	Add-on control
2	Zeolite concentrators plus an RTO	Add-on control
3	Condenser Unit	Add-on control
4	Control with existing boiler	Add-on control
5	Absorption/Wet Scrubbing	Add-on control
6	Adsorption/Activated Carbon Tower	Add-on control
7	Best Work Practices	No Control (PP)

Step 2: Eliminate infeasible options.

The highest VOC concentration from the tire curing operations is likely less than 20.0 ppm. This is lower than the 20 ppmv threshold at which add-on controls are feasible. At such a low concentration, none of the above listed add on control technologies are technically feasible. As referenced above in the BACT analysis for Source 04 Manufacturing & Material Usage, the achievable emission reduction is approximately 20 ppm resulting from 98% reduction of an inlet stream of 1000 ppm. The most feasible option for add-on controls is a zeolite concentrator system of three concentrator wheels with a single RTO. BATO evaluated the cost to install two of these systems for control of VOC emissions captured over the 2 new curing bays. The cost was determined to be not economically feasible, and the analysis is provided in Appendix B.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Best work practices with no add-on controls is the only remaining control alternative, and we propose BACT for VOC emissions from tire curing to be best work practices.

Step 5: Select BACT.

As described above, BATO reviewed the RBLC, recent permits, and relevant industry standards. Based on the low concentration of VOC, BACT for VOC from tire curing operations is proposed to be good work practices with no add-on controls. These practices will include storing VOC-containing materials in closed tanks or containers, cleaning up spills, and minimizing cleaning with VOC compounds. BATO proposes an emission limit of 104.77 TPY as BACT for Source 22.

Public Version - Trade Secret Information Redacted
--

Т	able 2: Summary of C	ontrol Cost Aı	nalyses	
Emission Unit	Control Configuration	VOC Emissions Avoided (tpy)	Annualized Control Cost (\$)	Cost Effectiveness (\$/ton)
	8 Stations: RTO for each Station	172.1	\$3,738,220	\$21,723
	8 Stations: One RTO No Concentrator	172.1	\$3,203,927	\$18,619
89-0077-04: Cement Stations	3 New Stations: One RTO No Concentrator	64.5	\$764,619	\$11,849
Cement Stations	3 New Stations: Concentrator + One RTO	62.6	\$799,211	\$12,776
	3 New Stations: Concentrator + Boiler	62.6	\$957,963	\$15,314
	3 New Stations: Controlled in 3 Boilers	53.2	\$791,357	\$14,883
89-0077-04: Extruders	Extruders – Individual RTO	51.0	\$685,174	\$13,446
	Proportional Silane Use - RTOs on all 9 Mixers	16.7 (per mixer)	\$685,174 (per mixer)	\$40,987
89-0077-05:	Proportional Silane Use - RTOs on pairs of Mixers (621&622; 623&624; 626&627; 328&329)	33.4 (per mixer pair)	\$2,433,734 (per mixer pair)	\$72,792
Mixers 621, 622, 623,	Total Silane Used in 2 mixers – single RTO	138.5	\$2,433,734	\$17,572
624, 625, 626, 627, 328, and 329	Concentrator & RTO system on 4 new mixers	64.8	\$833,667	\$12,861
	Concentrator & RTO system on 4 new mixers & 2 existing mixers	97.2	\$1,188,241	\$12,221
	2 New Mixers: Controlled in existing boilers	8.43	\$341,740	\$40,535
89-0077-22:	2 Concentrator & RTO systems for the new curing bay	33.2	\$2,696,434	\$81,277
Tire Curing	6 Concentrator & RTO systems for all curing bays	99.5	\$8,809,303	\$81,227

BACT Emergency Diesel Engines (89-0077-18 and -19)

- Good engine design
- Good combustion practices

All control technologies listed above are technically feasible. BATO selects BACT for the Source 18 and Source 19 Emergency Diesel Engines to be good engine design (certified to meet the requirements of NSPS Subpart IIII and NESHAP Subpart ZZZZ as applicable) and good combustion practices. The BACT emissions limits proposed for sources 18 and 19 are 0.062 TPY and 0.010 TPY respectively.

BACT Emergency Diesel Fire pumps (89-0077-20)

- Good engine design
- Good combustion practices

All control technologies listed above are technically feasible. BATO selects BACT for the Source 20 Emergency Diesel Fire pumps to be good engine design (certified to meet the requirements of NESHAP Subpart ZZZZ) and good combustion practices. BATO proposes an emission limit of 0.33 TPY as BACT for Source 20.

BACT Gasoline Storage Tank (89-0077-21)

- Good work practices

All control techniques listed above are technically feasible. The tank is just 300 gallons and is subject to 40 CFR Part 63 Subpart CCCCCC. The applicable standards are to maintain gasoline throughput to less than 10,000 gallons per month and comply with work practice standards. The work practice standards consist of minimizing vapor releases to the atmosphere by minimizing spills, cleaning spills immediately, cover all containers and tanks with a gasketed seal, and minimize waste. BATO will select the approved work practices for this tank described in the current permit as BACT. BATO proposes an emission limit of 0.048 TPY as BACT for Source 21.

BACT Insignificant Activities

If we assume that BACT has a threshold of economic feasibility of \$8,000/ton of avoided emissions and is technically achievable for any of the listed insignificant activities. And if we assume that the control technology selected is able to achieve at least 98% control efficiency of VOC emissions. Then, the highest annual cost of control would be \$2,352 for the Portable Diesel Air compressors and it would only remove 0.29 tons/year of VOC's. BATO is not aware of any VOC control technologies that are able to be operated for less than \$2,500/year and applicable to the listed insignificant activities at the facility. BATO will continue to implement good and best industry practices to minimize VOC emissions from all insignificant activities at this facility. These practices are briefly described below for each of the insignificant activities with VOC emissions that will likely see some increased utilization.

Solvent Storage Tank: The solvent tank is sealed, and it is only vented when solvent is added to the tank. A venting hood carries the gases outside when it detects the tank is open. The vent is open to fill the tank approximately 8 times per month. The tank is indoors to prevent breathing losses from solar warming. These practices are considered BACT for this activity.

Tire Spraying (Dopers): Calculations for VOC Emissions from this activity are included in the Material Processing calculation and VOC Summary table. This Material is Inside Tire Spray Chem-Trend ML-3114 and has a low VOC Weight Fraction of 0.002 (0.2%). The SDS for this material is attached following the description of Insignificant Activities in the application. Use of Low-VOC materials is considered BACT for this activity.

Cement Spraying: VOC emissions from this activity are accounted for in the Cement Stations above for our BACT Analysis. PM emissions are less than 1 ton/year and are described in the Insignificant Activities section in the application. Refer to Source 04 BACT analysis above.

Tire Repair: For tire repairs, an average of 2% of tires require repairs, an average of 45 grams (less than 0.1 lbs) of rubber is removed, and 45 grams of rubber has to be cured onto the repair. The emission factor for rubber curing is 2.24 E-04 lb VOC per lb of rubber. The emission factor for rubber grinding is 1.59 E-02 lb VOC per lb of rubber removed. Assuming

- the VOC emissions from this activity are 0.080 Ton/year. BATO uses best industry practices to maintain Tire Repair emissions this low. These practices are considered BACT for this activity.

Final Inspection Marking: Typically, final inspection marking is completed with a dot matrix marking system utilizing the orange and yellow ink products shown in the Material Processing – Solvent Usage Table and VOC Summary in the permit application. These VOC emissions are accounted for in the BACT analysis above, and the minimum amount of ink is used to mark the tires for final inspection. In the description of Insignificant Activities in the application, we accounted for an additional volume of Spray Paint cans for Final Inspection marking. This activity is not typical, and only occurs if the Dot Matrix machine was not functional. Refer to Source 04 BACT Analysis above.

Oil Storage Tanks: BATO will add a new RM010 Tank, a new RS012 Tank, and a new WS019 Tank – all are specified to be the identical size and contents to the existing oil storage tanks. With these additional storage tanks, VOC emissions are estimated to increase from 0.030 TPY to 0.044 TPY. Emissions from storage tanks are kept to a minimum with good work practices, submerged filling, and light-colored tanks to prevent breathing losses from solar warming. These practices are considered BACT for the oil storage tanks.

Tire Testing Room: No VOC emissions are claimed from the Tire Testing Room activities, so this source is not included in the BACT analysis.

Two Electron Beam Generators (Precure machine): VOC emissions are included in the emission factors for Curing, and therefore, this activity is already accounted for above in our BACT Analysis for Source 22.

Mold Cleaning: No VOC emissions are claimed or expected from this activity and only particulate matter emissions are included in the description of Insignificant Activities in the application.

Tread Grinders: The BATO Warren Plant does not use Tread Grinders at this facility. This activity is no longer included in the description of Insignificant Activities in the permit application.

Inside Day Bins: Day Bins have bin vent filters for Particulate Matter emissions from carbon black and pigment transfers. No VOC emissions are claimed from this activity, so this source is not included in the BACT Analysis.

The remaining activities listed below, which are Categorical Insignificant Activities, are not expected to experience any increased utilization as part of this expansion. The emergency diesel engines, emergency diesel fire pumps, and gasoline storage tank are included separately above in the BACT Analysis. BATO uses best industry practices with submerged filling on fuel storage tanks; proper operation and maintenance on diesel air compressors, natural gas generator, and space heaters; best practices are in place to maintain and operate the water cooling towers. The best industry practices are in place for solvent management from the Parts Washers. No VOC emissions are expected from the PPE Vacuum Stations.

1.	Two 30,000 gallon #2 Fuel Oil Storage Tanks	TAPCR 1200-3-904(5)(f)17
2.	300 gallon Diesel Tanks (2)	TAPCR 1200-3-904(5)(f)17
3.	300 gallon Kerosene Tank	TAPCR 1200-3-904(5)(f)17
4.	300 gallon Gasoline Tank	TAPCR 1200-3-904(5)(f)17
5.	Portable Diesel Air Compressors	TAPCR 1200-3-904(5)(f)37
6.	Standby Diesel Emergency Generator	TAPCR 1200-3-904(5)(f)37
7.	Standby Natural Gas Generator	TAPCR 1200-3-904(5)(f)37
8.	Diesel Powered Emergency Water Pumps	TAPCR 1200-3-904(5)(f)37
9.	Two 550 gallon Diesel Tanks	TAPCR 1200-3-904(5)(f)17
10.	Space Heaters	TAPCR 1200-3-904(5)(f)14
11.	Water Cooling Towers	TAPCR 1200-3-904(5)(f)15
12.	Parts Washer	TAPCR 1200-3-904(5)(f)76
13.	Personal Protective Equipment Vacuum Stations	TAPCR 1200-3-904(5)(f)94

Table 3: SUMMARY OF BACT ANALYSIS FOR VOC'S									
Emission Source	VOC Emission Limit	Control Technology							
Source 04	261.17 tons/yr	Best work practices							
Manufacturing & Material									
Usage									
Source 05	180.62 tons/yr	Best work practices							
Material Handling and Mixer		_							
Charging									
Source 10	5.56 tons/yr	Use of clean fuels, good							
Three Boilers & One		combustion practices, and							
Hydronic Heater		efficient boiler design							

Table 3: SUI	Table 3: SUMMARY OF BACT ANALYSIS FOR VOC'S									
Emission Source	VOC Emission Limit	Control Technology								
Source 18 Emergency Generator Engine (99 hp)	0.062 tons/yr	Good engine design and good combustion practices								
Source 19 Emergency Generator Engine (15 hp)	0.010 tons/yr	Good engine design and good combustion practices								
Source 20 Fire Pumps #1 and #2 (266 hp, each)	0.33 tons/yr	Good engine design and good combustion practices								
Source 21 300 gallon Gasoline Tank	0.048 tons/yr	Good work practices to minimize vapor releases								
Source 22 Tire Curing	104.77 tons/yr	Best work practices								
Insignificant Activities	Total = 1.20 tons/yr	Best industry practices as								
(Highest VOC = Portable	Highest = 0.30 tons/yr	described in Insignificant								
Diesel Air Compressors)		Activities section above								

VI. AMBIENT AIR IMPACT ANALYSIS

In addition to the BACT analysis, a PSD application also must include an ambient air impact analysis to address the significant net emissions increases. VOC is a precursor for ozone, for which EPA has established a National Ambient Air Quality Standard (NAAQS). Accordingly, the ambient air impact analysis concentrates on ozone.

A. Ambient Air Monitoring

Several ozone monitoring stations are located across the state of Tennessee. These stations are representative of the ambient air in the vicinity of the facility.

B. Ozone Analysis

The ozone analysis uses a tiered approach based on the EPA's Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and $PM_{2.5}$ under the PSD Permitting Program (April 2019). In addition, Tennessee Guidance on the Use of EPA's MERPs to Account for Secondary Ozone and Fine Particulate Formation in Tennessee Under the NSR and PSD Program was reviewed for further confirmation. The EPA's guidance establishes a stepwise approach as follows:

<u>Step 1:</u>

EPA has performed modeling analyses on numerous existing sources. The Modeled Emission Rates for Precursors (MERPs) listed in guidance represent the emission rates for which no significant impact on ambient ozone concentrations has been demonstrated. The first step is to identify representative hypothetical sources for the area. These are sources that have been modeled in the EPA study and are similar to this Project in type and geographical location. Since Morrison is located on the border of the Ohio Valley and Southeast geographical areas identified in the guidance, all of the sources in these areas were selected to represent the Project. This is a conservative approach.

<u>Step 2:</u>

The guidance refers to a spreadsheet that includes all of the results from the photochemical grid modeling performed for EPA and used in the analysis. The data from these sources are summarized in Table 4-1 (page 43) of the guidance and are used in Step 3. The table presents MERP values in each geographical area. The Tennessee guidance allows Tennessee PSD applications to use default MERP values of VOC = 1,542 tpy and NOx = 156 tpy without further justification (Giles, TN and Shelby, TN). As a conservative estimate, the lowest MERPs were selected for any source in the Ohio Valley or Southeast Areas (VOC = 1,159 tpy, NOx = 126 tpy). These emission levels represent the lowest emission rates that have not created a significant impact on ozone concentrations, based on the EPA modeling study. If the Project has emissions lower than the lowest emitting modelled source, which has proven not to cause a significant impact, then the Project will not cause a significant impact.

<u>Step 3:</u>

Using the Project emissions increases and the data from Step 2, the guidance suggests the following calculation:

 $\left(\frac{26.8 \text{ tpy NOx from Source}}{126 \text{ tpy NOx, 8 hr daily maximum } 0_3 \text{MERP}}\right) + \left(\frac{349.4 \text{ tpy VOC from Source}}{1,159 \text{ tpy VOC, 8 hr daily maximum } 0_3 \text{MERP}}\right)$ $= 0.21 + 0.30 = 0.51 \times 100 = 51\%$

A value less than 100% indicates that the ozone significant impact level (SIL) would not be exceeded when considering the combined impacts of these precursors. Thus, the Project level ozone impacts associated with both NOx and VOC precursor emissions from this source are below the EPA recommended 8-hour ozone SIL. Consequently, a refined ambient ozone impact analysis (Tier 2) is not required.

C. Additional Impact Analysis

Growth Analysis

The purpose of the growth analysis is to (1) predict how much new growth associated with the proposed project is likely to result in secondary emissions and then (2) to estimate the emissions that will result from the associated growth.

The Project adds capability to produce more tires. The Project results in a modest increase in the number of employees at the plant. BATO plans to follow its normal practice of hiring from the existing workforce in the local area. No measurable impact on air quality is predicted from growth in local employment associated with this Project.

The Project also will result in a modest increase in transportation activities, primarily due to the flow of materials to the plant and shipment of tires from the plant. Carbon black will be mainly received via railcar. The remaining materials are received via truck transportation, on paved roadways. Shipments are also made via truck transportation on paved roadways. The modest increase in transportation activities will have negligible impact to ambient air quality.

Construction activities associated with the Project will be temporary. The construction activities to build the expansion necessary to contain the new units will principally consist of temporary placement of modular construction offices, routine building construction activities, and equipment installation. These activities will result in negligible impacts to ambient air quality.

Negligible additional emissions are associated with the anticipated modest growth as a result of the Project.

Secondary Impacts

The secondary NAAQS are intended to protect the public welfare from adverse effects of airborne effluents. This protection extends to agricultural soil.

The effects of gaseous air pollutants on vegetation may be classified into three rather broad categories: acute, chronic, and long-term. Acute effects are those that result from relatively short (less than 1 month) exposures to high concentrations of pollutants. Chronic effects occur when organisms are exposed for months or even years to certain threshold levels of pollutants. Long-term effects include abnormal changes in ecosystems and subtle physiological alterations in organisms. Acute and chronic effects are caused by the gaseous pollutant acting directly on the organism, whereas long-term effects may be indirectly caused by secondary agents such as changes in soil pH.

Using the MERPs Tier 1 demonstration, predicted ozone concentrations throughout the study area are well below the secondary NAAQS. Since the secondary NAAQS protect impact on human welfare, no significant adverse impact on soil, vegetation, endangered species, or visibility is anticipated due to the proposed modification.

D. Class I Assessment

To determine the impact on nearby Class I Areas, a Q/D calculation was performed as noted in Table 3. Since the Q/D is less than 10, Class I areas will not be impacted by the facility.

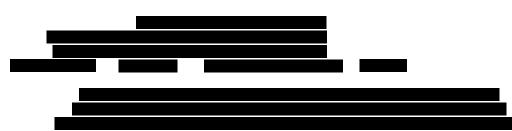
Table 4	I: Class I Area Q/	D Calculatio	n				
Plant-Wide Er	nissions		Max lb/hr TPY				
PM _{Tota}	I		55.23 241.9				
SO ₂			39.03 170.9				
NOx			81.77	358.1			
H ₂ SO ₄			1.16 5.1				
			Total TPY: 776.0				
Class I Areas Nearby			Distance to Cla	ss I Area:			
Mammoth Cave NP, KY			163.9	km			
Great Smoky Mountains NP, TN			172.3	km			
Joyce Kilmer-Slickrock Wilderness, NC			170.2	km			
Cohutta Wilderness, GA			134.4	km			
Sipsey Wilderness, AL			197.4	km			
	Q (TPY)	D (km)	Q/D	Q/D < 10?			
	776.0	134.4	5.77	YES			
FLAG 2010: "Therefore, the Agencies will consider have negligible impacts with respect t emissions (in tons per year, based on distance (in km) from the Class I area	o Class I AQRVs if i 24-hour maximum	ts total SO ₂ , N allowable em	IOx, PM ₁₀ , and H ₁₀ , and H ₁₀ nissions), divided	₂SO₄ annual by the			

Class I AQRV impact analyses from such sources."

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

<u>APPENDIX A</u> BASELINE ACTUAL EMISSIONS

ACTUAL MONTHLY THROUGHPUT DATA (2018 - 2019) Bridgestone Americas Tire Operations, Inc. Warren County Plant


Year	Month	Carbon	Black (CB)	Clay	Pigment	Natural Gas (scf)	No. 2 Fuel Oil
2018	January						
2018	February						
2018	March						
2018	April						
2018	May						
2018	June						
2018	July						
2018	August						
2018	September						
2018	October						
2018	November						
2018	December						
2018	TOTAL	9	5,445,821.0	3,376,406.0	32,750,914.0	429,067,700.0	31,454.3
2019	January						
2019	February						
2019	March						
2019	April						
2019	May						
2019	June						
2019	July						
2019	August						
2019	September						
2019	October						
2019	November						
2019	December						
2019	TOTAL	9	2,665,769.0	3,168,872.0	32,958,448.0	477,608,100.0	0.0

			1	1			1	
	2018	2018	2018	2018	2018	2018	2018	2018
LOG 4 MATERIAL PROCESSING-MONTHLY LOG (89-0077-04)	January	February	March	April	May	June	July	August
	,							8
	*Material							
	Processed							
Process	lb./mo.							
Banburies								
Banbury Remill								
Wire Calender (4-Roll)								
Gum Calender (#3 and #4 Belt Cutter)								
Calender Profile (Profile/PREX)								
Innerliner Extruder (aka Rollerhead, PT Innerliner)								
All Purpose Extruders (#1, #3)								
Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only)								
Wire Reinforcing Ext/Cal. (REX)								
Bead Filler (DSB)								
Bead Winder (HEX Winders)								
Rubber Mills (Refine Mill - Extrusion)								
TMA Stock Prep. (Rubber Used in Cement House)								
Tire Curing								
Silane Injection (mixing) (gallons) (RE067)								
Silane Injection (curing) (gallons) (RE067)								
Autoclave								
	Usage							
	gal/mo.							
Solvent (RT018, Includes Cement)								
C264 Cement (70% solvent)								
Marking Ink Usage - White (D1858) - RQ858								
Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611)								
Mold Spray ML-5401W - RU060								
Ink Jet Cleaner; L-420 (RX006)								
Black Repair Paint A-9387 (RQ515)								
Dot Matrix Yellow Ink D4936 (RQ109)								
Yellow Chlorobutyl Paint D-4361 (AB1153)								
Inside Tire Spray Chem-Trend ML-3055 (RY050)								
Inside Tire Spray Chem-Trend ML-2012 (RU020)								
Mold Release Chem-Trend ML-5419W (RU029)								
Mold Release Chem-Trend ML-8187 (RU187)								
Mold Release Chem-Trend ML-3068 (AB2036)								

		1	1	1	1	1	1	1
	2018	2018	2018	2018	2019	2019	2019	2019
LOG 4 MATERIAL PROCESSING-MONTHLY LOG (89-0077-04)	September	October	November	December	January	February	March	April
	September	000000		Becchioti	buildui y	reordary	171ul ell	1 ipin
	*Material	*Material	*Material	*Material	*Material	*Material	*Material	*Material
	Processed	Processed	Processed	Processed	Processed	Processed	Processed	Processed
Process	lb./mo.	lb./mo.	lb./mo.	lb./mo.	lb./mo.	lb./mo.	lb./mo.	lb./mo.
Banburies		101/11101	10.0 11101	10.711101	10.7110.	10.7110.	10., 110.	10., 1110.
Banbury Remill								
Wire Calender (4-Roll)								
Gum Calender (#3 and #4 Belt Cutter)								
Calender Profile (Profile/PREX)								
Innerliner Extruder (aka Rollerhead, PT Innerliner)								
All Purpose Extruders (#1, #3)								
Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only)								
Wire Reinforcing Ext/Cal. (REX)								
Bead Filler (DSB)								
Bead Winder (HEX Winders)	1							
Rubber Mills (Refine Mill - Extrusion)	1							
TMA Stock Prep. (Rubber Used in Cement House)								
Tire Curing								
Silane Injection (mixing) (gallons) (RE067)								
Silane Injection (curing) (gallons) (RE067)								
Autoclave								
	Usage	Usage	Usage	Usage	Usage	Usage	Usage	Usage
	gal/mo.	gal/mo.		gal/mo.	gal/mo.	gal/mo.	gal/mo.	gal/mo.
Solvent (RT018, Includes Cement)								
C264 Cement (70% solvent)								
Marking Ink Usage - White (D1858) - RQ858								
Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611)								
Mold Spray ML-5401W - RU060								
Ink Jet Cleaner; L-420 (RX006)								
Black Repair Paint A-9387 (RQ515)								
Dot Matrix Yellow Ink D4936 (RQ109)								
Yellow Chlorobutyl Paint D-4361 (AB1153)								
Inside Tire Spray Chem-Trend ML-3055 (RY050)								
Inside Tire Spray Chem-Trend ML-2012 (RU020)								
Mold Release Chem-Trend ML-5419W (RU029)								
Mold Release Chem-Trend ML-8187 (RU187)								
Mold Release Chem-Trend ML-3068 (AB2036)								

106 4 MATERIAL PROCESSING-MONTHEX LOG (89-4077-44) May Junc July August September October November December *Material *Materia			1	1	1	1	1	T	
MayMayJuneJulyAugustSeptemberOctoberNovemberDecemberProcessedProcessed*Material <t< th=""><th></th><th>2019</th><th>2019</th><th>2019</th><th>2019</th><th>2019</th><th>2019</th><th>2019</th><th>2019</th></t<>		2019	2019	2019	2019	2019	2019	2019	2019
Processed	LOG 4 MATERIAL PROCESSING-MONTHLY LOG (89-0077-04)		June	July	August	September	October	November	December
Process Ib./mo.		*Material							
Banburies Banburies Banbury Remill Wire Calender (4-Roll) Gum Calender (4-Roll) Gum Calender (4-Roll) Gum Calender (4-Roll) Calender Profile (Profile/PREX) Innerliner Extruder (aka Rollerhead, PT Innerliner) All Purpose Extruders (41, #3) Sidwaul Belt Fage Ext. (88x8s, and 44 - BEI only) Wire Reinforcing Ext(Cal. (REX) Bead Filler (DSB) Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep, (Rubber Used in Cement House) Tire Curing Silane Injection (uxing) (gallons) (RE067) Autoclave Usage Usage Usage Usage Usage Usage Usage Usage Usage Usage Usage Usage gal/mo. gal		Processed							
Banbury Remill Wirc Calender (4-Roll) Gun Calender (4-Roll) Gun Calender (4-Roll) Gun Calender (4-Roll) Gun Calender (4-Roll) Calender Profile Profile/PREX) Innerliner Extruder (aka Rollerhead, PT Innerliner) All Purpose Extruders (41, e3) Solvent (R1EX) Baad Filler (DSB) Baad Filler (DSB) Baad Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) ThA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (using) (gallons) (RE067) Autoclave Usage U	Process	lb./mo.							
Wire Calender (4-Roll) Gum Calender (#3 and #4 Belt Cutter) Calender Profile (Profile/PREX) Innerliner Extruder (alk Rollerhead, PT Innerliner) All Purpose Extruders (#1, #3) Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only) Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Bead Filler (DSB) Bead Filler (DSB) Bead Filler (DSB) Biane Injection (mixing) (gallons) (RE067) Silane Injection (unring) (gallons) (RE067) Marking Ink Usage - White (D1858) - R0858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-54010 + RU060 Iak Repair Paint A-9387 (RQ515) Do thatrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-3451 (AB1153) Inside Tirk Spray Chem-Trend ML-34517 (RU020) Mold Release Chem-Trend ML-48187 (RU187)						•			
Gum Calender (#3 and #4 Belt Cutter) Calender Profile (Profile/PREX) Innerliner Extruder (ak Rolferhead, PT Innerliner) All Purpose Extruders (#1, #3) Sidewall Belt Edge Ext. (8x8x8, and #4 - BEl only) Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep, (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (ucring) (gallons) (RE067) C264 Cement (70% solvent) Marking Ink Usage - White (D15S8) - RQ858 Orange Curable Let Printer Int B->125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A->387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-8187 (RU157)	Banbury Remill								
Calender Profile (Profile/PREX) Innerliner Extruder (ak Rollerhead, PT Innerliner) All Purpose Extruders (al., #3) Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only) Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Silane Injection (mixing) (gallons) (RE067) Silane Injection (euring) (gallons) (RE067) Silane Injection (euring) (gallons) (RE067) Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Grange Curable Let Printer Ink D-3125 (R0094/RQ611) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Let Printer Ink D-3125 (R0094/RQ611) Mold Release Chem-Trend ML-3012 (RU020) Mold Release Chem-Trend ML-3012 (RU020) Mold Release Chem-Trend ML-3012 (RU020)	Wire Calender (4-Roll)								
Innerliner Extruder (aka Rollerhead, PT Innerliner) All Purpose Extruders (#1, #3) Sidewall Belt Edge Ext. (R&Sk8, and #4 - BEI only) Wire Reinforcing Ext/Cal. (REX) Bead Mindery Bead Mindery Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Autoclave Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Let Printer Rb. 0-3125 (R0904/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-35187 (RU187)	Gum Calender (#3 and #4 Belt Cutter)								
All Purpose Extruders (#1, #3) Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only) Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing. Silane Injection (mixing) (gallons) (RE067) Autoclave Usage Usage gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1558) - RQ558 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RV050) Inside Tire Spray Chem-Trend ML-3015 (RU029) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-5419W (RU037)	Calender Profile (Profile/PREX)								
Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only) Wire Reinforcing Ext/Cal. (REX) Bead Vinder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Choroburdl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-30987 (RQ187) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-5419W (RU029)	Innerliner Extruder (aka Rollerhead, PT Innerliner)								
Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave Solvent (RT018, Includes Cement) C2644 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 BiA Jet Circumation (Application Chronobult) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D436 (RQ109) Yellow Choroburby Paint D-4361 (ABI153) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU187)	All Purpose Extruders (#1, #3)								
Wire Reinforcing Ext/Cal. (REX) Bead Filler (DSB) Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave Solvent (RT018, Includes Cement) C2644 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 BiA Jet Circumation (Application Chronobult) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D436 (RQ109) Yellow Choroburby Paint D-4361 (ABI153) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU187)	Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only)								
Bead Winder (HEX Winders) Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave Usage Usage Usage Usage Usage Usage gal/mo. gal/	Wire Reinforcing Ext/Cal. (REX)								
Rubber Mills (Refine Mill - Extrusion) TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave gal/mo. gal/mo. gal/mo. gal/mo. Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-34187 (RU187)	Bead Filler (DSB)								
TMA Stock Prep. (Rubber Used in Cement House) Tire Curing Silane Injection (mixing) (gallons) (RE067) Autoclave Usage Usage gal/mo. gal/mo. gal/mo. gal/mo. Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Let Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-54187 (RU187)	Bead Winder (HEX Winders)								
Tire Curing Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave Usage Usage Usage Usage Usage gal/mo. gal/mo.<	Rubber Mills (Refine Mill - Extrusion)								
Silane Injection (mixing) (gallons) (RE067) Silane Injection (curing) (gallons) (RE067) Autoclave Usage Usage Usage Usage Usage Usage gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. gal/mo. Solvent (RT018, Includes Cement) C264 Cement (70% solvent) Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-5419W (RU029)	TMA Stock Prep. (Rubber Used in Cement House)								
Silane Injection (curing) (gallons) (RE067) Autoclave Usage Usage gal/mo. gal/	Tire Curing								
Autoclave Usage Us	Silane Injection (mixing) (gallons) (RE067)								
Usage gal/mo.Us	Silane Injection (curing) (gallons) (RE067)								
gal/mo. <t< td=""><td>Autoclave</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Autoclave								
gal/mo. <t< td=""><td></td><td>Usage</td><td>Usage</td><td>Usage</td><td>Usage</td><td>Usage</td><td>Usage</td><td>Usage</td><td>Usage</td></t<>		Usage							
C264 Cement (70% solvent)Marking Ink Usage - White (D1858) - RQ858Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611)Mold Spray ML-5401W - RU060Ink Jet Cleaner; L-420 (RX006)Black Repair Paint A-9387 (RQ515)Dot Matrix Yellow Ink D4936 (RQ109)Yellow Chlorobutyl Paint D-4361 (AB1153)Inside Tire Spray Chem-Trend ML-3055 (RY050)Inside Tire Spray Chem-Trend ML-2012 (RU020)Mold Release Chem-Trend ML-5419W (RU029)Mold Release Chem-Trend ML-8187 (RU187)			gal/mo.	gal/mo.				gal/mo.	gal/mo.
Marking Ink Usage - White (D1858) - RQ858 Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Solvent (RT018, Includes Cement)		0	C	C		C	C	
Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611) Mold Spray ML-5401W - RU060 Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	C264 Cement (70% solvent)								
Mold Spray ML-5401W - RU060Ink Jet Cleaner; L-420 (RX006)Black Repair Paint A-9387 (RQ515)Dot Matrix Yellow Ink D4936 (RQ109)Yellow Chlorobutyl Paint D-4361 (AB1153)Inside Tire Spray Chem-Trend ML-3055 (RY050)Inside Tire Spray Chem-Trend ML-2012 (RU020)Mold Release Chem-Trend ML-5419W (RU029)Mold Release Chem-Trend ML-8187 (RU187)	Marking Ink Usage - White (D1858) - RQ858								
Ink Jet Cleaner; L-420 (RX006) Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Orange Curable Jet Printer Ink D-3125 (RQ094/RQ611)								
Black Repair Paint A-9387 (RQ515) Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Mold Spray ML-5401W - RU060								
Dot Matrix Yellow Ink D4936 (RQ109) Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Ink Jet Cleaner; L-420 (RX006)								
Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Black Repair Paint A-9387 (RQ515)								
Yellow Chlorobutyl Paint D-4361 (AB1153) Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Dot Matrix Yellow Ink D4936 (RQ109)								
Inside Tire Spray Chem-Trend ML-3055 (RY050) Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Yellow Chlorobutyl Paint D-4361 (AB1153)								
Inside Tire Spray Chem-Trend ML-2012 (RU020) Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Inside Tire Spray Chem-Trend ML-3055 (RY050)								
Mold Release Chem-Trend ML-5419W (RU029) Mold Release Chem-Trend ML-8187 (RU187)	Inside Tire Spray Chem-Trend ML-2012 (RU020)								
	Mold Release Chem-Trend ML-5419W (RU029)								
Mold Release Chem-Trend ML-3068 (AB2036)	Mold Release Chem-Trend ML-8187 (RU187)								
	Mold Release Chem-Trend ML-3068 (AB2036)								

ACTUAL PM EMISSIONS (2018 - 2019) Bridgestone Americas Tire Operations, Inc. Warren County Plant

Source	Point Number	Pollutant	Emission Factor	Material Handled Potential	Material Handled 2018	Material Handled 2019	Material Handled	PM _{Total} (a)	PM ₁₀ (b)	PM _{2.5} (c)
Railcar and Trailer Unloading, Storage, and Holding (89-0077-02) TO			(lb PM / lb Matl)	(lb/hr)	(lb/yr)	(lb/yr)	(lb/yr)	(tpy)	(tpy)	(tpy)
	CB-RRBH-001	PM						0.03	0.03	0.01
Railcar and Trailer Unloading, Storage, and Holding (89-0077-02)	CB-RRBH-002	PM						0.12	0.12	0.03
	CB-STEF-001 to CB-STEF-010	PM						0.11	0.11	0.03
	CB-621V-001 to	PM						0.14	0.14	0.03
	CB-621V-010 &									
	CB-623V-001 to									
	CB-623-V-010									
	CLAY001	PM						0.00	0.00	0.00
	B-DCEF-FP1	PM						0.74	0.74	0.17
ТОТ	AL		T					1.14	1.14	0.26
	B-DCEF-621-C	PM						0.80	0.80	0.18
Railcar and Trailer Unloading, Storage, and Holding	B-DCEF-623-C	PM						0.80	0.80	0.18
	B-DCEF-624-C	PM						0.80	0.80	0.18
	B-DCEF-625-C	PM						0.80	0.80	0.18
	B-DCEF-621-P	PM						0.81	0.81	0.19
(89-0077-02) TOT Rubber Mixing and Milling	B-DCEF-622-P	PM						0.81	0.81	0.19
	B-DCEF-623-P	PM						0.81	0.81	0.19
	B-DCEF-625CL	PM						0.11	0.11	0.03
	TOTAL							5.73	5.73	1.32

Bridgestone Americas Tire Operations, LLC Warren Plant Actual Emissions (2018-2019)

Emission Source: 10 Two Babcock & Wilcox Boilers (75 MMBtu/hr, each) One Hitachi Hydronic Heater (10.3 MMBtu/hr)

Operating Parameters

Fuel Type	Natural Ga	S	No. 2 Fuel	Oil
Heat Content of Fuel	1,020	Btu/cf	140,000	Btu/gal
Fuel Consumption (2018)	429.1	MMcf/yr	31.5	1000 gal/yr
Fuel Consumption (2019)	477.6	MMcf/yr	0.0	1000 gal/yr
Fuel Consumption (Average)	453.34	MMcf/yr	15.7	1000 gal/yr

Emission Calculations

Emission Factors for Natural Gas Combustion 1,2,3

<u>Pollutant</u>	<u>lb/10⁶ scf</u>	Ib/MMBtu-HHV	Source
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42 Table 1.4-2
Nitrogen Oxides (NO _x)	50	0.0490	AP-42 Table 1.4-1
Carbon Monoxide	84	0.0824	AP-42 Table 1.4-1
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42 Table 1.4-2
VOC	5.5	0.0054	AP-42 Table 1.4-2
Carbon Dioxide (CO ₂)	119,316	116.98	40 CFR 98, Table C-1
Methane (CH ₄)	2.25	0.0022	40 CFR 98, Table C-2
Nitrous Oxide (N ₂ O)	0.22	0.0002	40 CFR 98, Table C-2
Lead (Pb)	0.0005		AP-42 Table 1.4-2
	Annual ⁵		
	ton/year		
Particulate Matter (PM _{Total})	1.72	_	
Nitrogen Oxides (NO _x)	11.33		
Carbon Monoxide	19.04		
Sulfur Dioxide (SO ₂)	0.14		
Combustion VOC	1.25		
Carbon Dioxide (CO ₂)	27,045		
Methane (CH ₄)	0.51		
Nitrous Oxide (N ₂ O)	0.05		
CO ₂ Equivalent (CO ₂ eq) ^{7,8}	27,073		
Lead (Pb)	0.00011		
()			

Emission Factors for No. 2 Fuel Oil Combustion 1,2,3

	<u>lb/10³ gal</u>	lb/MMBtu-HHV		
Particulate Matter (PM _{Total})	<u>10/10 gai</u> 3.3	0.024	AP-42 Table 1.3-2	
Nitrogen Oxides (NO _x)	20	0.143	AP-42 Table 1.3-1	
Carbon Monoxide	5	0.036	AP-42 Table 1.3-1	
Sulfur Dioxide (SO ₂)	21.3	0.152		0.1500 %)
VOC	0.2	0.001	AP-42 Table 1.3-3	,
Carbon Dioxide (CO ₂)	22,827	163.05	40 CFR 98, Table C-1	
Methane (CH ₄)	0.93	0.0066	40 CFR 98, Table C-2	
Nitrous Oxide (N ₂ O)	0.19	0.0013	40 CFR 98, Table C-2	
Lead (Pb)	1.3E-03	9.0E-06	AP-42 Table 1.3-10	
	Annual ⁴			
	ton/year			
Particulate Matter (PM _{Total})	0.03			
Nitrogen Oxides (NO _x)	0.16			
Carbon Monoxide	0.04			
Sulfur Dioxide (SO ₂)	0.17			
Combustion VOC	0.00			
Carbon Dioxide (CO ₂)	179.50			
Methane (CH ₄)	0.01			
Nitrous Oxide (N ₂ O)	0.00			
CO ₂ Equivalent (CO ₂ eq) ^{7,8}	180.12			
Lead (Pb)	9.91E-06			
Summary of Emissions ⁵				
	Annual ⁴ ton/year			
Particulate Matter (PM _{Total})	1.75			
Particulate Matter (PM ₁₀)	1.75			
Particulate Matter (PM _{2.5})	1.75			
Nitrogen Oxides (NO _x)	11.49			
Carbon Monoxide	19.08			
Sulfur Dioxide (SO ₂)	0.30			
Combustion VOC	1.25			
Carbon Dioxide (CO ₂)	27,225			
Methane (CH ₄)	0.52			
Nitrous Oxide (N ₂ O)	0.05			
CO ₂ Equivalent (CO ₂ eq) ^{6,7}	27,253			
Lead (Pb)	1.23E-04			

Example Calculations/Notes:

(1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Sections 1.3 and 1.4, July 1998, Small Boilers < 100 MMBtu/hr

(2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from $lb/10^6$ scf to kg/ 10^6 m³, multiply by 16. To convert from $lb/10^6$ scf to lb/MMBtu, divide by 1,020.

(3) Assume PM= PM_{2.5}, PM₁₀

(4) Annual Emissions (tpy) = Annual Fuel Usage (MMCF or 1000 gal) * Emission Factor (lb/MMCF or lb/1000 gal) / 2,000 (lb/ton)

(5) Summary of Emissions: Annual Emissions = Natural gas emissions + fuel oil emissions

(6) CO_2 Equivalent (CO_2eq) = CO_2 + [$GWP_{CH4} * CH_4$] + [$GWP_{N2O} * N_2O$]

(7) GWP_{CH4} = 25, GWP_{N2O} = 298; 40 CFR 98 Table A-1

LOG 5 & LOG 8 MATERIAL PROCESSING-MONTHLY LOG

Month/ Year	Actual	esi VOC Emissons	VOC Emissions	VOC Emissions	VOC Emissions	VOC Emissions	VOC RMA	VOC Solvent	VOC Silane	VOC (*) Emissions	HAPs Emissions	NonVOC HAPs	HAPs(*) Emissions
		RMA (Tons per											
	tires/day	/	Solvent TPM	(Tons per Month)	RT018 TPM	Silane TPM	Tons per 12 months		Tons per Month	Tons Per 12 Months(**)			
Jan-18		8.07	11.52	19.59	10.63	0.00	95.51	119.07	0.04	214.62	1.41	0.30	16.75
Feb-18		7.69	8.72	16.42	8.19	0.01	95.66	119.17	0.04	214.85	1.35	0.28	16.75
Mar-18		8.49	8.95	17.44	8.43	0.01	95.89	118.20	0.04	214.11	1.49	0.32	16.80
Apr-18		7.99	9.49	17.49	9.16	0.01	96.14	117.80	0.04	213.95	1.39	0.29	16.84
May-18		8.26	15.87	24.13	15.33	0.01	96.29	122.77	0.05	219.07	1.45	0.31	16.87
Jun-18		7.73	3.94	11.67	3.53	0.18	96.49	119.12	0.23	215.61	1.33	0.28	16.87
Jul-18		7.04	8.72	15.76	8.29	0.01	96.38	116.66	0.23	213.04	1.26	0.27	16.87
Aug-18		8.52	11.14	19.66	10.62	0.02	96.40	114.65	0.25	211.04	1.47	0.31	16.86
Sep-18		8.11	7.72	15.83	7.26	0.03	96.32	112.51	0.28	208.84	1.42	0.30	16.86
Oct-18		8.58	11.76	20.35	11.22	0.02	96.39	115.20	0.30	211.59	1.50	0.32	16.88
Nov-18		7.67	9.51	17.18	9.17	0.00	96.04	115.09	0.30	211.14	1.38	0.29	16.84
Dec-18		7.60	8.05	15.65	7.69	0.02	95.76	115.40	0.31	211.16	1.34	0.28	16.80
Jan-19		8.29	10.00	18.29	9.36	0.04	95.98	113.88	0.35	209.86	1.47	0.31	16.85
Feb-19		7.63	8.87	16.50	8.41	0.00	95.92	114.03	0.34	209.95	1.35	0.28	16.85
Mar-19		8.80	9.78	18.58	9.40	0.28	96.23	114.86	0.61	211.09	1.49	0.31	16.85
Apr-19		8.05	8.72	16.77	8.18	0.07	96.29	114.08	0.67	210.37	1.41	0.30	16.87
May-19		8.24	8.44	16.68	8.05	0.07	96.27	106.65	0.73	202.92	1.42	0.30	16.84
Jun-19		8.31	7.49	15.81	7.03	0.08	96.85	110.20	0.64	207.05	1.44	0.30	16.95
Jul-19		5.71	9.80	15.51	9.24	0.03	95.52	111.28	0.66	206.80	1.02	0.20	16.71
Aug-19		8.61	8.85	17.46	8.34	0.20	95.61	108.99	0.84	204.60	1.46	0.31	16.69
Sep-19		7.73	8.82	16.54	8.32	0.11	95.23	110.08	0.92	205.32	1.36	0.29	16.64
Oct-19		8.57	11.30	19.87	10.92	0.17	95.22	109.62	1.08	204.84	1.46	0.31	16.60
Nov-19		7.75	7.30	15.04	6.78	0.16	95.29	107.41	1.24	202.70	1.35	0.28	16.58
Dec-19		6.95	7.22	14.17	6.99	0.11	94.64	106.58	1.33	201.22	1.23	0.25	16.46

(89-0077-04)

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

<u>APPENDIX B</u> BACT COST ANALYSIS

Warren County Expansion - BACT Info

Mixer - VOC Control of Baghouse Exhaust

	RTO Size - CFM	30,000 CFM	64,000 CFM
Annual cost of RTO		\$685,174	\$2,433,734

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING **BRIDGESTONE WARREN CO**

Air flow rate for baghouse	= 30,000	scfm	Vent one mixer to a single RTO
Direct Costs		Cost	Cost Factor/Comments
urchased Equipment Costs			
Equipment Cost (EC)orig Equipment Cost (EC)update	d	\$612,100 \$875,000	Durr Estimate in 8.9.2019 Email Durr Estimate updated in 01.09.2023 Email
Freight Taxes Instrumentation Total Purchas	0.05*EC 0.03*EC 0.10*EC ed Equipment Costs (PEC) =	\$43,750 \$26,250 \$87,500 \$1,032,500	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) Scaled this to a 2022 Basis using the Chemical Engineering plant cost in
Direct Installation Costs			
Foundations and Supports Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.08*PEC 0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$82,600 \$144,550 \$41,300 \$20,650 \$10,325 \$10,325	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Control Equipment Installed on new mixers
Total Dir	ect Installation Costs (DC) =	\$309,750	
Indirect Installation Costs Engineering Construction and Field Expe Contractor Fees Start-up Performance test Contingencies Total indi	enses 0.10*PEC 0.05*PEC 0.10*PEC 0.02*PEC 0.01*PEC 0.03*PEC rect Installation Costs (IC) =	\$103,250 \$51,625 \$103,250 \$20,650 \$10,325 \$30,975 \$320,075	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Total Inst <u>Puctwork</u>	talled Cost (PEC + DC + IC) =	\$1,662,325	Based on new control device west of mixing building
	30 feet	\$29,639	Reference 2, scaled
Fotal Capital Cost (TCC)	TCC =	\$1,691,964	
Direct Annual costs		Cost	Cost Factor/Comments
Electricity Cost	39 kW for fan	\$14,560	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$182,313	Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator \$ Supervisor	1 hr/shift 33.31 /hr	\$36,474 \$5,471	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance	1 hr/shift	\$41,435	
Labor \$	37.84 /hr		T. Burnett email 12.28.2022
Material		\$41,435	100% of maintenance labor, Reference 3
ndirect Annual Costs Overhead		\$74,889.13	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration Property Taxes Insurance		\$23,850 \$11,925 \$11,925	2% TCC 1% TCC 1% TCC
Interest Rate Years for Loan Capital Recovery (Annualize Fotal Annual Cost	7.00% 10 ed Capital Cost)	\$240,897.56 \$685,174	

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 30,000 scfm based on controlling a single Mixer in August 2019.

They additionally provided a second budgetary cost estimate for an individual RTO rated for 30,000 scfm to control a single

Mixer in January 2023. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process

Engineer, May 2016. (Includes Installation and Materials) 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

Air flow rate for baghouse x	2 = 64,000	scfm		Vent two mixers to a sin	ngle RTO	
Direct Costs Purchased Equipment Costs		<u>Cost</u>		Cost Factor/Com	ments	
Equipment Cost (EC)orig		\$2,240,000	2002 Dollars	Regenerative Oxidizers	. (fact shee	Clean Air Technology Center Fact Sheet f t presents a capital cost range of \$35- ed the minimum to estimate the capital co
Equipment Cost (EC)scaled		\$4,714,792	2022 Dollars	Scaled this to a 2022 Ba CE Index in 2022 = 821. CE Index in 2002 = 390.	3	e Chemical Engineering plant cost index
Freight	0.05*EC _b	\$235,740		Table 2.8 of the OAQPS	Control Co	st manual (0.05 * Equip cost)
Taxes Instrumentation	0.03*EC _b 0.10*EC _b	\$141,444 \$471,479				ist manual (0.03 * Equip cost) ist manual (0.1 * Equip cost)
	rchased Equipment Costs (PEC) =	\$5,563,455				
Direct Installation Costs						
Foundations and Supports Handling and Erection	0.08*PEC 0.14*PEC	\$445,076.40 \$778,884		Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Electrical	0.14 PEC	\$222,538.20		Table 2.8 of the OAQPS		
Piping	0.02*PEC	\$111,269		Table 2.8 of the OAQPS		
Insulation for Ductwork	0.01*PEC	\$55,635		Table 2.8 of the OAQPS		
Painting	0.01*PEC	\$55,635		Table 2.8 of the OAQPS	Control Co	ist manual
Site Preparation		Unknown		(unknown at this time)		
Retrofit Factor = 0%		\$0		Control Equipment Inst		w mixers - so this is conservative to assume \$0
То	tal Direct Installation Costs (DC) =	\$1,669,037			ppropriate	
ndirect Installation Costs						
Engineering	0.10*PEC	\$556,346		Table 2.8 of the OAQPS		
Construction and Field Expenses Contractor Fees	0.05*PEC 0.10*PEC	\$278,173 \$556,346		Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Start-up	0.02*PEC	\$111,269		Table 2.8 of the OAQPS		
Performance test	0.01*PEC	\$55,635		Table 2.8 of the OAQPS		
Contingencies	0.03*PEC	\$166,904		Table 2.8 of the OAQPS	Control Co	ist manual
101	al indirect Installation Costs (IC) =	\$1,724,671				
To	tal Installed Cost (PEC + DC + IC) =	\$8,957,163				
Ductwork	1000 feet	\$987,956		Based on new control o Reference 2, scaled	levice west	of mixing building
Fotal Capital Cost (TCC)	TCC =	\$9,945,118				
Direct Annual costs Electricity Cost	83 kW for fan	<u>Cost</u> \$31,061		Cost Factor/Comments Elec. Cost=	\$0.0425	0.0425 \$/kWh Warren Co 2022 cost
·····, ····				Operation=	8,760	T. Burnett email 12.28.2022 hr/yr
Fuel Cost		\$389,203		Fuel use	72 47	7 MMBtu/yr
		<i>\$303,233</i>		gas cost \$		/MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator	1 hr/shift	\$36,474				
\$ Supervisor	33.31 /hr	\$5,471		T. Burnett email 12.28.202 15% of operating labor, Re		
Maintenance	1 hr/shift	\$41,435				
Labor \$	37.84 /hr	<i>ų</i> (1, 100		T. Burnett email 12.28.202		
Material		\$41,435		100% of maintenance labo	or, Reference	23
ndirect Annual Costs Overhead		\$74,889.13	3	Reference 3 Table 2.10 0.6 * C		C = operating labor + maintenance costs
Administration		\$198,902	2	2% TCC		
Property Taxes		\$99,451	L	1% TCC		
Insurance		\$99,451	L	1% TCC		
Interest Rate	7.00%					
Years for Loan	10					
Capital Recovery (Annualized Capit	al Cost)	\$1,415,961.09				
Total Annual Cost		\$2,433,734	ł			

Basis: 1) EPA's RTO Fact Sheet for oxidizers, www.epa.gov/catc/clean-air-technology-center-products#factsheets , states capital cost range of an RTO is \$35-140/scfm, minimum of range selected.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

i <mark>rect Costs</mark> urchased Equipment Costs		Cost	Cost Factor/Comments	
	(==)			
Quoted RTO Equipment		\$2,160,000		il for 200,000 flow rate = \$2,160,000
Scaled RTO Equipment C	ost (EC _b)	\$1,367,669	Scaled (Larger RTO cost * (Smal	ler RTO flowrate/Larger RTO Flowrate)
Freight	0.05*ECb	\$68,383		Cost manual (0.05 * Equip cost)
Taxes Instrumentation	0.03*EC _b 0.10*EC _b	\$41,030 \$136,767	Table 2.8 of the OAQPS Control Table 2.8 of the OAQPS Control	Cost manual (0.03 * Equip cost)
instrumentation	Total Purchased Equipment Costs (PEC)			
ect Installation Costs				
Foundations and Suppor	ts 0.08*PEC	\$129,107.93	Table 2.8 of the OAQPS Control	Cost manual
Handling and Erection	0.14*PEC	\$225,939	Table 2.8 of the OAQPS Control	
Electrical Piping	0.04*PEC 0.02*PEC	\$64,553.97 \$32,277	Table 2.8 of the OAQPS Control Table 2.8 of the OAQPS Control	
Insulation for Ductwork	0.01*PEC	\$16,138	Table 2.8 of the OAQPS Control	
Painting	0.01*PEC	\$16,138	Table 2.8 of the OAQPS Control	Cost manual
Site Preparation		Unknown	(unknown at this time)	
Retrofit Factor		\$0	Install on new mixers	
	Total Direct Installation Costs (DC)	= \$484,155		
irect Installation Costs				
irect Installation Costs Engineering	0.10*PEC	\$161,385	Table 2.8 of the OAQPS Control	Cost manual
Construction and Field E	xpenses 0.05*PEC	\$80,692	Table 2.8 of the OAQPS Control	Cost manual
Contractor Fees	0.10*PEC	\$161,385	Table 2.8 of the OAQPS Control	
Start-up Performance test	0.02*PEC 0.01*PEC	\$32,277 \$16,138	Table 2.8 of the OAQPS Control Table 2.8 of the OAQPS Control	
Contingencies	0.03*PEC	\$48,415	Table 2.8 of the OAQPS Control	
	Total indirect Installation Costs (IC)	= \$500,293		
	Total Installed Cost (PEC + DC + IC)	= \$2,598,297		
<u>twork</u>	120 feet	\$118,555	Based on new control device we Reference 2, scaled	est of mixing building
al Capital Cost (TCC)	TCC =	= \$2,716,852		
ect Annual costs		Cost	Cost Factor/Comments	
Electricity Cost	165 kW for fan	\$61,459	Elec. Cost= \$0.0425	0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
			Operation= 8,760	hr/yr
Fuel Cost		\$77,011	Fuel use 14,:	341 MMBtu/yr
			gas cost \$ 5.	37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor				
Operator	1 hr/shift	\$36,474		
\$	33.31 /hr		T. Burnett email 12.28.2022	
Supervisor		\$5,471	15% of operating labor, Reference	3
Maintenance Labor \$	1 hr/shift 37.84 /hr	\$41,435	T. Burnett email 12.28.2022	
Labor 5 Material	57.04 /11	\$41,435	100% of maintenance labor, Refere	nce 3
rect Annual Costs		Ş41,433	Reference 3 Table 2.10	
Overhead		\$74,889.13	0.6 * C	C = operating labor + maintenance costs
Administration		\$54,337	2% TCC	
Property Taxes		\$27,169	1% TCC	
Insurance		\$27,169	1% TCC	
Interest Rate	7.009	%		
Years for Loan	1	.0		
Capital Recovery (Annua	ized Capital Cost)	\$386,818.58		
al Annual Cost Rubber VOC and FtOH fr	om Silane at 4 new Mixers (tpy)	\$833,667 80.27	Control Device Capture 85%	Control 95%
			Efficiency =	Efficiency =
	s from 4 new Mixers (tpy)	15.45		
VOC Emissions Avoided	tpy) 2 Emissions Avoided)	64.82 \$12,861		
BACT Cost IS/Ton of V/O				

four at a with the or 20,000 the (standard ' 22,100,000) in September 2023. For a shaller unit that will be used to control 4 mixely, a factor of the exhaust flowrates within a scaling factor was used to scale the cost. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high cost of control. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials) 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

irect Costs urchased Equipment Costs		Cost	Cost Factor/Comments
Quoted RTO Equipment Cost	(EC _a)	\$2,160,000	Durr Estimate in 9.17.2019 Email for 200,000 flow rate = \$2,160,000 for a system with three concentrator wheels with one common RTO.
Freight	0.05*ECb	\$108,000	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC _b	\$64,800	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation To	0.10*EC _b tal Purchased Equipment Costs (PEC) =	\$216,000 \$2,548,800	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
act Installation Costs			
rect Installation Costs Foundations and Supports	0.08*PEC	\$203,904.00	Table 2.8 of the OAQPS Control Cost manual
Handling and Erection	0.14*PEC	\$356,832	Table 2.8 of the OAQPS Control Cost manual
Electrical Piping	0.04*PEC 0.02*PEC	\$101,952.00 \$50,976	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork	0.01*PEC	\$25,488	Table 2.8 of the OAQPS Control Cost manual
Painting	0.01*PEC	\$25,488	Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
	Total Direct Installation Costs (DC) =	\$764,640	
direct Installation Costs			
Engineering	0.10*PEC	\$254,880	Table 2.8 of the OAQPS Control Cost manual
Construction and Field Exper Contractor Fees	oses 0.05*PEC 0.10*PEC	\$127,440 \$254,880	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Start-up	0.10*PEC	\$254,880 \$50,976	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$25,488	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC	\$76,464	Table 2.8 of the OAQPS Control Cost manual
	Total indirect Installation Costs (IC) =	\$790,128	
	Total Installed Cost (PEC + DC + IC) =	\$4,103,568	
<u>ictwork</u>	180 feet	\$177,832	Based on new control device west of mixing building Reference 2, scaled
otal Capital Cost (TCC)	TCC =	\$4,281,400	
		<i>\$4,201,400</i>	
rect Annual costs		Cost	Cost Factor/Comments
Electricity Cost	248 kW for fan	\$92,189	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost
			T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$115,517	Fuel use 21,511 MMBtu/yr
		+,	gas cost \$ 5.37 /MMBtu
			2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor			
Operator	1 hr/shift	\$36,474	
\$ Supervisor	33.31 /hr	\$5,471	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance	1 hr/shift	\$41,435	
Labor \$	37.84 /hr	<i>644</i> 405	T. Burnett email 12.28.2022
Material		\$41,435	100% of maintenance labor, Reference 3
ndirect Annual Costs Overhead		674 000 45	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cost
Overnead		\$74,889.13	0.6 * C C = operating labor + maintenance cost
Administration		\$85,628	2% TCC
Property Taxes		\$42,814	1% TCC
Insurance		\$42,814	1% TCC
Interest Rate	7.00%		
Years for Loan	10	\$600 F7F 04	
Capital Recovery (Annualized tal Annual Cost	i capital Cost)	\$609,575.04 \$1,188,241	
	Silane at 4 new Mixers + 2 existing	120.41	Control Device Capture 85% Control 95% Efficiency = Efficiency =
	om 4 new Mixers + 2 existing Mixers	23.18	
(tpy)			
VOC Emissions Avoided (tpy)		97.23	

Consideration based on the high cost of control. 2) Cost Estimate for 720 L For 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

CONTROL COSTS FOR MIXING - BOILER CONTROL BRIDGESTONE WARREN CO

otal Air flow rate able to be vented for 2		scfm scfm	Vent a single Mixer to a boiler for control. Vent 2 separte streams from Mixers to existing boilers for control.
Direct Costs Purchased Equipment Costs		Cost	Cost Factor/Comments
Equipment Cost (EC) Freight Taxes Instrumentation Tot	0.05*EC 0.03*EC 0.10*EC I Purchased Equipment Costs (PEC) =	\$10,000 \$500 \$300 \$1,000 \$11,800	Min. Cost associated with the installation of a booster fan. (Reference 1) Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
irect Installation Costs	· · · · · · · · · · · · · · · · · · ·	, ,	
Foundations and Supports Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.08*PEC 0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$944 \$1,652 \$472 \$236 \$118 \$118	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
	Total Direct Installation Costs (DC) =	\$3,540	
ndirect Installation Costs Engineering Construction and Field Expens Contractor Fees Start-up Performance test Contingencies	0.10*PEC es 0.05*PEC 0.10*PEC 0.02*PEC 0.01*PEC 0.03*PEC Total indirect Installation Costs (IC) =	\$1,180 \$590 \$1,180 \$236 \$118 \$354 \$3,658	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
	Total Installed Cost (PEC + DC + IC) =	\$18,998	
luctwork	1780 feet	\$1,758,561	Chris Buchanan on 6.07.2023.(BATO Engineering Div. Manager) & Reference Scaled
otal Capital Cost (TCC)	TCC =	\$1,777,559	
irect Annual costs Electricity Cost	41 kW for fan	<u>Cost</u> \$15,365	Cost Factor/Comments 0.0425 0.0425 \$/kWh Warren Co 2022 cost Elec. Cost= \$0.0425 T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$0	Fuel use 0 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator \$ Supervisor	1 hr/month 33.31 /hr	\$400 \$60	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance Labor \$	1 hr/month 37.84 /hr	\$454	T. Burnett email 12.28.2022
Material		\$454	100% of maintenance labor, Reference 3
direct Annual Costs Overhead		\$820.70	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration Property Taxes Insurance		\$35,551 \$17,776 \$17,776	2% TCC 1% TCC 1% TCC
Interest Rate Years for Loan Capital Recovery (Annualized otal Annual Cost Rubber VOC and EtOH from S		\$253,084.40 \$341,740 40.14 31.71	Control Device Capture 22% Control 95% Efficiency = Efficiency =

Basis:

1) Engineering Judgement used to estimate cost of booster fan. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR EXTRUDING BRIDGESTONE WARREN CO

<pre>Nir flow rate for Extruding (minimum) =</pre>	30,000 :	scrm	Vent Extruders to a single RTO
Direct Costs		Cost	Cost Factor/Comments
urchased Equipment Costs			
Equipment Cost (EC)orig Equipment Cost (EC)updated		\$612,100 \$875,000	Durr Estimate in 8.9.2019 Email Durr Estimate updated in 01.09.2023 Email
Freight Taxes Instrumentation Total Purchased Ev	0.05*EC 0.03*EC 0.10*EC quipment Costs (PEC) =	\$43,750 \$26,250 \$87,500 \$1,032,500	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) Scaled this to a 2022 Basis using the Chemical Engineering plant cost i
inert Installation Costs			
irect Installation Costs Foundations and Supports Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.08*PEC 0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$82,600 \$144,550 \$41,300 \$20,650 \$10,325 \$10,325	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Control Equipment Installed on new mixers
	nstallation Costs (DC) =	\$309,750	
ndirect Installation Costs	. ,		
Engineering Construction and Field Expenses Contractor Fees Start-up Performance test Contingencies	0.10*PEC 0.05*PEC 0.10*PEC 0.02*PEC 0.01*PEC 0.03*PEC Installation Costs (IC) =	\$103,250 \$51,625 \$103,250 \$20,650 \$10,325 \$30,975 \$320,075	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Total Installer	d Cost (PEC + DC + IC) =	\$1,662,325	
uctwork			Based on new control device west of mixing building
	30 feet	\$29,639	Reference 2, scaled
otal Capital Cost (TCC)	TCC =	\$1,691,964	
irect Annual costs Electricity Cost	39 kW for fan	<u>Cost</u> \$14,560	Cost Factor/Comments Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$182,313	Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator	1 hr/shift	\$36,474	
\$ Supervisor	33.31 /hr	\$5,471	T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance	1 hr/shift	\$41,435	
Labor \$	37.84 /hr		T. Burnett email 12.28.2022
Material		\$41,435	100% of maintenance labor, Reference 3
ndirect Annual Costs Overhead		\$74,889.13	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration Property Taxes Insurance		\$23,850 \$11,925 \$11,925	2% TCC 1% TCC 1% TCC
Interest Rate	7.00%		
Years for Loan	10 (pital Cost)	\$240 897 56	
Capital Recovery (Annualized Ca otal Annual Cost otal VOC Emissions avoided = Total Emissi	_	\$240,897.56 \$685,174 cy	50.96 Tons VOC Avoided
conomic Feasibility \$/ton avoided.			\$13,446

They additionally provided a second budgetary cost estimate for an individual RTO rated for 30,000 scfm to control a single Mixer in January 2023. We applied the same cost for control of extruders. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process

Engineer, May 2016. (Includes Installation and Materials) 3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

Summary - Cement Station Control Cost Analysis

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

Air flow rate for Cement Station =	11,000 \$	scfm		Vent a single new cem	ent station	to an RTO for control.
Direct Costs Purchased Equipment Costs		Cost		Cost Factor/Com	ments	
Equipment Cost (EC _a)		\$360,000	2019 Dollars	Durr Estimate in 11.08	.2019 Ema	il - Reference 1
Equipment Cost (EC _b)		\$490,980		Durr Estimate in 11.08		
		Ş 4 30,300	2022 201013	602.2 is the 2019 (Aug 821.3 is the 2022 (Sept	ust) CE Pla	nt Cost Index
Freight	0.05*EC _b	\$24,549				ost manual (0.05 * Equip cost)
Taxes	0.03*EC _b	\$14,729		Table 2.8 of the OAQP	S Control C	ost manual (0.03 * Equip cost)
Instrumentation Tot	0.10*EC _b al Purchased Equipment Costs (PEC) =	\$49,098 \$579,356		Table 2.8 of the OAQP	S Control C	ost manual (0.1 * Equip cost)
Direct Installation Costs	· · · · · · · · · · · · · · · · · · ·					
Foundations and Supports	0.08*PEC	\$46,348.49		Table 2.8 of the OAQP	S Control C	ost manual
Handling and Erection	0.14*PEC	\$81,110		Table 2.8 of the OAQP		
Electrical Piping	0.04*PEC 0.02*PEC	\$23,174.24 \$11,587		Table 2.8 of the OAQP Table 2.8 of the OAQP		
Insulation for Ductwork	0.02 PEC	\$5,794		Table 2.8 of the OAQP		
Painting	0.01*PEC	\$5,794		Table 2.8 of the OAQP		
Site Preparation		Unknown		(unknown at this time))	
Retrofit Factor		\$0		Install on new cement	stations	
	Total Direct Installation Costs (DC) =	\$173,807				
Indirect Installation Costs						
Engineering	0.10*PEC	\$57,936		Table 2.8 of the OAQP	S Control C	ost manual
Construction and Field Expension		\$28,968		Table 2.8 of the OAQP		
Contractor Fees	0.10*PEC	\$57,936		Table 2.8 of the OAQP		
Start-up Performance test	0.02*PEC 0.01*PEC	\$11,587 \$5,794		Table 2.8 of the OAQP Table 2.8 of the OAQP		
Contingencies	0.03*PEC	\$17,381		Table 2.8 of the OAQP		
	Total indirect Installation Costs (IC) =	\$179,600				
	Total Installed Cost (PEC + DC + IC) =	\$932,763				
Ductwork	140 feet	\$138,314		Based on new control Reference 2, scaled	device wes	t of mixing building
Total Capital Cost (TCC)	TCC =	\$1,071,077				
Direct Annual costs		Cost		Cast Fastar/Common		
Direct Annual costs	14 104/ for for	<u>Cost</u> \$5,339		Cost Factor/Comment Elec. Cost=	\$0.0425	0.0425 \$/kWh Warren Co 2022 cost
Electricity Cost	14 kW for fan	\$3,335				T. Burnett email 12.28.2022
				Operation=	8,760	hr/yr
Fuel Cost		\$66,894		Fuel use gas cost \$		7 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
						T. Burnett email 12.28.2022
Operating Labor						
	1 halahift					
Operator	1 hr/shift 33 31 /br	\$36,474		T Burnett email 12 28 20	122	
	1 hr/shift 33.31 /hr	\$36,474 \$5,471		T. Burnett email 12.28.20 15% of operating labor, F		
Operator \$ Supervisor Maintenance	33.31 /hr 1 hr/shift			15% of operating labor, F	Reference 3	
Operator \$ Supervisor Maintenance Labor \$	33.31 /hr	\$5,471 \$41,435		15% of operating labor, F T. Burnett email 12.28.20	Reference 3	
Operator \$ Supervisor Maintenance Labor \$ Material	33.31 /hr 1 hr/shift	\$5,471		15% of operating labor, F T. Burnett email 12.28.20 100% of maintenance lat	Reference 3 022 bor, Referen	ce 3
Operator \$ Supervisor Maintenance Labor \$	33.31 /hr 1 hr/shift	\$5,471 \$41,435	1	15% of operating labor, F T. Burnett email 12.28.20	Reference 3 022 Door, Referen	ce 3 C = operating labor + maintenance costs
Operator \$ Supervisor Maintenance Labor \$ Material Indirect Annual Costs	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435		15% of operating labor, F T. Burnett email 12.28.20 100% of maintenance lat Reference 3 Table 2.10	Reference 3 D22 Door, Referen	
Operator S Supervisor S Maintenance Labor S Material Indirect Annual Costs Overhead Administration Property Taxes	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13 \$21,422 \$10,711	1	15% of operating labor, f T. Burnett email 12.28.20 100% of maintenance lat Reference 3 Table 2.10 0.6 * C	Reference 3 D22 Door, Referen	
Operator \$ Supervisor \$ Maintenance Labor \$ Material Indirect Annual Costs Overhead Administration Property Taxes Insurance	33.31 /hr 1 hr/shift 37.84 /hr	\$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13	1	15% of operating labor, f T. Burnett email 12.28.20 100% of maintenance lat Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	Reference 3 D22 Door, Referen	
Operator S Supervisor S Maintenance Labor S Material Indirect Annual Costs Overhead Administration Property Taxes Insurance Interest Rate	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13 \$21,422 \$10,711	1	15% of operating labor, f T. Burnett email 12.28.20 100% of maintenance lat Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	Reference 3 D22 Door, Referen	
Operator \$ Supervisor \$ Maintenance Labor \$ Material Indirect Annual Costs Overhead Administration Property Taxes Insurance	33.31 /hr 1 hr/shift 37.84 /hr 7.00% 10	\$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13 \$21,422 \$10,711		15% of operating labor, f T. Burnett email 12.28.20 100% of maintenance lat Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	Reference 3 D22 Door, Referen	

1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 11,000 scfm based on controlling a single cement station in November 2019. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation Basis: and Materials)
 EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

Air flow rate for Cement Station = 88,000 scfm Vent cement stations to a single RTO for control **Direct Costs** Cost Cost Factor/Comments Purchased Equipment Costs Reference 1 - Minimum of the EPA Clean Air Technology Center Fact Sheet for 2002 Regenerative Oxidizers. (fact sheet presents a capital cost range of \$35-Equipment Cost (EC)orig \$3,080,000 Dollars 140/scfm; we conservatively applied the minimum to estimate the capital cost of a standalone RTO. Scaled this to a 2022 Basis using the Chemical Engineering plant cost index 2022 Equipment Cost (EC)scaled \$6,482,840 CE Index in 2022 = 821.3 Dollars CE Index in 2002 = 390.2 0.05*ECh Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) \$324,142 Freight 0.03*ECb \$194,485 Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Taxes 0.10*EC_b \$648,284 Instrumentation Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) Total Purchased Equipment Costs (PEC) = \$7,649,751 Direct Installation Costs Foundations and Supports 0.08*PEC \$611.980.06 Table 2.8 of the OAOPS Control Cost manual 0.14*PEC Table 2.8 of the OAQPS Control Cost manual Handling and Erection \$1,070,965 Electrical 0.04*PEC \$305,990.03 Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual 0.02*PEC \$152,995 Piping Insulation for Ductwork 0.01*PEC \$76,498 Table 2.8 of the OAQPS Control Cost manual Painting 0.01*PEC \$76,498 Table 2.8 of the OAQPS Control Cost manual Site Preparation Unknown (unknown at this time) Retrofit Factor = 0% \$0 Install on existing cement stations. Per EPA Cost Manual a retrofit factor of up to 50% is appropriate - so this is conservative to assume \$0 Total Direct Installation Costs (DC) = \$2,294,925 Indirect Installation Costs Table 2.8 of the OAQPS Control Cost manual Engineering 0.10*PEC \$764,975 Construction and Field Expenses 0.05*PEC \$382 488 Table 2.8 of the OAOPS Control Cost manual Contractor Fees 0.10*PEC \$764,975 Table 2.8 of the OAQPS Control Cost manual Start-up 0.02*PEC \$152.995 Table 2.8 of the OAQPS Control Cost manual Performance test 0.01*PEC \$76,498 Table 2.8 of the OAQPS Control Cost manual 0.03*PEC \$229,493 Table 2.8 of the OAQPS Control Cost manual Contingencies Total indirect Installation Costs (IC) = \$2,371,423 Total Installed Cost (PEC + DC + IC) = \$12,316,099 Ductwork Based on new control device west of mixing building 1000 feet \$987,956 Reference 2, scaled Total Capital Cost (TCC) TCC = \$13,304,054 **Direct Annual costs** Cost Cost Factor/Comments \$0.0425 0.0425 S/kWh Warren Co 2022 cost Electricity Cost 115 kW for fan \$42,708 Elec. Cost= T. Burnett email 12.28.2022 Operation= 8,760 hr/vr \$535.154 Fuel use 99,656 MMBtu/yr Fuel Cost 5.37 /MMBtu gas cost \$ 2022 Warren Co gas cost T. Burnett email 12.28.2022 Operating Labor 1 hr/shift \$36,474 Operator 33.31 /hr T. Burnett email 12.28.2022 \$ Supervisor \$5.471 15% of operating labor, Reference 3 1 hr/shift \$41,435 Maintenance Ś 37.84 /hr T. Burnett email 12.28.2022 Labor Material \$41,435 100% of maintenance labor. Reference 3 Indirect Annual Costs Reference 3 Table 2.10 \$74,889.13 C = operating labor + maintenance costs Overhead 0.6 * C \$266,081 2% TCC Administration Property Taxes \$133,041 1% TCC 1% TCC Insurance \$133.041 7.00% Interest Rate Years for Loan 10 Capital Recovery (Annualized Capital Cost) \$1,894,198.01 **Total Annual Cost** \$3,203,927

Basis: 1) EPA's RTO Fact Sheet for oxidizers, www.epa.gov/catc/clean-air-technology-center-products#factsheets, states capital cost range of an RTO is \$35-140/scfm, minimum of range selected.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

Air flow rate for Cement Station =	33,000 :	scfm		Vent cement stations to a single RTO for control.
Direct Costs Purchased Equipment Costs		Cost		Cost Factor/Comments
Equipment Cost (EC)orig		\$1,155,000	2002 Dollars	Reference 1 - Minimum of the EPA Clean Air Technology Center Fact Sheet for Regenerative Oxidizers. (fact sheet presents a capital cost range of \$35- 140/scfm; we conservatively applied the minimum to estimate the capital cost of a standalone RTO.
Equipment Cost (EC)scaled		\$2,431,065	2022 Dollars	Scaled this to a 2022 Basis using the Chemical Engineering plant cost index CE Index in 2022 = 821.3 CE Index in 2002 = 390.2
Most Conservative Updated Low	v estimate of Equipment Cost (EC _c)	\$875,000	2023 Dollars	Durr Estimated cost of RTO for a single Mixer at approx. 30,000 cfm updated 01.09.2023 Email
Freight Taxes Instrumentation Tota	$0.05 * EC_c$ $0.03 * EC_c$ $0.10 * EC_c$ al Purchased Equipment Costs (PEC) =	\$43,750 \$26,250 \$87,500 \$1,032,500	Donars	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost) =sum of most conservative EC + Freight + Taxes + Instrumentation
Direct Installation Costs Foundations and Supports Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.08*PEC 0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$82,600.00 \$144,550 \$41,300.00 \$20,650 \$10,325 \$10,325		Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown		(unknown at this time)
Retrofit Factor = 0%		\$0		Install on existing cement stations. Per EPA Cost Manual a retrofit factor of up to 50% is appropriate - so this is conservative to assume \$C
	Total Direct Installation Costs (DC) =	\$309,750		
Engineering Construction and Field Expenses Contractor Fees Start-up Performance test Contingencies	0.10*PEC 0.05*PEC 0.10*PEC 0.02*PEC 0.02*PEC 0.03*PEC 0.03*PEC Total indirect Installation Costs (IC) =	\$103,250 \$51,625 \$103,250 \$20,650 \$10,325 \$30,975 \$320,075		Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
	Total Installed Cost (PEC + DC + IC) =	\$1,662,325		
Ductwork	250 feet	\$246,989		Based on new control device west of mixing building Reference 2, scaled
Total Capital Cost (TCC)	TCC =	\$1,909,314		
Direct Annual costs Electricity Cost	43 kW for fan	<u>Cost</u> \$16,016		Cost Factor/Comments Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr
Fuel Cost		\$200,683		Fuel use 37,371 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor Operator	1 hr/shift	\$36,474		
\$ Supervisor	33.31 /hr	\$5,471		T. Burnett email 12.28.2022 15% of operating labor, Reference 3
Maintenance Labor \$	1 hr/shift 37.84 /hr	\$41,435		T. Burnett email 12.28.2022
Material		\$41,435		100% of maintenance labor, Reference 3
ndirect Annual Costs Overhead		\$74,889.13	3	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Administration Property Taxes Insurance		\$38,18(\$19,093 \$19,093	3	2% TCC 1% TCC 1% TCC
Interest Rate Years for Loan	7.00% 10			

Basis:

1) EPA's RTO Fact Sheet for oxidizers, www.epa.gov/catc/clean-air-technology-center-products#factsheets, states capital cost range of an RTO is \$35-140/scfm, minimum of range selected. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

r flow rate for Cement Stations =	33,0	100 scfm	Vent cement stations to a single concentrator and a single RTO for cont
<u>rect Costs</u> Irchased Equipment Costs		Cost	Cost Factor/Comments
Equipment Cost (EC)	0.05*50	\$950,000	Durr Estimate in 11.12.2019 Email
Freight	0.05*EC	\$47,500	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC	\$28,500	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation To	0.10*EC tal Purchased Equipment Costs (PEC)	\$95,000) = \$1,121,000	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
		+-,,	
ect Installation Costs Foundations and Supports	0.08*PEC	\$89,680.00	Table 2.8 of the OAQPS Control Cost manual
Handling and Erection	0.14*PEC	\$156,940	Table 2.8 of the OAQPS Control Cost manual
Electrical	0.04*PEC	\$44,840.00	Table 2.8 of the OAQPS Control Cost manual
Piping	0.02*PEC	\$22,420	Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork	0.01*PEC	\$11,210	Table 2.8 of the OAQPS Control Cost manual
Painting	0.01*PEC	\$11,210	Table 2.8 of the OAQPS Control Cost manual
-			
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
	Total Direct Installation Costs (DC)	= \$336,300	
irect Installation Costs			
Engineering	0.10*PEC	\$112,100	Table 2.8 of the OAQPS Control Cost manual
Construction and Field Expen		\$56,050	Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$112,100	Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$22,420	Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$11,210	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC	\$33,630	Table 2.8 of the OAQPS Control Cost manual
	Total indirect Installation Costs (IC)) = \$347,510	
	Total Installed Cost (PEC + DC + IC)) = \$1,804,810	
twork	30 feet	\$29,639	Minimum estimate of require ductwork. Reference 2, scaled
al Capital Cost (TCC)	тсс	= \$1,834,449	
ect Annual costs		Cost	Cost Factor/Comments
Electricity Cost	65 kW for fan	\$24,023	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
			Operation= 8,760 hr/yr
Fuel Cost		\$20,068	Fuel use 3,737 MMBtu/yr
Fuel Cost		\$20,008	gas cost \$ 5.37 /MMBtu
			gas cost of Sist / Ministra
			2022 Warren Colgas cost
			2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor			
Operator	1 hr/shift	\$36,474	T. Burnett email 12.28.2022
Operator \$	1 hr/shift 33.31 /hr	/	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022
Operator		\$36,474 \$5,471	T. Burnett email 12.28.2022
Operator \$		/	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022
Operator \$ Supervisor Maintenance	33.31 /hr 1 hr/shift	\$5,471	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3
Operator \$ Supervisor Maintenance Labor \$ Material	33.31 /hr 1 hr/shift	\$5,471 \$41,435	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3
Operator \$ Supervisor Maintenance Labor \$ Material	33.31 /hr 1 hr/shift	\$5,471 \$41,435	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022
Operator \$ Supervisor Maintenance Labor \$ Material irect Annual Costs Overhead	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10
Operator \$ Supervisor \$ Maintenance \$ Material irect Annual Costs Overhead Administration	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Operator \$ Supervisor Maintenance Labor \$ Material irect Annual Costs Overhead	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC
Operator Supervisor Maintenance Labor S Material irect Annual Costs Overhead Administration Property Taxes	33.31 /hr 1 hr/shift	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC
Operator \$ Supervisor \$ Maintenance \$ Material irect Annual Costs Overhead Administration Property Taxes Insurance	33.31 /hr 1 hr/shift 37.84 /hr	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC
Operator \$ Supervisor \$ Maintenance Labor \$ Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Material Zeolite Replacement Material	33.31 /hr 1 hr/shift 37.84 /hr	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344 \$18,344 \$219,696	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC 1% TCC
Operator \$ Supervisor Maintenance Labor \$ Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Material	33.31 /hr 1 hr/shift 37.84 /hr	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344 \$18,344	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC
Operator S Supervisor S Maintenance Labor S Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Material Zeolite Replacement Material Zeolite Replacement Labor Co Zeolite Replacement Labor Co Zeolite Disposal Cost	33.31 /hr 1 hr/shift 37.84 /hr Cost 4 rotor sst 4 rotor 7.00	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344 \$18,344 \$219,696 \$1,167	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC 1% TCC
Operator \$ Supervisor \$ Maintenance Labor \$ Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Material Zeolite Replacement Labor Co Zeolite Disposal Cost	33.31 /hr 1 hr/shift 37.84 /hr Cost 4 rotor sst 4 rotor 7.000 1	\$5,471 \$41,435 \$41,435 \$74,889.13 \$36,689 \$18,344 \$18,344 \$18,344 \$219,696 \$1,167	T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Ref 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC 1% TCC 1% TCC 1% TCC 1% TCC

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for a disc concentrator system and single RTO rated for 33,000 scfm based on controlling three cement stations in November 2019.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

CONTROL COSTS FOR CEMENTING BRIDGESTONE WARREN CO

	33,000	scfm	Vent cement stations to a single concentrator and to a boiler for contr
Direct Costs Purchased Equipment Costs		Cost	Cost Factor/Comments
Equipment Cost (EC)		\$775,186	2019 Cost Estimate beased on budgetary data from Durr Systems Inc.
Freight	0.05*EC	\$38,759	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC	\$23,256	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation T	0.10*EC otal Purchased Equipment Costs (PEC) =	\$77,519 \$914,720	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
	()	+	
rect Installation Costs	0.08*PEC	\$73,178	Table 2.8 of the OAQPS Control Cost manual
Foundations and Supports			
Handling and Erection Electrical	0.14*PEC	\$128,061	Table 2.8 of the OAQPS Control Cost manual
	0.04*PEC 0.02*PEC	\$36,589	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Piping Insulation for Ductwork	0.02 PEC	\$18,294 \$9,147	Table 2.8 of the OAQPS Control Cost manual
Painting	0.01 PEC	\$9,147	Table 2.8 of the OAQPS control Cost manual
1 differing	0.011120	<i>\$3,147</i>	
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Install on new mixers
	Total Direct Installation Costs (DC) =	\$274,416	
lirect Installation Costs			
Engineering	0.10*PEC	\$91,472	Table 2.8 of the OAQPS Control Cost manual
Construction and Field Exper		\$45,736	Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$91,472	Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$18,294	Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$9,147	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC	\$27,442	Table 2.8 of the OAQPS Control Cost manual
contingencies	Total indirect Installation Costs (IC) =	\$283,563	
	Total Installed Cost (PEC + DC + IC) =	\$1,472,699	
ctwork	1403 feet	\$1,386,102	Based on venting emissions from cementer to existing boiler.
Chris Buchan			Reference 2, scaled ates a minimum distance between Cementing and Boilers of 1,403 feet
tal Capital Cost (TCC)	TCC =	\$2,858,801	
rect Annual costs	12 1111 1	Cost	Cost Factor/Comments
Electricity Cost	43 kW for fan	\$16,016	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
			Operation= 8,760 hr/yr
E d Cod		ćo	Evelue 0.1000 km
Fuel Cost		\$0	Fuel use 0 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Operating Labor			
Operator	1 hr/shift	\$36,474	
\$	33.31 /hr		T. Burnett email 12.28.2022
Supervisor		\$5,471	15% of operating labor, Reference 3
	1 hr/shift	\$41,435	
Maintenance	±/ June		
Maintenance Labor \$	37.84 /hr		T. Burnett email 12.28.2022
		\$41,435	1. Burnett email 12.28.2022 100% of maintenance labor, Reference 3
Labor \$ Material		\$41,435 \$74,889.13	100% of maintenance labor, Reference 3 Reference 3 Table 2.10
Labor \$ Material lirect Annual Costs			100% of maintenance labor, Reference 3 Reference 3 Table 2.10
Labor \$ Material direct Annual Costs		\$74,889.13 \$57,176	100% of maintenance labor, Reference 3 Reference 3 Table 2.10
Labor \$ Material irect Annual Costs Overhead		\$74,889.13	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Labor \$ Material lirect Annual Costs Overhead Administration		\$74,889.13 \$57,176	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC
Labor \$ Material direct Annual Costs Overhead Administration Property Taxes Insurance	37.84 /hr	\$74,889.13 \$57,176 \$28,588	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC
Labor \$ Material lirect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once):	37.84 /hr	\$74,889.13 \$57,176 \$28,588 \$28,588	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC
Labor \$ Material irrect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Materia	37.84 /hr al Cost 4 rotor	\$74,889.13 \$57,176 \$28,588	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$15,000 freight, scaled from original estin
Labor \$ Material irect Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once):	37.84 /hr al Cost 4 rotor	\$74,889.13 \$57,176 \$28,588 \$28,588	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC
Labor \$ Material Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Materia Zeolite Replacement Labor O Zeolite Disposal Cost	37.84 /hr al Cost 4 rotor ost 4 rotor	\$74,889.13 \$57,176 \$28,588 \$28,588 \$28,588 \$219,696	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$15,000 freight, scaled from original estim Unknown
Labor \$ Material direct Annual Costs Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Materia Zeolite Replacement Materia Zeolite Replacement Labor C Zeolite Replacement Labor C Zeolite Replacement Labor C	37.84 /hr al Cost 4 rotor ost 4 rotor 7.00%	\$74,889.13 \$57,176 \$28,588 \$28,588 \$28,588 \$219,696	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$15,000 freight, scaled from original estim Unknown
Labor \$ Material Overhead Administration Property Taxes Insurance Zeolite Replacement (Once): Zeolite Replacement Materia Zeolite Replacement Labor O Zeolite Disposal Cost	37.84 /hr al Cost 4 rotor ost 4 rotor 7.00% 10	\$74,889.13 \$57,176 \$28,588 \$28,588 \$28,588 \$219,696	100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs 2% TCC 1% TCC 1% TCC By Durr \$200,000 per rotor + \$15,000 freight, scaled from original estim Unknown

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an integrated Concentrator + RTO system rated for 33,000 scfm to control three (3) cement stations (\$950,000). This estimate was scaled and reduced to remove the cost of the RTO in the system.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)


CONTROL COSTS FOR CEMENTING - BOILER CONTROL **BRIDGESTONE WARREN CO**

ir flow rate for Cement Station =	11,000 Se	cfm	Vent a single cement st	ation to a	boiler for control.
irect Costs urchased Equipment Costs		Cost	Cost Factor/Com	ments	
Equipment Cost (EC)		\$10,000	Min Cost associated w	ith the ins	allation of a booster fan. (Reference
Freight	0.05*EC	\$500			ost manual (0.05 * Equip cost)
Taxes	0.03*EC	\$300			ost manual (0.03 * Equip cost)
Instrumentation	0.10*EC	\$1,000	Table 2.8 of the OAQPS	Control C	ost manual (0.1 * Equip cost)
Tota	al Purchased Equipment Costs (PEC) =	\$11,800			
ect Installation Costs					
Foundations and Supports	0.08*PEC	\$944	Table 2.8 of the OAQPS		
Handling and Erection	0.14*PEC	\$1,652	Table 2.8 of the OAQPS		
Electrical	0.04*PEC	\$472	Table 2.8 of the OAQPS		
Piping Insulation for Ductwork	0.02*PEC 0.01*PEC	\$236	Table 2.8 of the OAQPS		
Painting	0.01*PEC	\$118 \$118	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
i uniting	0.01 FEC	J110	Table 2.6 of the OAQE	control c	
Site Preparation		Unknown	(unknown at this time)		
Retrofit Factor		\$0	Install on new mixers		
	Total Direct Installation Costs (DC) =	\$3,540			
irect Installation Costs					
Engineering	0.10*PEC	\$1,180	Table 2.8 of the OAQPS		
Construction and Field Expense		\$590	Table 2.8 of the OAQPS		
Contractor Fees	0.10*PEC	\$1,180	Table 2.8 of the OAQPS		
Start-up	0.02*PEC	\$236	Table 2.8 of the OAQPS		
Performance test	0.01*PEC	\$118	Table 2.8 of the OAQPS Table 2.8 of the OAQPS		
Contingencies	0.03*PEC Total indirect Installation Costs (IC) =	\$354 \$3,658	Table 2.8 of the UAQPS	Control C	ost manual
	Total Installed Cost (PEC + DC + IC) =	\$18,998			
ctwork	1403 feet		0	ions from	cementer to existing boiler.
Chris Buchanan	1403 feet (BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic	Reference 2, scaled		5
ictwork Chris Buchanan tal Capital Cost (TCC)		\$1,386,102	Reference 2, scaled		5
Chris Buchanan	(BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic \$1,405,100	Reference 2, scaled ates a minimum distance	oetween C	5
Chris Buchanan tal Capital Cost (TCC) rect Annual costs	(BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u>	Reference 2, scaled ates a minimum distance i <u>Cost Factor/Comment</u> :	oetween C	ementing and Boilers of 1,403 feel
Chris Buchanan	(BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic \$1,405,100	Reference 2, scaled ates a minimum distance l Cost Factor/Comment: Elec. Cost=	between C <u>5</u> \$0.0425	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
Chris Buchanan tal Capital Cost (TCC) rect Annual costs Electricity Cost	(BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation=	oetween C	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr
Chris Buchanan tal Capital Cost (TCC) rect Annual costs	(BATO Engineering Div. Manager) emai	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u>	Reference 2, scaled ates a minimum distance l Cost Factor/Comment: Elec. Cost=	between C 5 \$0.0425 8,760	0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
Chris Buchanan <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost Fuel Cost Operating Labor	(BATO Engineering Div. Manager) emai TCC = 14 kW for fan	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use	between C 5 \$0.0425 8,760	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
Chris Buchanan <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost Fuel Cost Operating Labor Operator	(BATO Engineering Div. Manager) emai TCC = 14 kW for fan 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$	2 50.0425 8,760 5.3	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
Chris Buchanan <u>al Capital Cost (TCC)</u> <u>ect Annual costs</u> Electricity Cost Fuel Cost Operating Labor	(BATO Engineering Div. Manager) emai TCC = 14 kW for fan	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use	22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$60	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20	22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator S	(BATO Engineering Div. Manager) emai TCC = 14 kW for fan 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20	22 22 20 22 20 20 20 20 20 20 20 20 20 2	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$60	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R	22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material irect Annual Costs	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 Cost \$5,339 \$0 \$400 \$400 \$454 \$454	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Supervisor Supervisor Maintenance Labor S	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$60 \$454	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R T. Burnett email 12.28.20 100% of maintenance lab	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan tal Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material lirect Annual Costs	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 Cost \$5,339 \$0 \$400 \$400 \$454 \$454	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan tal Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material Litect Annual Costs Overhead	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 Cost \$5,339 \$0 \$400 \$400 \$454 \$454 \$454 \$820.70	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10 0.6 * C	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material irect Annual Costs Overhead Administration	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 I 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$400 \$454 \$454 \$454 \$454 \$820.70 \$28,102	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 15% of operating labor, R T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10 0.6 * C	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan al Capital Cost (TCC) ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material irect Annual Costs Overhead Administration Property Taxes	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month	\$1,386,102 i 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$400 \$454 \$454 \$454 \$454 \$820.70 \$28,102 \$14,051	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan tal Capital Cost (TCC) rect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material Hirect Annual Costs Overhead Administration Property Taxes Insurance	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month 37.84 /hr	\$1,386,102 I 6.07.2023 indic \$1,405,100 Cost \$5,339 \$0 \$400 \$400 \$454 \$454 \$454 \$820.70 \$28,102 \$14,051 \$14,051	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Chris Buchanan tal Capital Cost (TCC) rect Annual costs Electricity Cost Fuel Cost Operating Labor Operator S Supervisor Maintenance Labor Material direct Annual Costs Overhead Administration Property Taxes Insurance Interest Rate	(BATO Engineering Div. Manager) email TCC = 14 kW for fan 1 hr/month 33.31 /hr 1 hr/month 37.84 /hr 7.00% 10	\$1,386,102 i 6.07.2023 indic \$1,405,100 <u>Cost</u> \$5,339 \$0 \$400 \$400 \$454 \$454 \$454 \$454 \$820.70 \$28,102 \$14,051	Reference 2, scaled ates a minimum distance i Cost Factor/Comment: Elec. Cost= Operation= Fuel use gas cost \$ T. Burnett email 12.28.20 100% of maintenance lab Reference 3 Table 2.10 0.6 * C 2% TCC 1% TCC	22 22 22 22 22 22 22 22 22 22 22 22 22	ementing and Boilers of 1,403 feel 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 hr/yr 0 MMBtu/yr 7 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022

Basis:

1) Engineering Judgement used to estimate cost of booster fan. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

Curing VOC Control Analysis (Analyzing New Curing Bays Only for BACT Economic Feasibility)

Curing VOC Control Analysis (Analyzing control of All Curing Bays for BACT Economic Feasibility)

\$/ton avoided emissions

CONCENTRATOR/REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR CURING BRIDGESTONE WARREN CO

ir flow rate for Curing Press Bay =	254,500	scfm						
irect Costs urchased Equipment Costs		<u>Cost</u>	Cost Factor/Comments					
Quoted RTO Equipment Cost (I	EC _a)	\$2,160,000	Durr Estimate in 9.17.2019 Email for 200,000 flow rate = \$2,160,000					
Scaled RTO Equipment Cost (E	C _b)	\$2,496,022	Scaled (Smaller RTO cost * (Larger RTO flowrate/Smaller RTO Flowrate					
Freight Taxes	0.05*EC _b 0.03*EC _b	\$124,801 \$74,881	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)					
Instrumentation Tota	0.10*EC _b Purchased Equipment Costs (PEC) =	\$249,602 \$2,945,306	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)					
rect Installation Costs								
Foundations and Supports	0.08*PEC	\$235,624.49	Table 2.8 of the OAQPS Control Cost manual					
Handling and Erection Electrical	0.14*PEC	\$412,343	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual					
Piping	0.04*PEC 0.02*PEC	\$117,812.24 \$58,906	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual					
Insulation for Ductwork	0.01*PEC	\$29,453	Table 2.8 of the OAQPS Control Cost manual					
Painting	0.01*PEC	\$29,453	Table 2.8 of the OAQPS Control Cost manual					
Site Preparation		Unknown	(unknown at this time)					
Retrofit Factor		\$0	Install on new mixers					
	Total Direct Installation Costs (DC) =	\$883,592						
direct Installation Costs								
Engineering	0.10*PEC	\$294,531	Table 2.8 of the OAQPS Control Cost manual					
Construction and Field Expense		\$147,265	Table 2.8 of the OAQPS Control Cost manual					
Contractor Fees	0.10*PEC	\$294,531	Table 2.8 of the OAQPS Control Cost manual					
Start-up	0.02*PEC	\$58,906	Table 2.8 of the OAQPS Control Cost manual					
Performance test Contingencies	0.01*PEC 0.03*PEC	\$29,453 \$88,359	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual					
	Total indirect Installation Costs (IC) =		Table 2.6 of the OAQES Control Cost manual					
	Total Installed Cost (PEC + DC + IC) =	\$4,741,943						
<u>ctwork</u>	30 feet	\$29,639	Based on new control device west of mixing building Reference 2, scaled					
tal Capital Cost (TCC)	TCC =	\$4,771,581						
rect Annual costs		Cost	Cost Factor/Comments					
Electricity Cost	332 kW for fan	\$123,515	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost					
			T. Burnett email 12.28.2022 Operation= 8,760 hr/yr					
		A						
Fuel Cost		\$154,769	Fuel use 28,821 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022					
Operating Labor	1 hr/shift	\$36.474						
Operator \$	33.31 /hr	\$36,474	T. Burnett email 12.28.2022					
Supervisor	33.31 /m	\$5,471	15% of operating labor, Reference 3					
Maintenance	1 hr/shift	\$41,435						
Labor \$	37.84 /hr		T. Burnett email 12.28.2022					
Material		\$41,435	100% of maintenance labor, Reference 3					
		\$74,889.13	Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos					
Overhead								
		\$95 432	2% TCC					
Overhead Administration Property Taxes		\$95,432 \$47,716 \$47,716	1% TCC					
Overhead Administration Property Taxes Insurance								
Overhead Administration Property Taxes Insurance Interest Rate	7.00%	\$47,716 \$47,716	1% TCC					
Overhead Administration Property Taxes Insurance	10	\$47,716 \$47,716	1% TCC					

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an integrated system of three concentrator wheels vented to one common RTO for Curing Bays with a total exhaust volume of 200,000 cfm (estimated - \$2,160,000) in September 2019. A commonly accepted approach for scaling equipment cost is to use a ratio of the equipment size with a scaling factor of 0.6. The difference in costs from 2019 to 2022 dollars did not warrant consideration based on the high cost of control and low total of avoided de missions from Curing

and low total of avoided emissions from Curing. 2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.

Bridgestone Americas Tire Operations, LLC Warren Plant

Best Available Control Technology Analysis

\$ 8,000 = Assumed BACT Threshold (\$/ton)

98% = Assumed Maximum Control Efficiency

Emission Source	Source Description	Max VOC Emissions (tpy)	VOC Emissions Avoided (tpy)	Control Cost (\$/yr)
Insignificant Acti	vities			
B1	Learning Center and Employee Services Boilers/Heaters	4.10E-02	4.02E-02	\$321
B2	Solvent Storage Tank	0.12	0.12	\$941
B6	Final Inspection Marking	0.13	0.12	\$980
B7	Hot Knife Cutting	0.00	0.00	\$0
B8	Ultrasonic Knife	0.00	0.00	\$0
B9	Oil Storage Tanks	4.40E-02	4.31E-02	\$345
B10	Tire Testing Room	0.00	0.00	\$0
B11	Electron Beam Generator (Precure Machine)	0.00	0.00	\$0
B12	Mold Cleaning	0.00	0.00	\$0
B13	Tread Grinders	4.66E-02	4.57E-02	\$365
B14	Inside Day Bins	0.00	0.00	\$0
C1	Two 30,000 gallon #2 Fuel Oil Storage Tanks	4.00E-02	3.92E-02	\$314
C2	300 gallon Diesel Tanks (2)	1.00E-04	9.80E-05	\$1
C3	300 gallon Kerosene Tank	1.00E-04	9.80E-05	\$1
C5	Portable Diesel Air Compressors	0.30	0.29	\$2,352
C7	Standby Natural Gas Emergency Generator	2.80E-03	2.74E-03	\$22
C9	Two 550 gallon Diesel Tanks	3.00E-04	2.94E-04	\$2
C10	Space Heaters	8.74E-02	8.57E-02	\$685
C11	Water Cooling Towers	0.16	0.15	\$1,233
C12	Parts Washers	0.20	0.20	\$1,568
C13	Personal Protective Equipment Vacuum Stations	0.00	0.00	\$0
D1	Electric Driven Air Compressors	0.00	0.00	\$0
D2	Boiler Water Treatment System	Not known		
D3	Steam Condensate Relief Valves	0.00	0.00	\$0
D4	QA Laboratory	0.00	0.00	\$0
D5	Maintenance Activities	Not known		
D6	Banbury Lab	0.00	0.00	\$0
D7	Battery Charging Stations	0.00	0.00	\$0
D8	Welding Operations	Not known		
D9	Sewer Vents	0.00	0.00	\$0
D10	Natural Gas Pressure Regulator Vents	Page 28 of	0.00	\$0

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

APPENDIX C

DISCUSSION OF CAPTURE EFFICIENCY FOR VOC EMISSIONS FROM RUBBER MIXERS

Capture Efficiency for VOC Emissions from Rubber Mixer

Rubber mixing is a batch process that is operated on a continual basis to make stock rubber. The mixer has an upper charge door and a lower batch out door. To start the mixing process, the upper door is opened while carbon black and pigments are charged to the mixer. Both of these materials contain fine particles and create dust during charging. Baghouses are used to control dust generated from charging these materials. For mixer mixer, the size of these baghouses are often on the order of 30,000 cfm and they provide good capture of dust and gases. During mixing, both upper and lower doors are closed and the mixer is sealed. Once mixing is complete, the lower batch out door is opened to drop the batch of rubber onto a mill, that creates a continuous sheet of stock rubber that goes to the festoon. When the batch out door opens, a small amount of gases and VOC are released from the mixer. The mixer is hot, more than 200 °F , and most of the gases stay in the mixer due to buoyant forces. Capture of gases at batch out is difficult, because the configuration of the batch out door and mill. On the order of 50,000 cfm is required to capture a portion of these gases on mixer. Once the batch is dropped, the mixer begins a new cycle of mixing. The batch out door closes and the charge door opens to accept charge materials. At this point, most of the hot gases and VOC are released through the charge door. These gases are mostly captured and routed through the mixer baghouse.

Charge Door Capture Efficiency

The charge door is a small door that can be effectively hooded to achieve high capture efficiency. Essentially all of the particulate emissions from the mixer occur at this location, so capture of particulate emissions is very good. Due to the temperature and buoyant forces in the mixer, most of the VOC created during mixing is also exhausted through the charge door. For the same reasons as particulate, capture of the VOC is very high.

Batch Out Door Capture Efficiency

At batch out, essentially no particulate and a small portion of the VOC generated during mixing are released. The configuration of the batch out door and mill must be open for production, and cannot be effectively hooded. A large amount of air is required to collect the VOC and other gases. With large air flow and a small amount of gases, the resulting air stream is very dilute. This air stream is usually exhausted to atmosphere without control.

<u>Summary</u>

Collection of VOC mainly occurs at the charge door and only in part at the batch out door. Mixing is a batch operation that occurs on a continuous basis to feed the batch out mill. For most of the batch, the mixer is sealed. VOC is only released during short periods of time when the charge door or batch out door is open. Based upon this information, an approximate calculation of the overall VOC can be made as follows:

Charge Door Capture – 95% Portion of VOC released through charge door – 90% Batch Out Door Capture – 0% (since there is typically no control device) Portion of VOC released through batch out door – 10%

85% capture of VOC (to a control device) = (95%)(90%) + (0%)(10%)

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

APPENDIX D

APPLICATION FORMS AND CALCULATIONS

APC Index

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION INDEX OF AIR POLLUTION PERMIT APPLICATION FORMS

Section 1: Identification and Diagrams							
This application contains the	APC Form 1, Facility Identification 1						
following forms:	APC Form 2, Operations and Flow Diagrams 1						

Section 2: Emission Source Description Forms							
	APC Form 3, Stack Identification	23					
	APC Form 4, Fuel Burning Non-Process Equipment	1					
	APC Form 5, Stationary Gas Turbines or Internal Combustion Engines						
	APC Form 6, Storage Tanks						
This application contains the following forms (one form for each incinerator, printing	APC Form 7, Incinerators						
operation, fuel burning installation, etc.):	APC Form 8, Printing Operations						
	APC Form 9, Painting and Coating Operations						
	APC Form 10, Miscellaneous Processes	4					
	APC Form 33, Stage I and Stage II Vapor Recovery Equipment						
	APC Form 34, Open Burning						

Section 3: Air Pollution Control System Forms							
		Total number of this form					
	APC Form 11, Control Equipment - Miscellaneous						
	APC Form 13, Adsorbers						
This application contains the following forms (one form for each control system in use at the	APC Form 14, Catalytic or Thermal Oxidation Equipment						
facility):	APC Form 15, Cyclones/Settling Chambers						
	APC Form 17, Wet Collection Systems						
	APC Form 18, Baghouse/Fabric Filters	18					

(OVER)

CONFIDENTIAL - CONTAINS TRADE SECRET INFORMATION

APC Index

	Section 4: Compliance Demonstration Forms	
	Total number of this form	
	APC Form 19, Compliance Certification - Monitoring and Reporting - Description of Methods for Determining Compliance	5
	APC Form 20, Continuous Emissions Monitoring	
	APC Form 21, Portable Monitors	
	APC Form 22, Control System Parameters or Operating Parameters of a Process	
	APC Form 23, Monitoring Maintenance Procedures	2
	APC Form 24, Stack Testing	
his application contains the following forms one form for each incinerator, printing	APC Form 25, Fuel Sampling and Analysis	1
peration, fuel burning installation, etc.):	APC Form 26, Record Keeping	4
	APC Form 27, Other Methods	
	APC Form 28, Emissions from Process Emissions Sources / Fuel Burning Installations / Incinerators	5
	APC Form 29, Emissions Summary for the Facility or for the Source Contained in This Application	1
	APC Form 30, Current Emissions Requirements and Status	4
	APC Form 31, Compliance Plan and Compliance Certification	
	APC Form 32, Air Monitoring Network	

Section 5: Statement of Completeness and Certification of Compliance

I have reviewed this application in its entirety and to the best of my knowledge, and based on information and belief formed after reasonable inquiry, the statements and information contained in this application are true, accurate, and complete. I have provided all the information that is necessary for compliance purposes and this application consists of ______ pages and they are numbered from page 1______ to _____. The status of this facility's compliance with all applicable air pollution control requirements, including the enhanced monitoring and compliance certification requirements of the Federal Clean Air Act, is reported in this application along with the methods to be used for compliance demonstration.

Name and Title of Responsible Official

TIM PAINTER, Plant Manager

Signature of Responsible Official

Telephone Number with Area Code

931-668-5500 x1000

Date of Application

6-21-23

(For definition of responsible official, see instructions for APC Form 1)

Page 33 of 202

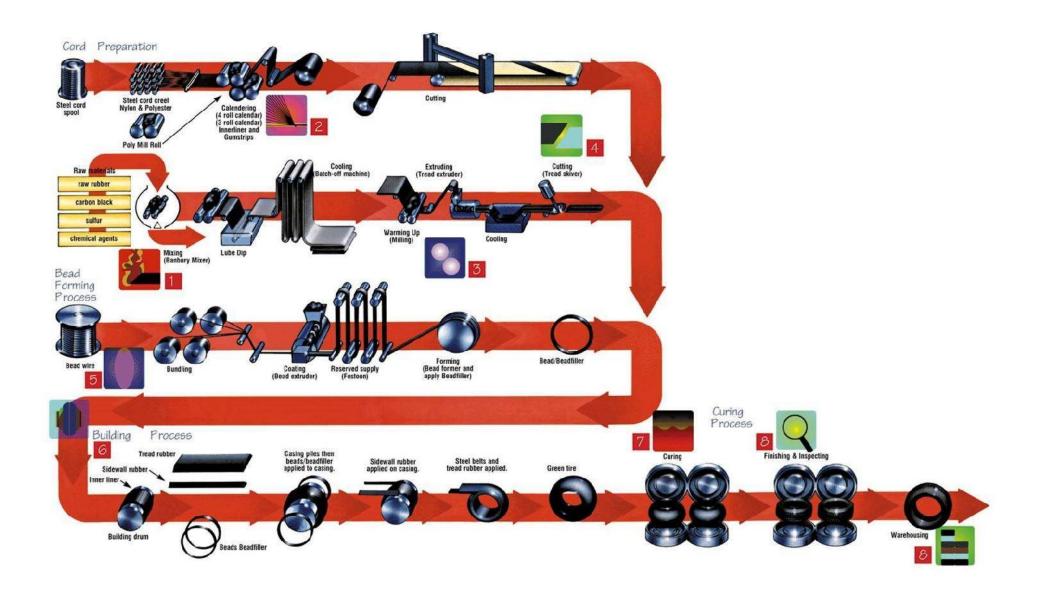
RDA 1298

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION FACILITY IDENTIFICATION

		SIT	'E INFO	RMATION							
1. Organization's legal name					For	APC company point no.					
Bridgestone Americas Tire Op	perations, LLC				APC						
2. Site name (if different from le	gal name)				Use	APC Log/Permit no.					
Warren Plant		Only									
3. Site address (St./Rd./Hwy.)						or SIC Code					
725 Bridgestone Drive					NAICS						
City or distance to nearest town Zip code Morrison 37357						County name					
Morrison		Warren									
4. Site location (in Lat./Long)	Latitude	Longitud									
	35.625				-85.8792	2					
	CONTACT	INFORM	ATION	(RESPONS	BLE OFFIC	IAL)					
5. Responsible official contact						umber with area code					
Tim Painter (Plant Manager)						3-5500, x1000					
6. Mailing address (St./Rd./Hwy	.)					ber with area code					
Same as site address					(931) 66						
City		State		Zip code	Email ad						
					Painter	PainterTim@bfusa.com					
	CON	TACT IN	FORMA	ATION (TEO	CHNICAL)						
7. Principal technical contact						umber with area code					
Terri Burnett (Sr. Environmen					931-668	931-668-5500, X1033					
8. Mailing address (St./Rd./Hwy	.)				Fax num	Fax number with area code					
Same as site address											
City		State		Zip code	Email address						
				BurnettTerri@bfusa.com							
	CO	ONTACT I	INFORM	MATION (B	ILLING)						
11. Billing contact						umber with area code					
Terri Burnett (Sr. Environmen					931-668	3-5500, X1033					
12. Mailing address (St./Rd./Hwy	.)				Fax num	ber with area code					
Same as site address		1									
City		State		Zip code	Email ad						
						Ferri@bfusa.com					
		TYPE OF	F PERM	IT REQUES	STED						
13. Permit requested for:											
Initial applicat	ion to operate :	Minor perm	nit modification :								
Permit rene	wal to operate :				Significat	nt modification:					
Administrative perm	nit amendment :				Cor	astruction permit :					

(OVER)


AI	PC 1
HAZARDOUS AIR POLLUTANTS, DESIGNATIONS, AND OTHER PERMITS ASSOCIATED WITH FACILITY	
14. Is this facility subject to the provisions governing prevention of accidental releases of hazardous air contaminants contained in Chapter 1200-03-32 of the Tennessee Air Pollution Control regulations?	No
If the answer is Yes, are you in compliance with the provisions of Chapter 1200-03-32 of the Tennessee Air Pollution Control regulations?	No
15. If facility is located in an area designated as "Non-Attainment" or "Additional Control", indicate the pollutant(s) for the designation.	
N/A	
16. List all valid Air Pollution permits issued to the sources contained in this application [identify all permits with most recent permit numbers and emission so reference numbers listed on the permit(s)].	ource
Title V Permit # 569874 (Emission Source #89-0077). Subsources included in this application: 89-0077-02: Railcar and Trailer Unloading, Storage and Handling 89-0077-04 Manufacturing and Material Usage; 89-0077-05 Rubber Mixing and Milling; 89-0077-10 Power House; 89-0077-22 Tire Curing.	
17. Page number :Revision number:Date of revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION OPERATIONS AND FLOW DIAGRAMS

1. Please list, identify, and describe briefly proces flow diagram for this application.	s emission sources, fuel burning ins	stallations, and incinerators that are contained in this application. Please attach a
 89-0077-02: Railcar and Traile 89-0077-04: Manufacturing an 89-0077-05: Rubber Mixing an 89-0077-10: Two Boilers and C 89-0077-22: Tire Curing 	d Material Usage d Milling	& Handling
Please refer to the attached Pro	cess Flow Diagrams	in Appendix D
2 List all incirnificant activities which are around	to have a faire an analystica and	ste and eite the employed a new letting
2. List all <u>insignificant activities</u> which are exemp See Appendix E (Insignificant A		ite and cite the applicable regulations.
3. Are there any storage piles?		X
4. List the <u>states</u> that are within 50 miles of your f	YES NO _	
Alabama, Georgia	y -	
5. Page number:	Revision Number:	Date of Revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION EMISSION SUMMARY FOR THE FACILITY OR FOR THE SOURCES CONTAINED IN THIS APPLICATION

GENERAL IDENTIFICATION AND DESCRIPTION

1. Facility name: Bridgestone Americas Tire Operations, LLC - Warren Plant

EMISSIONS SUMMARY TABLE - CRITERIA AND SELECTED POLLUTANTS

2. Complete the following emissions summary for regulated air pollutants at this facility or for the sources contained in this application.

	Summary of Maxim	um Allowable Emissions	Summary of Actual Emissions						
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour- Item 4, APC 28)	Tons per Year	Reserved for State use (Pounds per Hour- Item 4, APC 28)					
Particulate Matter (TSP)	44.90								
Sulfur Dioxide	79.04								
Volatile Organic Compounds	553.8								
Carbon Monoxide	88.8								
Lead									
Nitrogen Oxides	110.02								
Total Reduced Sulfur									
Mercury									
Asbestos									
Beryllium									
Vinyl Chlorides									
Fluorides									
Gaseous Fluorides									
Greenhouse Gases in CO ₂ Equivalents	147,401								

(Continued from previous page) EMISSIONS SUMMARY TABLE – HAZARDOUS AIR POLLUTANTS

3. Complete the following emissions summary for regulated air pollutants that are hazardous air pollutant(s) at this facility or for the sources contained in this application.

	Summary of Ma	aximum Allowable Emissions	Summary of Actual Emissions					
Air Pollutant & CAS	Tons per Year	Reserved for State use (Pounds per Hour- Item 5, APC 28)	Tons per Year	Reserved for State use (Pounds per Hour- Item 5, APC 28)				
HAP (Individual)	< 10.0*							
HAPs (combined)	< 25.0*							
		*Note: HAP 12-month rolling						
Page number:	Revision		Date of revision:					

Bridgestone Americas Tire Operations, LLC Warren Plant

Plant-Wide Emissions Summary

		PM	1 _{Total}	PN	A ₁₀	PN	A _{2.5}	S	0 ₂	N	Ox	c	:0	C	0 ₂	C	H₄	N	l ₂ 0	CO ₂ eq	VOC	HAP
Emission Source	Source Description	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)	tpy	tpy
89-0077-02	Railcar Unloading, Storage & Handling	3.90	1.78	3.90	1.78	0.90	0.41															
89-0077-04	Manufacturing & Material Usage																				261.17	See Total
89-0077-05	Material Handling and Mixer Charging	37.99	11.32	37.99	11.32	8.74	2.60														180.62	See Total
	Two Boilers & One Hydronic Heater	3.78	10.87	3.78	10.87	3.78	10.87	24.39	53.46	22.90	68.37	13.20	57.82	26,137	98,257	1.06	3.09	0.21	0.54	98,496	3.79	See Total
89-0077-10	Proposed B & W Boiler (75 MMBtu/hr)	1.77	5.09	1.77	5.09	1.77	5.09	11.41	25.01	8.57	26.79	6.18	27.05	12,229	45,972	0.50	1.45	0.10	0.25	46,083	1.77	See Total
89-0077-18	Emergency Generator Engine (99 hp)	0.07	0.02	0.07	0.02	0.07	0.02	0.20	0.05	1.22	0.31	0.82	0.20	114	28	4.58E-03	1.15E-03	9.17E-04	2.29E-04	29	0.062	See Total
89-0077-19	Emergency Generator Engine (15 hp)	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.48	0.12	0.10	0.03	18	4	7.13E-04	1.78E-04	1.43E-04	3.56E-05	4	0.010	See Total
89-0077-20	Fire Pumps #1 and #2 (266 hp, each)	1.17	0.29	1.17	0.29	1.17	0.29	1.12	0.28	16.49	4.12	3.55	0.89	612	153	2.46E-02	6.16E-03	4.93E-03	1.23E-03	153	0.33	See Total
89-0077-21	300 gallon Gasoline Tank																				0.048	See Total
89-0077-22	Tire Curing																				104.77	See Total
Insignificant Acti	ivities																					
D1	Learning Center and Employee Services	0.01	0.00	0.01	0.00	0.01	0.00	0.125.04	4 005 02	0.17	0.74	0.14	0.02	201	052	1 145 02	1 055 02	2 205 02	2.23E-03	054	0.04	Con Total
B1	Boilers/Heaters	0.01	0.06	0.01	0.06	0.01	0.06	9.13E-04	4.00E-03	0.17	0.74	0.14	0.62	281	953	1.14E-02	1.95E-02	2.28E-03	2.23E-03	954	0.04	See Total
B2	Solvent Storage Tank																				0.12	See Total
B3	Tire Spraying (Dopers)	0.52	2.26	0.52	2.26	0.52	2.26			-											0.00	See Total
B4	Cement Spray	0.12	0.54	0.12	0.54	0.12	0.54														0.00	See Total
B5	Tire Repair	0.67	2.92	0.67	2.92	0.67	2.92														0.08	See Total
B6	Final Inspection Marking																				0.13	See Total
B7	Hot Knife Cutting																				0.00	
B8	Ultrasonic Knife					-															0.00	
B9	Oil Storage Tanks																				0.04	See Total
B10	Tire Testing Room	0.02	0.10	0.02	0.10	0.02	0.10														0.00	
B11	Electron Beam Generator (Precure Machine)									1.00	4.38										0.00	See Total
B12	Mold Cleaning	0.86	3.75	0.86	3.75	0.86	3.75														0.00	
(B13)	Tread Grinders (REMOVED)																				0.00	See Total
B14	Inside Day Bins	0.50	2.21	0.50	2.21	0.50	2.21														0.00	
C1	Two 30,000 gallon #2 Fuel Oil Storage Tanks		-			-						-									0.04	See Total
C2	300 gallon Diesel Tanks (2)				-																0.0001	See Total
C3	300 gallon Kerosene Tank				-																0.0001	See Total
C5	Portable Diesel Air Compressors	2.00	0.24	2.00	0.24	2.00	0.24	1.87	0.22	28.43	3.41	6.12	0.73	1,059	127	4.26E-02	5.12E-03	8.53E-03	1.02E-03	128	0.300	See Total
C7	Standby Natural Gas Emergency Generator	0.004	0.001	0.004	0.001	0.004	0.001	4.60E-04	5.52E-05	1.78	0.213	2.75	0.330	43	10	4.89E-01	1.17E-01	8.62E-05	2.07E-05	13	0.003	See Total
C9	Two 550 gallon Diesel Tanks																				0.0003	See Total
C10	Space Heaters	0.06	0.12	0.06	0.12	0.06	0.12	0.004	0.01	0.73	1.57	0.61	1.16	866	1,896	1.63E-02	3.57E-02	1.63E-03	3.57E-03	1,898	0.087	See Total
C11	Water Cooling Towers	0.76	3.32	0.76	3.32	0.76	3.32														0.16	See Total
C12	Parts Washers																				0.20	See Total
C13	Personal Protective Equipment Vacuum Stations	1.00	0.001	1.000	0.001	1.00	0.00														0.00	
TOTAL PLANT-W	IDE POTENTIAL EMISSIONS	55.23	44.90	55.23	44.90	22.97	34.81	39.03	79.04	81.77	110.02	33.47	88.84	41,358	147,401	2.15	4.72	0.33	0.80	147,758	553.8	<10/25

Margin 10%

Bridgestone Americas Tire Operations, LLC Warren Plant

tires/day Tires with silane/day
Tiree with eilene/dev
Thes with shahe/day
grams cement/tire
days/year
tires/year

VOC Emissions Summary No Silane Silane **Emission Source** Source Description tpy tpy 89-0077-02 Railcar Unloading, Storage & Handling 18.444 (Source 89-0077-05) Banbury 18.444 **Banbury Remill** 0.066 0.066 Wire Calender (4-Roll) 19.503 19.503 Gum Calender (#3 and #4 Belt Cutter) 0.466 0.466 Calender Profile (Profile/PREX) 0.595 0.595 Innerliner Extruder (aka Rollerhead, PT Innerliner) 2.329 2.329 All Purpose Extruders (#1, #3) 49.667 49.667 Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only) 0.672 0.672 Wire Reinforcing Ext/Cal. (REX) 0.801 0.801 Bead Filler (DSB) 0.256 0.256 Bead Winder (HEX Winders) 0.024 0.024 Rubber Mills (Refine Mill - Extrusion) 0.105 0.105 TMA Stock Prep. (Rubber Used in Cement House) 0.002 0.002 Curing Press Rm. 59.001 59.001 0.045 Autoclave 0.045 89-0077-04 Manufacturing & 175.594 Solvent (Includes Cement) 175.594 Material Usage C264 Cement (70% solvent) 0.217 0.217 TMS Cement (LOCTITE SI 5930 FIT 300ML) 0.776 0.776 Marking Ink Usage - White (D1858) 0.622 0.622 Orange Curable Jet Printer Ink D-3125 3.074 3.074 Mold Spray ML-5401W 0.000 0.000 Ink Jet Cleaner; L-420 0.323 0.323 Black Repair Paint A-9387 2.900 2.900 Dot Matrix Yellow Ink D4936 1.384 1.384 0.000 Yellow Chlorobutyl Paint D-4361 0.000 Inside Tire Spray Chem-Trend ML-3055 1.619 1.619 0.001 Inside Tire Spray Chem-Trend ML-2012 0.001 Inside Tire Spray Chem-Trend ML-3114 0.066 0.066 Mold Release Chem-Trend ML-5419W 0.059 0.059 Mold Release Chem-Trend ML-8187 0.001 0.001 Mold Release Chem-Trend ML-3068 0.000 0.000 89-0077-05 Material Handling and Mixer Charging --Two Boilers & One Hydronic Heater 3.786 3.786 89-0077-10 Proposed B & W Boiler (75 MMBtu/hr) 1.771 1.771 Emergency Generator Engine (99 hp) 0.062 0.062 Emergency Generator Engine (15 hp) 0.010 0.010 89-0077-18 Fire Pump #1 (266 hp) 0.167 0.167 Fire Pump #2 (266 hp) 0.167 0.167 Silane Injection 0.000 207.937

nificant Acti			
B1	Learning Center and Employee Services Boilers/Heaters	0.041	0.041
B2	Solvent Storage Tank	0.120	0.120
B3	Tire Spraying (Dopers) - PM only		
B4	Cement Spray (PM only)		
B5	Tire Repair	0.080	0.080
B6	Final Inspection Marking	0.125	0.125
B7	Hot Knife Cutting		
B8	Ultrasonic Knife		
В9	Oil Storage Tanks	0.044	0.044
B10	Tire Testing Room - PM only		
B11	Electron Beam Generator (Precure Machine)	0.000	0.000
B12	Mold Cleaning - PM only		
(B13)	Tread Grinders (REMOVED)		
B14	Inside Day Bins		
C1	Two 30,000 gallon #2 Fuel Oil Storage Tanks	0.040	0.040
C2	300 gallon Diesel Tanks (2)	0.0001	0.00
C3	300 gallon Kerosene Tank	0.0001	0.000
C4	300 gallon Gasoline Tank	0.048	0.048
C5	Portable Diesel Air Compressors	0.300	0.30
C6	Emergency Generator Engine (see above)		
C7	Standby Natural Gas Emergency Generator	0.003	0.003
C8	Diesel Powered Emergency Water Pumps (see above)		
C9	Two 550 gallon Diesel Tanks	0.0003	0.000
C10	Space Heaters	0.087	0.08
C11	Water Cooling Towers	0.157	0.15
C12	Parts Washers	0.200	0.200
C13	Personal Protective Equipment Vacuum Stations		
AL PLANT-W	IDE POTENTIAL EMISSIONS		
	VOC	= 345.8	553.8
	ALL HAP :	= 28.2	28.2
	MAX INDIVIDUAL HAP	= 6.1	6.1

MATERIAL PROCESSING (89-0077-04)	2016 Production (tire/yr) 3,059,672	2016 Production (lbs/yr) 391,943,983	Potential Production			
		*Material Processed		RMA EF	VOC	Emissions
Process	2016 (lb/yr)	2016 (lb/lb Product)	Potential (lb/yr)	lb. VOC/ lb. Material Processed		ton/yr.
Banbury	315,311,015			6.86E-05		18.444
Banbury Remill	11,320,430			6.86E-06		0.066
Wire Calender (4-Roll)	50,183,169			4.56E-04		19.503
Gum Calender (#3 and #4 Belt Cutter)	3,655,367			1.50E-04		0.466
Calender Profile (Profile/PREX)	4,666,445			1.50E-04		0.595
Innerliner Extruder (aka Rollerhead, PT Innerliner)	40,987,751			6.67E-05		2.329
All Purpose Extruders (#1, #3)	124,691,162			4.67E-04		49.667
Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only)	56,182,219			1.40E-05		0.672
Wire Reinforcing Ext/Cal. (REX)	6,287,507			1.50E-04		0.801
Bead Filler (DSB)	29,946,732			1.00E-05		0.256
Bead Winder (HEX Winders)	881,317			3.25E-05		0.024
Rubber Mills (Refine Mill - Extrusion)	543,283			2.26E-04		0.105
TMA Stock Prep. (Rubber Used in Cement House)	17,600			1.13E-04		0.002
Curing Press Rm.	309,060,055			2.24E-04		59.001
Autoclave	133,417			3.93E-04		0.045
Total rubber VOC emissions						151.98
Solvent Usage		Usage			V	/OC
	2016	2016	Potential	Density	Weight	Emission
	(gal/yr)	(gal/lb Product)	(gal/yr)	lb/gal	Fraction	(ton/yr)
Solvent (Includes Cement)		(gubio rioduce)	(Sub J1)			
C264 Cement (70% solvent)				0.05	1.00	175.594
	60			<u>6.05</u> 6.05	0.7	<u>175.594</u> 0.217
	60			6.05	0.7	0.217
TMS Cement (LOCTITE SI 5930 FIT 300ML)	60 125			6.05 11.68	0.7 0.027	0.217 0.776
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858)	125			6.05 11.68 6.91	0.7 0.027 0.85	0.217 0.776 0.622
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125	 125 590			6.05 11.68 6.91 6.48	0.7 0.027 0.85 0.94	0.217 0.776 0.622 3.074
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858)	125			6.05 11.68 6.91 6.48 8.32	0.7 0.027 0.85	0.217 0.776 0.622 3.074 0.000
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420	 125 590 0			6.05 11.68 6.91 6.48	0.7 0.027 0.85 0.94 0.018	0.217 0.776 0.622 3.074
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W	 125 590 0 60			6.05 11.68 6.91 6.48 8.32 6.31	0.7 0.027 0.85 0.94 0.018 1.00	0.217 0.776 0.622 3.074 0.000 0.323
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387	 125 590 0 60 600			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ \end{array} $	$\begin{array}{r} 0.7 \\ 0.027 \\ 0.85 \\ 0.94 \\ 0.018 \\ 1.00 \\ 0.86 \end{array}$	0.217 0.776 0.622 3.074 0.000 0.323 2.900
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936	 125 590 0 60 600 264			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ \end{array} $	0.7 0.027 0.85 0.94 0.018 1.00 0.86 0.94	0.217 0.776 0.622 3.074 0.000 0.323 2.900 1.384
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936 Yellow Chlorobutyl Paint D-4361	$ \begin{array}{r} \\ 125 \\ 590 \\ 0 \\ 60 \\ 600 \\ 264 \\ 0 \\ \end{array} $			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ 8.36 \\ \end{array} $	$\begin{array}{c} 0.7 \\ 0.027 \\ 0.85 \\ 0.94 \\ 0.018 \\ 1.00 \\ 0.86 \\ 0.94 \\ 0.63 \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ \end{array}$
TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055	$ \begin{array}{r} \\ 125 \\ 590 \\ 0 \\ 60 \\ 600 \\ 264 \\ 0 \\ 58,500 \\ \end{array} $			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ 8.36 \\ 9.84 \\ \end{array} $	$\begin{array}{c} 0.7 \\ 0.027 \\ 0.85 \\ 0.94 \\ 0.018 \\ 1.00 \\ 0.86 \\ 0.94 \\ 0.63 \\ 0.0033 \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ \end{array}$
TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012	$ \begin{array}{r} \\ 125 \\ 590 \\ 0 \\ 60 \\ 600 \\ 264 \\ 0 \\ 58,500 \\ \end{array} $			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ 8.36 \\ 9.84 \\ 8.26 \\ \end{array} $	$\begin{array}{c} 0.7 \\ 0.027 \\ 0.85 \\ 0.94 \\ 0.018 \\ 1.00 \\ 0.86 \\ 0.94 \\ 0.63 \\ 0.0033 \\ 0.0005 \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\end{array}$
TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012Inside Tire Spray Chem-Trend ML-3114	 125 590 0 60 600 264 0 58,500 275 			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ 8.36 \\ 9.84 \\ 8.26 \\ 9.51 \\ \end{array} $	$\begin{array}{c} 0.7 \\ 0.027 \\ 0.85 \\ 0.94 \\ 0.018 \\ 1.00 \\ 0.86 \\ 0.94 \\ 0.63 \\ 0.0033 \\ 0.0005 \\ 0.0020 \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\\ 0.059\\ \end{array}$
TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936 Yellow Chlorobutyl Paint D-4361 Inside Tire Spray Chem-Trend ML-3055 Inside Tire Spray Chem-Trend ML-2012 Inside Tire Spray Chem-Trend ML-3114 Mold Release Chem-Trend ML-5419W	 125 590 0 60 600 264 0 58,500 275 1,650			$ \begin{array}{r} 6.05 \\ 11.68 \\ 6.91 \\ 6.48 \\ 8.32 \\ 6.31 \\ 6.62 \\ 6.53 \\ 8.36 \\ 9.84 \\ 8.26 \\ 9.51 \\ 8.34 \\ \end{array} $	$\begin{array}{c} 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ 0.0005\\ 0.0020\\ 0.0050\\ \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\\ 0.059\\ 0.001\\ \end{array}$
TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012Inside Tire Spray Chem-Trend ML-3114Mold Release Chem-Trend ML-5419WMold Release Chem-Trend ML-8187	$ \begin{array}{r} \\ 125 \\ 590 \\ 0 \\ 60 \\ 600 \\ 264 \\ 0 \\ 58,500 \\ 275 \\ \\ 1,650 \\ 315 \\ \end{array} $			$\begin{array}{r} 6.05 \\ \hline 11.68 \\ \hline 6.91 \\ \hline 6.48 \\ \hline 8.32 \\ \hline 6.31 \\ \hline 6.62 \\ \hline 6.53 \\ \hline 8.36 \\ \hline 9.84 \\ \hline 8.26 \\ \hline 9.51 \\ \hline 8.34 \\ \hline 8.26 \end{array}$	$\begin{array}{c} 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ 0.0005\\ 0.0020\\ 0.0050\\ 0.0003\\ \end{array}$	$\begin{array}{r} 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\\ 0.059\\ \end{array}$

*Material Processed means all material used in preparation of rubber or rubber products excluding steel wire and fabric used in rubber tire manufacturing.

Cement Station VOC Analysis

VOC Emissions			
Tires/day			
Cement gram/tire			
g VOC/g cement			
Operating Days/yr	365		
VOC Used	175.6	tpy	

Maximum Annual Cement Used

Bridgestone Americas Tire Operations, LLC Warren Plant

Silane Tire Manufacture Rate = Operating Schedule =

365 days/yr

Potential Silane Usage Rate

Annual Tire Production (tires/yr)	Silane Injection Rate (lb/tire)	Silane Density (Ib/gal)	Annual Silane Usage (gal/yr)	Margin (%)	Potential Annual Silane Injection Rate (gal/yr)

Ethanol Emissions From Silane Injection

Process	Emissions Factor (Ibs ethanol/gal silane)	Ethanol Emissions (tpy)
Mixing		162.17
Curing		45.77
Total		207.94
N		

Notes:

Ethanol emission factor based on disulfide silane.

Ethanol Emissions (tpy) = Potential Silane Injection rate (gal/yr) x Silane Emission Factor (lb/gal) / 2000 (lb/ton)

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

RAILCAR AND TRAILER UNLOADING, STORAGE & HANDLING PROCESS EMISSION SOURCE: 89-0077-02

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION MISCELLANEOUS PROCESSES

GENERAL IDENTIFICATION AND DESCRIPTION						
1. Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant						
2. Process emission source (identify): CP (20, 0077, 00) – Deilege and Troiler Unloading. Storage and Handling						
CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling 3. Stack ID or flow diagram point identification(s): 4. Year of construction or last modification:						
See Attachment - APC 10 - Source 02 Stack ID's 2023						
If the emissions are contro	If the emissions are controlled for compliance, attach an appropriate Air Pollution Control system form.					
5. Normal operating schedule: 24 Hrs./Day 7 Days/Wk. 365 Days/Yr.						
6. Location of this process emission source in UTM coordinates: UTM Vertical: 601565 UTM Horizontal: 3943593						
7. Describe this process (Ple	ase attach a flow diagram of this process) and check one of the follo	owing:				
✓ Batch	Continuous					
	PROCESS MATERIAL INPUT ANI) OUTPUT				
8. List the types and amount	s of raw materials input to this process:					
Material	Storage/Material handling process	Average usage (units)	Maximum usage (units)			
Carbon Black	pneumatically transferred to silos	varies	lbs/hr			
Clay	pneumatically transferred to silos	bs/hr	lbs/hr			
Pigment	transferred from supersack to mixer or pigmnt can	bs/hr	lbs/hr			
rightent			103/11			
9. List the types and amount	s of primary products produced by this process:					
Material	Storage/Material handling process	Average usage (units)	Maximum usage (units)			
Wateria	Storage/Wateriar nandning process	Average usage (units)	Maximum usage (umrs)			
N/A						
10. Process fuel usage:						
Type of fuel	Max heat input (10 ⁶ BTU/Hr.)	Average usage (units)	Maximum usage (units)			
N/A						
11. List any solvents, cleaners	e, etc., associated with this process:					
N/A						
If the emissions and/or op	erations of this process are monitored for compliance, please attach	the appropriate Compliance Demo	nstration form.			
•	ssions associated with this process, such as out door storage piles, op	pen conveyors, open air sand blasti	ng, material handling operations,			
etc. (please attach a separate sho	eet if necessary).					
13. Page number:	Revision Number:	Date of Revision:				

APC 10

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICAT	GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warren Plant				
2. Emission source (identify):				
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling			
	SCRIPTION			
3. Stack ID (or flow diagram point identification):				
B-DCEF-FP2 (Final Pigment Dust Collector)				
4. Stack height above grade in feet:				
106.0				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
63.2 (Actual feet per second)	2.5			
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
18,600	18,345			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
70.0 Degrees Fahrenheit (°F)	1.0 0.01 Grains per dry standard cubic foot (gr./dscf.)			
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):				
<u>N/A</u> (°F)				
12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO ₂ , NO _x , etc.)?				
N/A				
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exh	austing through this stack.			
BYPASS STACK DESCRIPTION				
13. Do you have a bypass stack? X Yes I	No			
If yes, describe the conditions which require its use & complete APC form 4 number(s) exhausting through this bypass stack.	for the bypass stack. Please identify the stack number(s) of flow diagram point			
14. Page number: Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION				
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warren Plant				
2. Emission source (identify):				
CB (89-0077-02) - Railcar and Trailer Unloading, S	Storage and Handling			
	ESCRIPTION			
3. Stack ID (or flow diagram point identification):				
CB-RRBH-003				
4. Stack height above grade in feet:				
10.0				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
18.3 (Actual feet per second)	1.17 x 1.17 ft			
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
1,500	1,479			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
70.0 Degrees Fahrenheit (°F)	1.0 Percent O.01 Grains per dry standard cubic foot (gr./dscf.)			
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):				
N/A (°F)				
12. If this stack is equipped with continuous pollutant monitoring equipment req SO ₂ , NO _x , etc.)?	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,			
N/A				
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.				
BYPASS STACK DESCRIPTION 13. Do youhave a bypass stack?				
Х	No			
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack n umber(s) of flow diagram point			
number(s) exhausting through this by pass stack.				
14 Daga numbani Davising Marka	Data of Davidson			
14. Page number: Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION				
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warren Plant				
2. Emission source (identify):				
CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling				
STACK DES CRIPTION				
3. Stack ID (or flow diagram point identification):				
CB-STEF-011 (Carbon Black Silo 11)				
4. Stack height above grade in feet:				
92.0				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
14.9 (Actual feet per second)	1.25 x 0.6			
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
700	690			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
70.0	1.0 Grains per dry Percent 0.01 Standard cubic foot (gr./dscf.)			
Degrees Fahrenheit (°F)				
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (<u>for stacks subject to diffusion equation only</u>):				
N/A (°F)				
12. If this stack is a wine ad with continuous colluteration on itemine any instance is the start of the star				
12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO ₂ , NO _x , etc.)?				
N/A				
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.				
BYPASS STACK DESCRIPTION				
13. Do you have a bypass stack?				
Yes	No			
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack n umber(s) of flow diagram point			
number(s) exhausting through this bypass stack.				
14. Page number: Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICAT	GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warren Plant				
2. Emission source (identify):				
CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling				
STACK DES CRIPTION				
3. Stack ID (or flow diagram point identification):				
CB-STEF-012 (Carbon Black Silo 12)				
4. Stack height above grade in feet:				
92.0				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
14.9 (Actual feet per second)	1.25 x 0.6			
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
700	690			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
70.0 Degrees Fahrenheit (*F)	1.0 O.01 Grains per dry standard cubic Percent foot (gr./dscf.)			
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):				
N/A (°F)				
12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO ₂ , NO _x , etc.)?				
N/A				
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.				
BYPASS STACK DESCRIPTION 13. Do youhave a bypass stack?				
X	No			
	for the bypass stack. Please identify the stack n umber(s) of flow diagram point			
number(s) exhausting through this bypass stack.	tor the bypass stack. Thease identify the stack in unber(s) of now diagram point			
14. Page number:Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION				
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warren Plant				
2. Emission source (identify):				
CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling				
	SCRIPTION			
3. Stack ID (or flow diagram point identification):				
CB-STEF-013 (Carbon Black Silo 13)				
4. Stack height above grade in feet:				
92.0				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
14.9 (Actual feet per second)	1.25 x 0.6			
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
700	690			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
70.0 Degrees Fahrenheit (*F)	1.0 Percent O.01 Grains per dry standard cubic foot (gr./dscf.)			
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):				
N/A				
(°F)				
12. If this stack is a wine advith continuous collutent monitoring againment coming of the set of the state that state the state of the set of the state of the s				
12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO ₂ , NO _x , etc.)?				
N/A				
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.				
BYPASS STACK DESCRIPTION				
13. Do you have a bypass stack?				
Yes 1	No			
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.				
14. Page number: Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:			
Bridgestone Americas Tire Operations, LLC, Warre	en Plant		
2. Emission source (identify):			
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling		
	SCRIPTION		
3. Stack ID (or flow diagram point identification):			
CB-STEF-014 (Carbon Black Silo 14)			
4. Stack height above grade in feet:			
92.0			
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:		
14.9 (Actual feet per second)	1.25 x 0.6		
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):		
700	690		
9. Exhaust temperature:	10. Moisture content (data at exit conditions):		
70.0 Degrees Fahrenheit (*F)	1.0 O.01 Grains per dry standard cubic Percent foot (gr./dscf.)		
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):			
<u>N/A</u> (°F)			
 If this stack is equipped with continuous pollutant monitoring equipment requision SO₂, NO_x, etc.)? 	ired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,		
N/A			
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exl	nausting through this stack		
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?			
X	No		
If yes, describe the conditions which require its use & complete APC form 4 for the by pass stack. Please identify the stack number(s) of flow diagram point			
number(s) exhausting through this bypass stack.			
14. Page number: Revision Number:	Date of Revision:		
14. Page number: Revision Number:	Date of Kevision:		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling	
	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
CB-STEF-015 (Carbon Black Silo 15)		
4. Stack height above grade in feet:		
92.0		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
14.9 (Actual feet per second)	1.25 x 0.6	
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
700	690	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70.0 Degrees Fahrenheit (°F)	1.0 Percent 0.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A (°F)		
12. If this stack is equipped with continuous pollutant monitoring equipment required SO ₂ , NO _x , etc.)?	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,	
N/A		
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exl	nausting through this stack	
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?		
Yes No		
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.		
14. Page number: Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling	
	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
CB-STEF-016 (Carbon Black Silo 16)		
4. Stack height above grade in feet:		
92.0		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
14.9 (Actual feet per second)	1.25 x 0.6	
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
700	690	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70.0 Degrees Fahrenheit (*F)	1.0 O.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent o	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A (*F)		
 If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO₂, NO_x, etc.)? 		
N/A		
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source ext	nausting through this stack.	
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?		
YesNo		
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.		
14. Page number: Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	n Plant	
2. Emission source (identify):		
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling	
	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
CB-STEF-017 (Carbon Black Silo 17)		
4. Stack height above grade in feet:		
92.0		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
14.9 (Actual feet per second)	1.25 x 0.6	
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
700	690	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70.0 Degrees Fahrenheit (°F)	1.0 O.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent o	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
<u>N/A</u> (°F)		
12. If this stack is equipped with continuous pollutant monitoring equipment requ	ired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,	
$SO_{2}, NO_{x}, etc.)?$		
N/A		
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exh	austing through this stack.	
BYPASS STACK DESCRIPTION		
13. Do youhave a bypass stack? X		
YesNo		
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. P lease identify the stack n umber(s) of flow diagram point number(s) exhausting through this bypass stack.		
14. Page number: Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling	
	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
CB-STEF-018 (Carbon Black Silo 18)		
4. Stack height above grade in feet:		
92.0		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
14.9 (Actual feet per second)	1.25 x 0.6	
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
700	690	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70.0 Degrees Fahrenheit (*F)	1.0 Percent 0.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A (*F)		
 If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO₂, NO_x, etc.)? 		
N/A		
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source ext	nausting through this stack.	
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?		
Yes No		
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.		
14. Page number: Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling	
	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
CB-STEF-019 (Carbon Black Silo 19)		
4. Stack height above grade in feet:		
92.0		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
14.9 (Actual feet per second)	1.25 x 0.6	
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
700	690	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70.0 Degrees Fahrenheit (*F)	1.0 O.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A (*F)		
 If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO₂, NO_x, etc.)? 		
N/A		
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exl	paueting through this stack	
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?		
X	No	
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. P lease identify the stack n umber(s) of flow diagram point number(s) exhausting through this bypass stack.		
14. Page number:Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:			
Bridgestone Americas Tire Operations, LLC, Warre	en Plant		
2. Emission source (identify):			
CB (89-0077-02) - Railcar and Trailer Unloading, S	torage and Handling		
	SCRIPTION		
3. Stack ID (or flow diagram point identification):			
CB-STEF-020 (Carbon Black Silo 20)			
4. Stack height above grade in feet:			
92.0			
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:		
14.9 (Actual feet per second)	1.25 x 0.6		
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):		
700	690		
9. Exhaust temperature:	10. Moisture content (data at exit conditions):		
70.0 Degrees Fahrenheit (*F)	1.0 Percent 0.01 Grains per dry standard cubic foot (gr./dscf.)		
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):		
<u>N/A</u> (°F)			
 12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity, SO₂, NO_x, etc.)? 			
N/A			
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.			
BYPASS STACK DESCRIPTION 13. Do you have a bypass stack?			
Yes No			
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.			
14. Page number: Revision Number:	Date of Revision:		

Attachment – APC 10 – Source 02 Stack ID's

Stack ID's Associated with process emission source

CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling:

CB-STEF-001 to 010 (Carbon Black Silos)

CB-STEF-011 to 020 (new Carbon Black Silos)

CB-621V-001 to 010 (621 day bins)

CB-623V-001 to 010 (623 day bins)

CB-RRBH-001 & -002 (Railcar/trailer carbon black unload dust collectors)

CB-RRBH-003 (<u>new</u> Railcar/trailer carbon black unload dust collector)

CLAY-001 (Clay Silo Bin Vent Exhaust)

B-DCEF-FP1 (Final pigment dust collector)

B-DCEF-FP2 (new Final pigment dust collector)

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CONTROL EQUIPMENT - BAGHOUSES/FABRIC FILTERS GENERAL IDENTIFICATION AND DESCRIPTION

1. Facility name:	2. E	mission source (identify):	
Bridgestone Americas Tire Operations, LLC, Warren		9-0077-02) - Railcar and Trailer Unloading, Storage and	
 Stack ID or flow diagram point identification (s): CB-DCEF-FP2 (Final Pigment Dust Collector #2) 			
BAGHO	USE/FABRIC FILTE	R DESCRIPTION	
4. Describe the device in use. List the key operating parameter	ers of this device and their	normal operating range.	
Dust collector used for raw material recovery. Pressure drop monitored - normal range 1.0" minimum to 6.0"			
5. Manufacturer and model number (if available): N/A		6. Year of installation:2023	
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each pollu	ant (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99	Vendor Guarantee	
 8. Discuss how collected material is handled for reuse or disposal. Collected material is reused. 			
 If the bags are coated, specify the material used for coating and frequency of coating N/A 			
10. Does the baghouse collect asbestos containing material?			
If "Yes", provide data as outlined in Item 10, Instructions for this form.			
11. If this control equipment is in series with some other control equipment, state and specify the overall efficiency. N/A			
12. Page number: Revision	Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CONTROL EQUIPMENT - BAGHOUSES/FABRIC FILTERS GENERAL IDENTIFICATION AND DESCRIPTION

1. Facility name:		2. Emis	sion source (identify):
		CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling	
3. Stack ID or flow diagram point identification (s):			
CB-RRBH-003 (Railcar/Trailer Carbon Black Unload I	Dust Collector)	
BAGHO	US E/FABRIC	FILTER I	DESCRIPTION
4. Describe the device in use. List the key operating paramete	ers of this device a	ndtheirnor	mal operating range.
Cartridge filters used for air pollution control.			
5			
5. Manufacturer and model number (if available):			6. Year of installation:
N/A			2023
7. List of pollutant(s) to be controlled and the expected contro	l afficiency for as	ch nollutant	(see instructions)
	f efficiency for ea	ien ponutant	(see instructions).
Pollutant	Efficiency	· (%)	Source of data
Particulate Matter	99.9		Vendor Guarantee
8. Discuss how collected material is handled for reuse or dispo	osal.		
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating	and frequency of	coating	
N/A			
10. Does the baghouse collect asbestos containing material?			
Ves No 🖌			
If "Yes", provide data as outlined in Item 10, Instructions for this form.			
11. If this control equipment is in series with some other control equipment, state and specify the overall efficiency.			
N/A			
12. Page number: Revision	Number:		Date of Revision:
-			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

. Facility name: 2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Plant	Americas Tire Operations, LLC, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):			
CB-STEF-011 (Carbon Black Silo 11 Dust Collector)			
BAGHOUS E/F	ABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of the	nis device and their no	nnal operating range.	
Cartridge filters used for air pollution control.			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control efficient	ency for each pollutar	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
	,		
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal.			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and free	equency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
	Yes	No 🖌	
If "Yes", provide data as outlined in Item 10, Instructions for this	form.		
11. If this control equipment is in series with some other control equip	ment, state and specif	y the overall efficiency.	
N/A			
12 Daga number: Davisier Numb	or:	Data of Pavision:	
12. Page number: Revision Numb	CI .	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Facility name:2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Pla	c, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):	•		
CB-STEF-012 (Carbon Black Silo 12 Dust Collector)			
BAGHOUS	E/FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of			
Cartridge filters used for air pollution control.		1 0 0	
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control ef	ficiency for each pollutar	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
ronutant	Efficiency (76)	Source of data	
Particulate Matter	99.9	Vendor Guarantee	
	33.3		
8. Discuss how collected material is handled for reuse or disposa	l.		
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and	frequency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
	Yes	No V	
If "Yes", provide data as outlined in Item 10, Instructions for t		a the amount off singer	
11. If this control equipment is in series with some other control equipment	juipment, state and specif	y the overall efficiency.	
N/A			
12. Page number: Revision Nu	mber:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Facility name: 2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Plar	c, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):	•		
CB-STEF-013 (Carbon Black Silo 13 Dust Collector)			
BAGHOUSE	FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of			
Cartridge filters used for air pollution control.			
Carlinago intere acca for an penation control			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control eff	iciency for each pollutan	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal.			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and	frequency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
If "Was" monida data as and list dis It with the set of the distance of the set	Yes	No No	
If "Yes", provide data as outlined in Item 10, Instructions for th		uthe quanti officiency	
11. If this control equipment is in series with some other control equipment Δ	upment, state and specif	y the overall efficiency.	
N/A			
12. Page number: Revision Num	nber:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

. Facility name: 2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Plar	, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):			
CB-STEF-014 (Carbon Black Silo 14 Dust Collector)			
BAGHOUSE	FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of	fthis device and their no	nnal operating range.	
Cartridge filters used for air pollution control.			
5. Manufacturer and model number (if available):		6. Year of installation:	
		2023	
N/A		2023	
7. List of pollut ant(s) to be controlled and the expected control effi	ciency for each pollutan	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
	• • • •		
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal.			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and	frequency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
gg			
If "Voo" provide date as entlined in Item 10 Instructions for th	Yes	No No	
If "Yes", provide data as outlined in Item 10, Instructions for th		uthe event officiency	
11. If this control equipment is in series with some other control equipment Δ	apment, state and specif	y the overall efficiency.	
N/A			
12. Page number: Revision Num	nber:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Г

1. Facility name:	2. Emi	ssion source (identify):	
	gestone Americas Tire Operations, LLC, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and		
	Handling		
 Stack ID or flow diagram point identification (s): CB-STEF-015 (Carbon Black Silo 15 Dust Collector) 			
RACHOL	USE/FABRIC FILTER	DES CRIPTION	
4. Describe the device in use. List the key operating paramete			
Cartridge filters used for air pollution control.	is of this device and then no		
Cartilidge litters used for all politition control.			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected contro	1 - 66 - : 6 1 11	(
7. List of pollutant(s) to be controlled and the expected contro	in efficiency for each politican	(see linst detions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or dispo	osal		
Carbon black is reused.			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating	and frequency of coating		
N/A	1 9 8		
10. Does the baghouse collect asbestos containing material?			
	Yes	No 🗸	
If "Yes", provide data as outlined in Item 10, Instructions for			
11. If this control equipment is in series with some other control	bl equipment, state and specif	y the overall efficiency.	
N/A			
12. Page number: Revision	Number:	Date of Revision:	
	- WILLOVI .		
		-	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name:	2. Em	ission source (identify):	
Bridgestone Americas Tire Operations, LLC, Warren Pla	e Operations, LLC, Warren Plant Handling		
3. Stack ID or flow diagram point identification (s):	•		
CB-STEF-016 (Carbon Black Silo 16 Dust Collector)			
BAGHOUSI	E/FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters o	fthis device and their no	ormal operating range.	
Cartridge filters used for air pollution control.			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
		2020	
7. List of pollutant(s) to be controlled and the expected control eff	ficiency for each pollutar	tt (see instructions).	
Pollutant	Efficiency (%)	Source of data	
	((0)		
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal.			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and	frequency of coating		
N/A	1 9 0		
10. Does the baghouse collect asbestos containing material?			
	Yes	No 🖌	
If "Yes", provide data as outlined in Item 10, Instructions for th			
11. If this control equipment is in series with some other control equipment		fy the overall efficiency.	
N/A		-, · • • • • • • • • • • • •	
12. Page number: Revision Nu	mber:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name:			
Facility name:2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Pla	Tire Operations, LLC, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):			
CB-STEF-017 (Carbon Black Silo 17 Dust Collector)			
BAGHOUS	E/FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of	fthis device and their no	mal operating range.	
Cartridge filters used for air pollution control.			
5. Manufacturer and model number (if available):		(Vernefinstelletism	
		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control eff	ficiency for each pollutan	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal			
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating and	fraguency of acating		
	frequency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
	Yes	No V	
If "Yes", provide data as outlined in Item 10, Instructions for th		1 00 1	
11. If this control equipment is in series with some other control eq	upment, state and specif	y the overall efficiency.	
N/A			
12 Daga numbau De Steve Ma	mhan	Data of Bavisian	
12. Page number: Revision Nu	moer:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

4 w 145			
. Facility name: 2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC, Warren Plant	Americas Tire Operations, LLC, Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):			
CB-STEF-018 (Carbon Black Silo 18 Dust Collector)			
BAGHOUS E/F	ABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameters of th			
Cartridge filters used for air pollution control.			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollut ant(s) to be controlled and the expected control efficient	ency for each pollutar	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
	,		
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disposal.			
Carbon black is reused.			
Carbon black is redsed.			
9. If the bags are coated, specify the material used for coating and fre	quency of coating		
N/A			
10. Does the baghouse collect asbestos containing material?			
	Yes	No 🖌	
If "Yes", provide data as outlined in Item 10, Instructions for this f	form.		
11. If this control equipment is in series with some other control equip	ment, state and specif	y the overall efficiency.	
N/A			
12. Page number: Revision Number	ar.	Date of Revision:	
12. Page number: Revision Number	7 1.	Date of Revision.	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name:	2. Em:	ssion source (identify):
Bridgestone Americas Tire Operations, LLC, Warren Plan	Warren Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling	
3. Stack ID or flow diagram point identification (s):		
CB-STEF-019 (Carbon Black Silo 19 Dust Collector)		
BAGHOUSE	FABRIC FILTER	DFSCRIPTION
4. Describe the device in use. List the key operating parameters of		
Cartridge filters used for air pollution control.		1 0 0
Carlingo intere acca for an peration control		
5. Manufacturer and model number (if available):		6. Year of installation:
N/A		2023
7. List of pollutant(s) to be controlled and the expected control effe	ciency for each pollutar	t (see instructions).
Pollutant	Efficiency (9/)	Source of data
Ponutant	Efficiency (%)	Source of data
Particulate Matter	00.0	Mandau Quananta a
	99.9	Vendor Guarantee
8. Discuss how collected material is handled for reuse or disposal.		
Carbon black is reused.		
9. If the bags are coated, specify the material used for coating and f	requency of coating	
N/A		
10. Does the baghouse collect asbestos containing material?		
10. Does the bagnouse concertaspestos containing material?		
	Yes	No V
If "Yes", provide data as outlined in Item 10, Instructions for thi		
11. If this control equipment is in series with some other control equ	ipment, state and specif	y the overall efficiency.
N/A		
12. Page number: Revision Num	her:	Date of Revision:
12. Tage number. Revision Num		Date of Iterision.

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name:	2. Er	nission source (identify):	
Bridgestone Americas Tire Operations, LLC, Warren	en Plant CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling		
3. Stack ID or flow diagram point identification (s):			
CB-STEF-020 (Carbon Black Silo 20 Dust Collector)			
BAGHO	USE/FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameter	ers of this device and their r	ormal operating range.	
Cartridge filters used for air pollution control.			
$5 \qquad M_{\rm eff} = \left\{ c_{\rm eff} + c_{\rm eff} + 1 + 1 + c_{\rm eff}$		6. Year of installation:	
5. Manufacturer and model number (if available):			
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control	l efficiency for each pollut	unt (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99.9	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or disp	osal.		
Carbon black is reused.			
9. If the bags are coated, specify the material used for coating	and frequency of coating		
N/A	1 2 0		
10. Does the baghouse collect asbestos containing material?			
	V		
If "Yes", provide data as out lined in Item 10, Instructions f	or this form.	s No V	
11. If this control equipment is in series with some other control		ify the overall efficiency	
	n equipment, state and spec	ity the overall efficiency.	
N/A			
12. Page number: Revision	Number:	Date of Revision:	
		Date of Revision.	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Г

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE $1200_{-}03_{-}09_{-}02(11)$ of the Tennessee Air Pollution (

requ mor duri	irements by inclunitoring, recordke ng the permit te	ubject to 1200-03-0902(11) of the Tennessee Air Pollution Control Regulations a uding a statement within the permit application of the methods used for determining compli- eping, and reporting requirements and test methods. In addition, the application must inclu- rm. These submittals must be no less frequent than annually and may need to be mo 'echnical Secretary.	liance. This statement must include a description of the ude a schedule for compliance certification submittals
		GENERAL IDENTIFICATION AND DESCRIPTION	ION
1.	Facility name:	Bridgestone Americas Tire Operations, LLC, Warren Plant	
2.	Process emissio	n source, fuel burning installation, or incinerator (identify): CB (89-0077-02) - Railcar	r and Trailer Unloading, Storage and Handling
3.	Stack ID or flow	v diagram point identification(s): See Attachment - APC 10 - Source 02 Stack II	
		METHODS OF DETERMINING COMPLIANC	
4.		escribed under Item #2 of this application will use the following method(s) for determining erating conditions from an existing permit). Check all that apply and attach the appropriate	
	Contin Pollut	nuous Emission Monitoring (CEM) - APC 20 ant(s):	
	Emiss Pollut	ion Monitoring Using Portable Monitors - APC 21 ant(s):	
	Monit Pollut	oring Control System Parameters or Operating Parameters of a Process - APC 22 ant(s):	
	Monit Pollut	oring Maintenance Procedures - APC 23 ant(s): Particulate Matter	
	Stack Pollut	T esting - APC 24 ant(s):	
	Fuel S Pollut	ampling & Analysis (FSA) - APC 25 ant(s):	
	Recor Pollut	dkeeping - APC 26 ant(s):	
		(please describe) - APC 27 ant(s):	
5.	Compliance cer	tification reports will be submitted to the Division according to the following schedule:	
	Start date:	One year after permit issuance	
	Andevery	days thereafter.	
6.	Compliance mo	nitoring reports will be submitted to the Division according to the following schedule:	
	Start date:	Six months after permit issuance	
	Andevery	180 days thereafter.	
7.	Page number:	Revision number:	Date of revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY MONITORING MAINTENANCE PROCEDURES

The monitoring of a maintenance procedure shall be acceptable as a compliance demonstration method provided that a correlation between the procedure and the emission rate of a particular pollutant is established.

GENERAL IDENTIFICATION AND DESCRIPTION

1. Facility name:

Bridgestone Americas Tire Operations, LLC, Warren Plant

2. Stack ID or flow diagram point identification(s):

See Attachment - APC 10 - Source 02 Stack ID's

3. Emission source (identify):

CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling

MONITORING DESCRIPTION

4. Pollutant(s) being monitored:

Particulate matter

5. Procedure being monitored:

Dust collector inspection and maintenance

6. Description of the method of monitoring and establishment of correlation between the procedure and the emission rate of a particular pollutant:

Dust collector emissions are guaranteed by the vendor at 99.9%. Proper upkeep of the dust collectors will, therefore, yield a control efficiency commensurate with the vendor's guarantee. Quarterly inspections of the dust collector are currently being conducted and maintenance performed as required. Compliance has been achieved during the previous permit term using this method.

7. Compliance demonstration frequency (specify the frequency with which compliance will be demonstrated):

Quarterly

8. Page number:

Revision number:

Date of revision:

CN-1418

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name:

TITLE V PERMIT APPLICATION

EMISSIONS FROM PROCESS EMISSION SOURCE / FUEL BURNING INSTALLATION / INCINERATOR

GENERAL IDENTIFICATION AND DESCRIPTION

Bridgestone Americas Tire Operations, LLC - Warren Plant

Stack ID or flow diagram point identification(s):
 See Attachment - APC 10 - Source 02 Stack ID's

3. Process emission source / Fuel burning installation / Incinerator (identify):

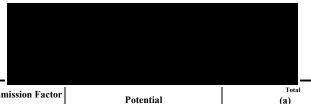
CB (89-0077-02) - Railcar and Trailer Unloading, Storage and Handling

EMISSIONS SUMMARY TABLE - CRITERIA AND FUGITIVE EMISSIONS

4. Complete the following emissions summary for regulated air pollutants. Fugitive emissions shall be included. Attach calculations and emission factor references.

	Maximum All	owable Emissions	Actual Emissions	
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
Particulate Matter (TSP)	1.78		1.78	
(Fugitive Emissions)	N/A		N/A	
Sulfur Dioxide	N/A		N/A	
(Fugitive Emissions)				
Volatile Organic Compounds	N/A		N/A	
(Fugitive Emissions)				
Carbon Monoxide	N/A		N/A	
(Fugitive Emissions)				
Lead	N/A		N/A	
(Fugitive Emissions)				
Nitrogen Oxides	N/A		N/A	
(Fugitive Emissions)				
Total Reduced Sulfur	N/A		N/A	
(Fugitive Emissions)				
Mercury	N/A		N/A	
(Fugitive Emissions)				

		(Cc	ontinued from last page)			APC28
	Maximum		e Emissions		Actual E	missions
AIR POLLUTANT	Tons per Year		Reserved for State use (Pounds per Hour - Item 7, APC 30)		Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
Asbestos	N/A				N/A	
(Fugitive Emissions)						
Beryllium	N/A				N/A	
(Fugitive Emissions)						
Vinyl Chloride	N/A				N/A	
(Fugitive Emissions)						
Fluorides	N/A				N/A	
(Fugitive Emissions)						
Gaseous Fluorides	N/A				N/A	
(Fugitive Emissions)						
Greenhouse Gases in CO ₂ Equivalents	N/A				N/A	
			E – FUGITIVE HAZARI			
5. Complete the following <u>emis</u> Attach calculations and emis		air pollu	tants that are hazardous air po	ollutant(s)). Fugitive emissions sha	all be included.
	Ма	ximum A	Allowable Emissions		Actua	l Emissions
Air Pollutant & CAS	Tons per Y	ear	Reserved for State use (Pounds per Hour - Item 7, APC 30)	e	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
N/A	N/A				N/A	
6. Page number:	Revisio	n numbe	r:		Date of revision	


State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CURRENT EMISSIONS REQUIREMENTS AND STATUS

GENERAL IDENTIFICATION AND DESCRIPTION						
1. Facility name:			2. Emission	source number		
Bridgestone Americas	Tire Operation	s, LLC, Warren Plant	CB (89-00)77-02)		
3. Describe the process emission	source / fuel burning inst	allation / incinerator.				
CB (89-0077-02) - Rai	ilcar and Trailer	Unloading, Storage and Hand	dling			
		EMISSIONS AND		ENTS		
 Identify if only a part of the source is subject to this requirement 	5. Pollutant	 Applicable requirement(s): TN Air Polluti Regulations, 40 CFR, permit restrictions, air quality based standards 	on Control	7. Limitation	 Maximum actual emissions 	9. Compliance status (In/Out)
CB-RRBH-001, 002, & 003	Particulate	1200-03-0701(5)				
CB-STEF-001 to 010	Particulate	1200-03-0701(5)				
CB-STEF-011 to 020	Particulate	1200-03-0701(5)				
CB-621V-001 to 010	Particulate	1200-03-0701(5)				
CB-623V-001 to 010	Particulate	1200-03-0701(5)		Previous Permit		
CLAY-001	Particulate	1200-03-0701(5)		8.1 lbs/hr all		
B-DCEF-FP1	Particulate	1200-03-0701(5)		Total combined limit to avoid PSD	total combined	
B-DCEF-FP2	Particulate	1200-03-0701(5)		3.90 lbs/hr all	3.90 lbs/hr all	IN
				1.78 Tons/Year all	1.78 Tons/Year all	IN
10. Other applicable requirements	(new requirements that a	pply to this source during the term of this permit)				
N/A						
11. Page number:		Revision number:		Da	te of revision:	

FUTURE ACTUAL PM EMISSIONS Bridgestone Americas Tire Operations, Inc. Warren County Plant

Source	Point Number	Pollutant	Emission Factor	Pote	ential	(4	Total A)	PN (I	И ₁₀ b)		И _{2.5} с)
Source		1 01144111	(lb PM / lb Matl)	(lb/hr)	(lb/yr)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	CB-RRBH-001	PM				0.03	0.03	0.03	0.03	0.01	0.01
	CB-RRBH-002	PM				0.13	0.11	0.13	0.11	0.03	0.03
	CB-RRBH-003	PM				0.13	0.11	0.13	0.11	0.03	0.03
Railcar and Trailer	CB-STEF-001 to CB- STEF-020	РМ				0.18	0.16	0.18	0.16	0.04	0.04
Unloading, Storage, and Holding (89-0077-02)	CB-621V-001 to CB- 621V-010 & CB-623V- 001 to CB-623-V-010	РМ				0.24	0.21	0.24	0.21	0.05	0.05
	CLAY001	PM				0.05	0.0014	0.05	0.0014	0.01	0.0003
	B-DCEF-FP1	PM				1.57	0.57	1.57	0.57	0.36	0.13
	B-DCEF-FP2	PM				1.57	0.57	1.57	0.57	0.36	0.13
TOTAL						3.90	1.78	3.90	1.78	0.90	0.41

PM EF Development

Bridge	stone Americ	as Tire Operations	, LLC	;							
Warre	n Plant										
								0.01			
PM Emi	ssion Factor Dev	velopment						gr/dscf			
Source	Stack I.D.	Source Description	Temp. deg. F	Temp deg. R	Moisture %	Flow Rate Actual CFM	Flow Rate DSCFM	PM Emissions (Ib/hr)	Max Throughput (lb/hr)	Emission Factor (Ib PM / Ib Matl)	
-02	CB-RRBH-001	Rail Unloading Baghouse	70	530	1	400	395	0.034			
-02	CB-RRBH-002	Rail Unloading Baghouse	70	530	1	1,500	1,479	0.127			
-02		Rail Unloading Baghouse	70	530	1	1,500	1,479	0.127			
-02	CB-STEF	Silo Exhaust (Pre-Expansion)	70	530	1	700	690	0.118			Two Silos can be loaded at a time
-02	CB-STEF	Silo Exhaust (Post-Expansion)	70	530	1	700	690	0.178			Three Silos can be loaded at a time
-02	CB-621V & CB-623V	BB Day Bin Vents	70	530	1	700	690	0.237			Four bins can be loaded at one time.
-02	B-DCEF-FP	Fin. Pigment Dust Coll.	70	530	1	18,600	18,345	1.572			
-02	CLAY-001	Clay Silo Bin Vent	70	530	1	650	641	0.055			
-05	B-DCEF-P	Pigment Dust Coll.	70	530	1	32,100	31,659	2.714			
-05	B-DCEF-CL	Clay Dust Coll.	70	530	1	32,100	31,659	2.714			
-05	B-DCEF-C	Carbon Dust Coll.	70	530	1	32,100	31,659	2.714			
-05	B-DCEF-C (Tandem)	Carbon Dust Coll.(Tandem)	70	530	1	32,100	31,659	2.714			

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

MANUFACTURING AND MATERIAL USAGE PROCESS EMISSION SOURCE: 89-0077-04

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION MISCELLANEOUS PROCESSES

GENERAL	IDENTIFICATION	AND DESCRIPTION

	Operations, LLC, Warren Plant			
2. Process emission source (i MM (89-0077-04) - Manufac				
3. Stack ID or flow diagram p	oint identification (s):	4. Year of	construction or last modification:	
See attachment APC10		2019 (Op Fl	lex Letter, Submitted Aug. 201	9)
If the emissions are control	lled for compliance, attach an appropriate Air Pol	lution Control s	system form.	•
5. Normal operating schedule	: 24 Hrs./Day _7 Days/Wk. 3	65 Days/	Yr.	
6. Location of this process em	nission source in UTM coordinates: UT	M Vertical : <u>6</u>	001473 UTMHorizontal: <u>39</u>	43484
7. Describe this process (Plea	se attach a flow diagram of this process) and chee	ck one of the fo	llowing:	
✓ Batch	Continuous			
	PROCESS MATERIA	L INPUT AN	ND OUTPUT	
8. List the types and amounts	of raw materials input to this process:			
Material	Storage/Material handling proces	SS	Average usage (units)	Maximum usage (units)
Rubber, wire, fabric, paints, solvents	Pallets, fork lifts, carts, piping, ta	anks	Varies	tons rubber/yr
9. List the types and amounts	of primary products produced by this process:		· · · · · · · · · · · · · · · · · · ·	
Material	Storage/Material handling proces	55	Average usage (units)	Maximum usage (units)
Tire Components and	Stored on skids and transported by	y forklift	Varies	tons/year
Uncured Tires				
10. Process fuel usage:				
Type of fuel	Max heat input (10 ⁶ BTU/Hr.)	1	Average usage (units)	Maximum usage (units)
N/A	N/A			
11. List any solvents, cleaners,	etc., associated with this process:		· · ·	
Calumet 210-245 <1%	", containing low-boiling petroleum distil	llates from liç	ght distillate hydro-treating pro	cess.
If the emissions and/or ope	erations of this process are monitored for complia	nce, please atta	ch the appropriate Compliance Demoi	nstration form.
12. Describe any fugitive emis etc. (please attach a separate shee	sions associated with this process, such as out doc et if necessary)	or storage piles,	open conveyors, open air sand blastir	ng, material handling operations,
···· (F ····· ··· ··· F ····· ··· ···				
13. Page number:	Revision Number:		Date of Revision:	

CN- 1407

Attachment 10.3-A

Stack ID's Associated with process emission source MM (89-0077-04) Stack IDs: General building exhaust:

CL-CMEF-001 (4-Roll Calender Mill Hood Exhaust)	(Existing)
EX-TCEF-001 through -005 (Cement Application Exhausts)	(Existing)
EX-TCEF-006 through -008 (Cement Application Exhausts)	(Proposed)
SC-PEEF-001 (Profile Extruder Exhaust)	(Existing)
SC-PTEF-001 (Inner Liner Microwave Exhaust)	(Existing)
SC-BEI-001 (Belt Edge Insert Extruder Exhaust)	(Existing)
CH-HDEF-001 (Cement Mixing Room Exhaust)	(Existing)
CH-TDEF-002 (Cement Mixing Room Exhaust)	(Existing)
CH-BDEF-003 (Cement Mixing Room Exhaust)	(Existing)
CH-WTV-001 (West Cement Mix Tank Vent)	(Existing)
CH-MTV-002 (Cement Storage Tank Vent)	(Existing)
CH-ETV-003 (East Cement Mix Tank Vent)	(Existing)

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION STACK IDENTIFICATION

GENERAL IDENTIFICATION AND DESCRIPTION					
1. Facility name:					
Bridgestone Americas Tire Operations, LLC, War	en Plant				
2. Emission source (identify):					
MM (89-0077-04) - Manufacturing and Material Us	sage				
	ES CRIPTION				
3. Stack ID (or flow diagram point identification):					
EX-TCEF-006 (cementer #6)					
4. Stack height above grade in feet:					
35					
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:				
11 57	2.3				
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):				
11,111	10,958				
9. Exhaust temperature:	10. Moisture content (data at exit conditions):				
70	Grains per dry				
70 Degrees Fahrenheit (°F)	1 <u>5.01</u> standard cubic foot (gr./dscf.)				
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent	or more of the operating time (for stacks subject to diffusion equation only):				
N/A					
	•				
12. If this stack is equipped with continuous pollutant monitoring equipment re SO ₂ , NO _x , etc.)?	quired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,				
N/A					
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source e	xhausting through this stack.				
BYPASS STA	CK DES CRIPTION				
13. Do you have a bypass stack? XX					
Yes	No				
If yes, describe the conditions which require its use & complete APC form	4 for the bypass stack. Please identify the stack n umber(s) of flow diagram point				
number(s) exhausting through this bypass stack.					
14. Page number: Revision Number:	Date of Revision:				

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION STACK IDENTIFICATION

GENERAL IDENTIFICATION AND DESCRIPTION							
1. Facility name:							
Bridgestone Americas Tire Operations, LLC, Warr	en Plant						
2. Emission source (identify):							
MM (89-0077-04) - Manufacturing and Material Us	age						
	ES CRIPTION						
3. Stack ID (or flow diagram point identification):							
EX-TCEF-007 (cementer #7)							
4. Stack height above grade in feet:							
35							
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:						
11 57	2.3						
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):						
11,111	10,958						
9. Exhaust temperature:	10. Moisture content (data at exit conditions):						
70	Grainsper dry						
70 Degrees Fahrenheit (°F)	1 <u>5.01</u> standard cubic Percent foot (gr./dscf.)						
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent	ormore of the operating time (<u>for stacks subject to diffusion equation only</u>):						
N/A							
(°f)							
12. If this stack is equipped with continuous pollutant monitoring equipment red SO ₂ , NO _x , etc.)?	quired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,						
N/A							
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source ex	hausting through this stack.						
BYPASS STAC	CK DES CRIPTION						
13. Do you have a bypass stack?							
Yes	No						
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack n umber(s) of flow diagram point						
number(s) exhausting through this bypass stack.							
14. Page number: Revision Number:	Date of Revision:						

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION STACK IDENTIFICATION

GENERAL IDENTIFICAT	TION AND DESCRIPTION				
1. Facility name:					
Bridgestone Americas Tire Operations, LLC, Warre	en Plant				
2. Emission source (identify):					
MM (89-0077-04) - Manufacturing and Material Usa	age				
	SCRIPTION				
3. Stack ID (or flow diagram point identification):					
EX-TCEF-008 (cementer #8)					
4. Stack height above grade in feet:					
35					
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:				
44.57 (Actual feet per second)	2.3				
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):				
11,111	10,958				
9. Exhaust temperature:	10. Moisture content (data at exit conditions):				
	Grains per dry				
70 Degrees Fahrenheit (°F)	1 5.01 standard cubic Percent foot (gr./dscf.)				
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent o	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):				
N/A					
(*F)					
12. If this stack is equipped with continuous pollutant monitoring equipment requ	ired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity				
SO_2 , NO_x , etc.)?					
N/A					
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exh	austing through this stack.				
13. Do you have a bypass stack?	K DES CRIPTION				
Yes No					
If yes, describe the conditions which require its use & complete APC form 4	for the by pass stack. Please identify the stack number(s) of flow diagram point				
number(s) exhausting through this bypass stack.					
14. Page number:Revision Number:	Date of Revision:				

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE

requ mon duri	sources that are subject to 1200-05-09-02(11) of the Tennessee Air Pollution Control Regulations are required to cert inements by including a statement within the permit application of the methods used for determining compliance. This statemen nitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for co- ing the permit term. These submittals must be no less frequent than annually and may need to be more frequent if spec inement or the Technical Secretary.	nt must include a description of the ompliance certification submittals
	GENERAL IDENTIFICATION AND DESCRIPTION	
1.	Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant	
2.	Process emission source, fuel burning installation, or incinerator (identify): MM (89-0077-04) - Manufacturing and N	laterial Usage
3.	Stack ID or flow diagram point identification(s): See attachment APC10.3-A	
	METHODS OF DETERMINING COMPLIANCE	
4.	This source as described under Item #2 of this application will use the following method(s) for determining compliance with a (and special operating conditions from an existing permit). Check all that apply and attach the appropriate form(s)	applicable requirements
	Continuous Emission Monitoring (CEM) - APC 20 Pollutant(s):	
	Emission Monitoring Using Portable Monitors - APC 21 Pollut ant(s):	
	Monitoring Control System Parameters or Operating Parameters of a Process - APC 22 Pollutant(s):	
	Monitoring Maintenance Procedures - APC 23 Pollutant(s):	
	Stack Testing - APC 24 Pollutant(s):	
	Fuel Sampling & Analysis (FSA) - APC 25 Pollutant(s):	
	Recordkeeping - APC 26 Pollutant(s): VOC, VOC Content	
	Other (please describe) - APC 27 Pollutant(s):	
5.	Compliance certification reports will be submitted to the Division according to the following schedule: One year after permit issuance	
	Start date: 365 And every days thereafter.	
6.	Compliance monitoring reports will be submitted to the Division according to the following schedule:	
	Start date:Six months after permit issuance	
	And every days thereafter.	
7.	Page number:Revision number:Date of revision:	

Public Version - Trade Secret Information Redacted

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY RECORDKEEPING

 Recordkeeping shall be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the applicable requirement is established.

 GENERAL IDENTIFICATION AND DESCRIPTION

 1. Facility name:
 2. Stack ID or flow diagram point identification(s):

Bridgestone Americas Tire Operations, LLC, Warren Plant 2. Stack ID or flow diagram point identification(s): See attachment APC10.3-A

3. Emission source (identify):

MM (89-0077-04) - Manufacturing and Material Usage

MONITORING AND RECORDKEEPING DESCRIPTION

4. Pollutant(s) or parameter being monitored:

VOC, VOC Content, and HAPs associated with rubber processing and other miscellaneous materials

5. Material or parameter being monitored and recorded:

Rubber processed, cement usage, paint and ink usage, and miscellaneous solvent usage.

6. Method of monitoring and recording:

VOC and HAP Emission Rates

Monthly quantities of materials referenced in section 5 above will be recorded. VOC and HAP emissions resulting from processed rubber will be calculated using AP-42 emission factors developed by the Rubber Manufacturing Association. Other VOC and HAP emissions will be quantified by mass balance. Compliance with the allowable limit will be based on a 12-month rolling period.

VOC Content

VOC content will be calculated over an average monthly basis using available information on materials, VOC content (MSDS, technical data, etc.), and materials usage.

See example "Materials Processing-Monthly Log, VOCs" and "Material Processing-Monthly Log, HAPs"

7. Compliance demonstration frequency (specify the frequency with which compliance will be demonstrated):

12 month rolling sum for VOC and HAP allowable emission rates.

8. Page number:

Revision number:

Date of revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION

EMISSIONS FROM PROCESS EMISSION SOURCE / FUEL BURNING INSTALLATION / INCINERATOR

GENERAL IDENTIFICATION AND DESCRIPTION 1. Facility name: 2. Stack ID or flow diagram point identification(s): Bridgestone Americas Tire Operations, LLC, Warren Plant See attachment APC10.3-A

3. Process emission source / Fuel burning installation / Incinerator (identify):

MM (89-0077-04) - Manufacturing and Material Usage

EMISSIONS SUMMARY TABLE - CRITERIA AND FUGITIVE EMISSIONS

4. Complete the following emissions summary for regulated air pollutants. Fugitive emissions shall be included. Attach calculations and emission factor references.

	Maximum Alle	owable Emissions	Actual Emissions			
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)		
Particulate Matter (TSP)	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Sulfur Dioxide	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Volatile Organic Compounds	206.17		206.17			
(Fugitive Emissions)	N/A		N/A			
Carbon Monoxide	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Lead	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Nitrogen Oxides	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Total Reduced Sulfur	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Mercury	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			

APC 28

		(Cor	ntinued from last page)			APC28
	Maximum All				Actual E	nissions
AIR POLLUT ANT	Tons per Year		Reserved for State use (Pounds per Hour - Item 7, APC 30)		Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
Asbestos	N/A				N/A	
(Fugitive Emissions)	N/A				N/A	
Beryllium	N/A				N/A	
(Fugitive Emissions)	N/A				N/A	
Vinyl Chloride	N/A				N/A	
(Fugitive Emissions)	N/A				N/A	
Fluorides	N/A				N/A	
(Fugitive Emissions)	N/A				N/A	
Gaseous Fluorides	N/A				N/A	
(Fugitive Emissions)	N/A				N/A	
Greenhouse Gases in CO ₂ Equivalents	N/A				N/A	
	MISSIONS SUMMARY T					
5. Complete the following <u>emis</u> Attach calculations and emis	ssions summary for regulated air ssion factor references.	polluta	ints that are hazardous air po	ollutant(s	<u>)</u> . Fugitive emissions sha	ll be included.
	Maxir	num Al	llowable Emissions		Actual	Emissions
Air Pollutant & CAS	Tons per Yea	r	Reserved for State use (Pounds per Hour - Item 7, APC 30)	2	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
Facility-Wide HAP Lim	nit 9.9 (Single HA	NP)			9.9 (Single HAP)	
Facility-Wide HAP Lim	nit 24.9 (Total HA	NP)			24.9 (Total HAP)	
6. Page number:	Revision r	umber	:	·	Date of revision	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CURRENT EMISSIONS REQUIREMENTS AND STATUS

		GENERAL IDENTIFICAT	FION AND DE	SCRIPTION			
1. Facility name:	_	_	2. Emission	source number			
Bridgestone Americas	s Tire Operations	s, LLC, Warren Plant	MM (89-0077-04)				
3. Describe the process emission	n source / fuel burning inst	allation / incinerator.					
Manufacturing and Ma	aterial Usage						
		EMISSIONS AND		ENTS			
 Identify if only a part of the source is subject to this requirement 	5. Pollutant	 Applicable requirement(s): TN Air Pollut Regulations, 40 CFR, permit restrictions, air quality based standards 	ion Control	7. Limitation	 Maximum actual emissions 	9. Compliance status (In/Out)	
Entire section	VOC	1200-3-702 (2)		553.8 tpy	553.8 tpy	In	
				(Facility-Wide)	(Facility-Wide)		
Entire Section	HAP (various)			9.9 tpy indiv. HAP	9.9 tpy indiv. HAP	In	
				(Facility-Wide)	(Facility-Wide)		
Entire Section	HAP (various)			24.9 tpy total HAP	24.9 tpy total HAP	In	
				(Faciltiy-Wide)	(Facility-Wide)		
10. Other applicable requirement	s (new requirements that a	pply to this source during the term of this permit)				
N/A							
11. Page number:		Revision number:		Da	te of revision:		

MATERIAL PROCESSING (89-0077-04)	2016 Production (tire/yr)	2016 Production (lbs/yr)	Potential Production	_		
		*Material Processed		RMA EF	VOC I	Emissions
Process	2016 (lb/yr)	2016 (lb/lb Product)	Potential (lb/yr)	lb. VOC/ lb. Material		ton/yr.
Banbury						18.444
Banbury Remill						0.066
Wire Calender (4-Roll)						19.503
Gum Calender (#3 and #4 Belt Cutter)						0.466
Calender Profile (Profile/PREX)						0.595
Innerliner Extruder (aka Rollerhead, PT Innerliner)						2.329
All Purpose Extruders (#1, #3)						49.667
Sidewall Belt Edge Ext. (8x8x8, and #4 - BEI only)						0.672
Wire Reinforcing Ext/Cal. (REX)						0.801
Bead Filler (DSB)						0.256
Bead Winder (HEX Winders)						0.024
Rubber Mills (Refine Mill - Extrusion)						0.105
TMA Stock Prep. (Rubber Used in Cement House)						0.002
Curing Press Rm.						59.001
Autoclave						0.045
Total rubber VOC emissions						151.98
Solvent Usage		Usage			V	/OC
l	2016	2016	Potential	Density	Weight	Emission
				,	-	(ton/vr)
	1	1 1		i id/gai	Fraction	
Solvent (Includes Cement)				lb/gal	Fraction 1.00	
Solvent (Includes Cement) C264 Cement (70% solvent)				lb/gai		<u>175.594</u> 0.217
					1.00	175.594
C264 Cement (70% solvent)				- 10/gai 	1.00 0.7	175.594 0.217
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML)					1.00 0.7 0.027	175.594 0.217 0.776
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125					1.00 0.7 0.027 0.85	175.594 0.217 0.776 0.622
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858)					1.00 0.7 0.027 0.85 0.94	175.594 0.217 0.776 0.622 3.074
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W					1.00 0.7 0.027 0.85 0.94 0.018	175.594 0.217 0.776 0.622 3.074 0.000
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420					1.00 0.7 0.027 0.85 0.94 0.018 1.00	175.594 0.217 0.776 0.622 3.074 0.000 0.323
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387					1.00 0.7 0.027 0.85 0.94 0.018 1.00 0.86	175.594 0.217 0.776 0.622 3.074 0.000 0.323 2.900
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936 Yellow Chlorobutyl Paint D-4361					1.00 0.7 0.027 0.85 0.94 0.018 1.00 0.86 0.94	175.594 0.217 0.776 0.622 3.074 0.000 0.323 2.900 1.384 0.000
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936					$\begin{array}{c} 1.00\\ 0.7\\ 0.027\\ 0.85\\ 0.94\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ \end{array}$	175.594 0.217 0.776 0.622 3.074 0.000 0.323 2.900 1.384
C264 Cement (70% solvent)TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055					$\begin{array}{c} 1.00\\ 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ \end{array}$	$\begin{array}{c} 175.594\\ 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ \end{array}$
C264 Cement (70% solvent) TMS Cement (LOCTITE SI 5930 FIT 300ML) Marking Ink Usage - White (D1858) Orange Curable Jet Printer Ink D-3125 Mold Spray ML-5401W Ink Jet Cleaner; L-420 Black Repair Paint A-9387 Dot Matrix Yellow Ink D4936 Yellow Chlorobutyl Paint D-4361 Inside Tire Spray Chem-Trend ML-3055 Inside Tire Spray Chem-Trend ML-2012					$\begin{array}{c} 1.00\\ 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ 0.0005\\ \end{array}$	$\begin{array}{r} 175.594\\ 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ \end{array}$
C264 Cement (70% solvent)TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012Inside Tire Spray Chem-Trend ML-3114Mold Release Chem-Trend ML-5419W					$\begin{array}{c} 1.00\\ 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ 0.0005\\ 0.0020\\ 0.0050\\ \end{array}$	$\begin{array}{c} 175.594\\ 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\\ 0.059\\ \end{array}$
C264 Cement (70% solvent)TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012Inside Tire Spray Chem-Trend ML-3114Mold Release Chem-Trend ML-5419WMold Release Chem-Trend ML-8187					1.00 0.7 0.027 0.85 0.94 0.018 1.00 0.86 0.94 0.63 0.0005 0.0020	$\begin{array}{c} 175.594\\ 0.217\\ 0.776\\ 0.622\\ 3.074\\ 0.000\\ 0.323\\ 2.900\\ 1.384\\ 0.000\\ 1.619\\ 0.001\\ 0.066\\ 0.059\\ 0.001\\ \end{array}$
C264 Cement (70% solvent)TMS Cement (LOCTITE SI 5930 FIT 300ML)Marking Ink Usage - White (D1858)Orange Curable Jet Printer Ink D-3125Mold Spray ML-5401WInk Jet Cleaner; L-420Black Repair Paint A-9387Dot Matrix Yellow Ink D4936Yellow Chlorobutyl Paint D-4361Inside Tire Spray Chem-Trend ML-3055Inside Tire Spray Chem-Trend ML-2012Inside Tire Spray Chem-Trend ML-3114Mold Release Chem-Trend ML-5419W					$\begin{array}{c} 1.00\\ 0.7\\ 0.027\\ 0.85\\ 0.94\\ 0.018\\ 1.00\\ 0.86\\ 0.94\\ 0.63\\ 0.0033\\ 0.0005\\ 0.0020\\ 0.0050\\ 0.0003\\ \end{array}$	$\begin{array}{c} 175.594 \\ 0.217 \\ 0.776 \\ 0.622 \\ 3.074 \\ 0.000 \\ 0.323 \\ 2.900 \\ 1.384 \\ 0.000 \\ 1.619 \\ 0.001 \\ 0.066 \\ 0.059 \end{array}$

*Material Processed means all material used in preparation of rubber or rubber products excluding steel wire and fabric used in rubber tire manufacturing.

Cement Station VOC Analysis

VOC Emissions				
Tires/day				
Operating Days/yr	365			
VOC Used	175.6	tpy		

Maximum Annual Cement Used

Bridgestone Americas Tire Operations, LLC Warren Plant

Silane Tire Manufacture Rate = Operating Schedule =

tires/day days/yr

Potential Silane Usage Rate

Annual Tire Production (tires/yr)	Silane Injection Rate (lb/tire)	Silane Density (Ib/gal)	Annual Silane Usage (gal/yr)	Margin (%)	Potential Annual Silane Injection Rate (gal/yr)

Ethanol Emissions From Silane Injection

Process	Emissions Factor (Ibs ethanol/gal silane)	Ethanol Emissions (tpy)
Mixing		162.17
Curing		45.77
Total		207.94

Notes:

Ethanol emission factor based on disulfide silane.

Ethanol Emissions (tpy) = Potential Silane Injection rate (gal/yr) x Silane Emission Factor (lb/gal) / 2000 (lb/ton)

Bridgestone Americas Tire Operations, LLC Warren Plant

Process Emission Source: (89-0077-04)

Manufacturing and Material Usage VOC Emissions

Calculation Methodology:

Process VOC Emissions (tons/month) = Material Processed (lbs/month) x RMA Curing Emission Factor (lb VOC/lb Material Processed)/2000

Non-Rubber Processing VOC Emissions (tons/month) = Material Used (gal/mon) x Density (lbs/gal) x Volatile Weight Fraction/2000

EXAMPLE MATERIAL PROCESSING-MO LOG, VOCs (89-0077-04)	- ·	Month	Year	
	*Material Processed	RMA EF	VOC E	missions
Process	lb./mo.	lb. VOC/ lb. Material Processed		ton/mo.
Wire Calender				
Gum Calender (Belt Cutter)				
Calender Profile (Profile/PREX)				
Innerliner Extruder				
All Purpose Extruders (aka tread tubers)				
Sidewall Belt Edge Ext.				
Wire Reinforcing Ext/Cal.				
Bead Filler				
Bead Winder (aka wire winders)				
Rubber Mills (Refine Mill - Extrusion)				
TMA Stock Prep. (Rubber Used in Cement				
House)				
Autoclave				
Total rubber processing VOC emissions				
				C
	Usage	Density	Weight	Emission
Non-Rubber Processing VOC sources	gal/mo.	lb./gal	Fraction	ton/mo.
Cement Solvent			1.00	
TMS Cement			0.027	
Marking Inks			0.85	
Mold Sprays			0.018	
Ink Jet Cleaner			1.00	
Marking and Repair Paints			0.63	
Inside Tire Sprays			0.0033	
Confidential Material (Mold Release)			NA	
Sub Total Solvent VOC Emissions				
Source Total VOC Emissions				

EXAMPLE MATERIAL PROCESSING-MONTHLY

*Material Processed means all material used in preparation of rubber or rubber products excluding steel wire and fabric used in rubber tire manufacturing.

Bridgestone Americas Tire Operations, LLC Warren Plant Process Emission Source: (89-0077-04)

Manufacturing and Material Usage HAP Emissions

Calculation Methodology: HAP Emissions (tons/month) = Material Processed (lbs/month) x RMA HAP Emission Factor by process (lb HAP/lb Material Processed)/2000

EXAMPLE MATERIAL PROCESSING-N LOG, HAPs (89-0077-04)	IONTHLY						
MonthYear							
Process	Material processed (lb/mo)	HAP 1 Factor (lb HAP/lb Matrl or %)	HAP 1 Emission (tons/mo)	HAP 2 Factor (lb HAP/lb Matrl or %)	HAP 2 Emission (tons/mo.)	 HAP n Factor (lb HAP/lb Matrl or %)	HAP n Emission (tons/mo.)
Wire Calender							
Gum Calender							
Calender Profile							
Innerliner Extruder							
Process n							
Total Ind. HAPs (tons/mo) =			Monthly Sum of HAP 1		Monthly Sum of HAP 2		Monthly Sum of HAP n
Total Individual HAPs Rolling 12-month emissions (tons/yr) =			12-month Sum of HAP 1		12-month Sum of HAP 2		12-month Sum of HAP n

Total HAP Emissions	Month:	
Total Monthly HAP Emissions =	Sum of all HAPs	tons/mo
Total HAP 12-month Rolling	12-month sum of	
Emissions =	all HAPS	tons/year

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

RUBBER MIXING AND MILLING PROCESS EMISSION SOURCE: 89-0077-05

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION MISCELLANEOUS PROCESSES

GENERAL	IDENTIFICATION	AND DESCRIPTION	

1. Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant							
2. Process e mission source (identify):							
B (89-0077-05) - Rubber M 3. Stack ID or flow diagram p	Dixing and Milling	construction or last modification:					
See Attachment 10.2-A	2018	construction of last modification.					
If the emissions are contro	If the emissions are controlled for compliance, attach an appropriate Air Pollution Control system form.						
5. Normal operating schedule: 24 Hrs./Day 7 Days/Wk. 365 Days/Yr.							
^	nission source in UTM coordinates: UTM Vertical : <u>6</u>		3481				
7. Describe this process (Plea	ase attach a flow diagram of this process) and check one of the fol	llowing:					
✓ Batch	Continuous						
	PROCESS MATERIAL INPUT AN	ID OUTPUT					
8. List the types and amounts	of raw materials input to this process:						
Material	Storage/Material handling process	Average usage (units)	Maximum usage (units)				
Carbon Black	pneumatic, mechanical, and manual transfer to mixers	varies					
Clay	pneumatic, mechanical, and manual transfer to mixers	varies					
Pigments/additives/oils	pneumatic, mechanical, and manual transfer to mixers	varies					
Rubber	Mechanical transfer to mixer						
9. List the types and amounts	of primary products produced by this process:						
Material	Storage/Material handling process	Average usage (units)	Maximum usage (units)				
Rubber (final)	Stored on skids and transported by forklift	Varies					
10. Process fuel usage:							
Type of fuel	Max heat input (10 ⁶ BTU/Hr.)	Average usage (units)	Maximum usage (units)				
N/A	N/A						
	etc., associated with this process:						
N/A							
If the emissions and/or ope	erations of this process are monitored for compliance, please attac	ch the appropriate Compliance Demon	stration form.				
	ssions associated with this process, such as outdoor storage piles,	open conveyors, open air sand blasting	g, material handling operations,				
etc. (please attach a separate sheet if necessary).							
13. Page number:	Revision Number:	Date of Revision:					
-							

Attachment 10.2-A

Stack ID's Associated with process emission source

Rubber Mixing and Milling (89-0077-05)

Stack IDs:

B-MVEF-621 through -625 (Banbury Mill Vent Exhausts)	(Existing)
B-DCEF-621C (621Carbon black dust collector)	(Existing)
B-DCEF-621P (621 Pigment dust collector)	(Existing)
B-DCEF-622P (622 Pigment dust collector)	(Existing)
B-DCEF-623C (623 Carbon black dust collector)	(Existing)
B-DCEF-623P (623 Pigment dust collector)	(Existing)
B-DCEF-624C (624 Carbon black dust collector)	(Existing)
B-DCEF-625C (625 Carbon black dust collector)	(Existing)
B-DCEF-625CL (625 Clay dust collector)	(Existing)
B-DCEF-626C (626 Carbon black dust collector)	(Proposed)
B-DCEF-626CL (626 Clay dust collector)	(Proposed)
B-DCEF-627C (627 Carbon black dust collector)	(Proposed)
B-DCEF-627P (627 Pigment dust collector)	(Proposed)
B-DCEF-328C (328 Carbon black dust collector)	(Proposed)
B-DCEF-329C (329 Carbon black dust collector)	(Proposed)

GENERAL IDENTIFICATION AND DESCRIPTION				
1. Facility name:				
Bridgestone Americas Tire Operations, LLC, Warre	n Plant			
 Emission source (identify): B (89-0077-05) - Rubber Mixing and Milling 				
() 3 3				
	SCRIPTION			
B-DCEF-626C (626 carbon dust collector)				
4. Stack height above grade in feet:				
105				
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:			
62.6 (Actual feet per second)	3.3			
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):			
32,100	31,659			
9. Exhaust temperature:	10. Moisture content (data at exit conditions):			
	Grains per dry			
70 Degrees Fahrenheit (°F)	1 5.01 standard cubic Percent foot (gr./dscf.)			
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent o	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):			
N/A				
(°F)				
12. If this stack is equipped with continuous pollutant monitoring equipment requ	ired for compliance, what pollutent(c) does this equipment monitor (e.g. Operity			
SO ₂ , NO _x , etc.)?	area for compnance, what pollutant(s) does this equipment monitor (e.g., Opacity,			
N/A				
Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exh	anoting through this stack			
	K DES CRIPTION			
13. Do you have a bypass stack?				
	No			
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow diagram point number(s) exhausting through this bypass stack.				
14. Page number: Revision Number:	Date of Revision:			

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:			
Bridgestone Americas Tire Operations, LLC, Warr	en Plant		
2. Emission source (identify):			
B (89-0077-05) - Rubber Mixing and Milling			
	ESCRIPTION		
3. Stack ID (or flow diagram point identification):			
B-DCEF-626CL (626 Clay dust collector)			
4. Stack height above grade in feet:			
105			
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:		
75.7 (Actual feet per second)	3		
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):		
32,100	31,659		
9. Exhaust temperature:	10. Moisture content (data at exit conditions):		
	Grains per dry		
70 Degrees Fahrenheit (°F)	1 5.01 standard cubic Percent foot (gr./dscf.)		
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation only):			
N/A			
(*F)			
12. If this stack is equipped with continuous pollutant monitoring equipment rec	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,		
SO_2 , NO_x , etc.)?			
N/A			
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source ex	hausting through this stack.		
BYPASS STACK DESCRIPTION			
13. Do you have a bypass stack?			
Yes	No		
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack number(s) of flow diagram point		
number(s) exhausting through this bypass stack.	To the oy pass stack. Thease identity the stack in uniter (s) of now diagram point		
14. Page number: Revision Number:	Date of Revision:		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION			
1. Facility name:			
Bridgestone Americas Tire Operations, LLC, Warre	en Plant		
2. Emission source (identify):			
B (89-0077-05) - Rubber Mixing and Milling			
	ESCRIPTION		
3. Stack ID (or flow diagram point identification):			
B-DCEF-627C (627 carbon dust collector)			
4. Stack height above grade in feet:			
105			
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:		
62.6 (Actual feet per second)	3.3		
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):		
32,100	31,659		
9. Exhaust temperature:	10. Moisture content (data at exit conditions):		
	Grains per dry		
70 Degrees Fahrenheit (°F)	1 5.01 standard cubic Percent foot (gr./dscf.)		
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	ormore of the operating time (<u>for stacks subject to diffusion equation only</u>):		
N/A (°F)			
12. If this stack is equipped with continuous pollutant monitoring equipment req SO ₂ , NO _x , etc.)?	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,		
N/A			
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source ex	hausting through this stack.		
BYPASS STACK DESCRIPTION			
13. Do you have a bypass stack?			
	No		
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack number(s) of flow diagram point		
number(s) exhausting through this bypass stack.			
14. Page number:Revision Number:	Date of Revision:		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
B (89-0077-05) - Rubber Mixing and Milling		
	ESCRIPTION	
3. Stack ID (or flow diagram point identification):		
B-DCEF-627P (627 Pigment dust collector)		
4. Stack height above grade in feet:		
105		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
75 7	3	
(Actual feet per second)		
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
32,100	31,659	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70	Grains per dry	
70 Degrees Fahrenheit (°₽)	Percent 5.01 standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	brmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A		
(°f)		
12. If this stack is equipped with continuous pollutant monitoring equipment req SO ₂ , NO _x , etc.)?	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,	
N/A		
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source ex	hausting through this stack.	
BYPASS STACK DESCRIPTION		
13. Do you have a bypass stack?		
	No	
If yes, describe the conditions which require its use & complete APC form 4	for the bypass stack. Please identify the stack number(s) of flow diagram point	
number(s) exhausting through this bypass stack.		
14. Page number:Revision Number:	Date of Revision:	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

1. Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant 2. Emission source (identify): B (89-0077-05) - Rubber Mixing and Milling STACK DESCRIPTION		
 2. Emission source (identify): B (89-0077-05) - Rubber Mixing and Milling STACK DESCRIPTION 		
B (89-0077-05) - Rubber Mixing and Milling STACK DESCRIPTION		
STACK DESCRIPTION		
3. Stack ID (or flow diagram point identification):		
B-DCEF-328C (328 carbon dust collector)		
4. Stack height above grade in feet:		
105		
5. Velocity (data at exit conditions): 6. Inside dimensions at outlet in feet:		
62.6 (Actual feet per second) 3.3		
7. Exhaust flow rate at exit conditions (ACFM): 8. Flow rate at standard conditions (DSCFM):		
32,100 31,659		
9. Exhaust temperature: 10. Moisture content (data at exit conditions):		
70 1 Standard c Degrees Fahrenheit (°F) Percent 5.01 Grains per standard c	ubic	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (for stacks subject to diffusion equation	<u>only</u>):	
N/A(°F)		
12. If this stack is equipped with continuous pollutant monitoring equipment required for compliance, what pollutant(s) does this equipment monitor	(e.g., Opacity,	
SO_2 , NO_x , etc.)?		
N/A		
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.		
BYPASS STACK DESCRIPTION		
13. Do you have a bypass stack?		
Yes No		
If yes, describe the conditions which require its use & complete APC form 4 for the bypass stack. Please identify the stack number(s) of flow dia	man naint	
number(s) exhausting through this bypass stack.	gram point	
14. Page number:Revision Number:Date of Revision:		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

GENERAL IDENTIFICATION AND DESCRIPTION		
1. Facility name:		
Bridgestone Americas Tire Operations, LLC, Warre	en Plant	
2. Emission source (identify):		
B (89-0077-05) - Rubber Mixing and Milling		
STACK DI	SCRIPTION	
3. Stack ID (or flow diagram point identification):		
B-DCEF-329C (329 Carbon dust collector)		
4. Stack height above grade in feet:		
105		
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:	
62.6 (Actual feet per second)	3.3	
7. Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):	
32,100	31,659	
9. Exhaust temperature:	10. Moisture content (data at exit conditions):	
70 Degrees Fahrenheit (°F)	1 Percent 5.01 Grains per dry standard cubic foot (gr./dscf.)	
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent of	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):	
N/A (°F)		
	uired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,	
SO_2 , NO_x , etc.)?		
N/A		
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each source exhausting through this stack.		
BYPASS STACK DESCRIPTION		
13. Do you have a bypass stack?		
XX Yes	No	
If yes, describe the conditions which require its use & complete APC form A	for the bypass stack. Please identify the stack number(s) of flow diagram point	
number(s) exhausting through this bypass stack.	for the by pass stack. I lease identify the stack in uniter (5) of now diagram point	
14. Page number: Revision Number:	Date of Revision:	

1. Facility name:	2. I	mission source (identify):
-		
Bridgestone Americas Tire Operations, LLC,	warren B (8	9-0077-05) Rubber Mixing and Milling
Plant		
3. Stack ID or flow diagram point identification (s):		
B-DCEF-626C (626 carbon black dust co	ollector)	
•	JSE/FABRIC FILTE	R DESCRIPTION
4. Describe the device in use. List the key operating parameter		
		nonim of transferred.
	D	
	ecovery. Press	sure drop monitored - normal range 0.5"
minimum to 6.0"		
5. Manufacturer and model number (if available): N/A		6. Year of installation:
N/A		2023
7. List of pollutant(s) to be controlled and the expected control	efficiency for each pollu	tant (see instructions).
Pollutant	Efficiency (%)	Source of data
Tonuant	Efficiency (70)	source of data
Particulate Matter	99	Vendor Guarantee
8. Discuss how collected material is handled for reuse or dispo		
Collected material is reused or sent off-site for disposa	al.	
9. If the bags are coated, specify the material used for coating a	and frequency of coating	
N/A		
10. Does the baghouse collect asbestos containing material?		
	Y	res No V
If "Ver" monide data as antitud in Item 10 Test (1 C		
If "Yes", provide data as outlined in Item 10, Instructions fo	r this form.	- feethe growth off signar
11. If this control equipment is in series with some other control	r this form.	ccify the overall efficiency.
	r this form.	cify the overall efficiency.
11. If this control equipment is in series with some other control N/A	r this form. l equipment, state and spo	
11. If this control equipment is in series with some other control N/A	r this form. l equipment, state and spo	ceify the overall efficiency. Date of Revision:

GEATERCE			
1. Facility name: 2. Emission source (identify):			
Bridgestone Americas Tire Operations, LLC,	ridgestone Americas Tire Operations, LLC, Warren		
Plant	B (89-0077-05) Rubber Mixing and Milling		
3. Stack ID or flow diagram point identification (s):			
B-DCEF-626CL (626 Clay dust collector	·)		
	USE/FABRIC FILTER		
4. Describe the device in use. List the key operating parameter	ers of this device and their no	ormal operating range.	
Dust collector used for raw material	recovery. Pressu	re drop monitored - normal range 0.5"	
minimum to 6.0"			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each polluta	nt (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Tonuunt	Efficiency (70)	Source of duru	
Particulate Matter	99	Vendor Guarantee	
8. Discuss how collected material is handled for reuse or dispo			
Collected material is reused or sent off-site for dispos	al.		
9. If the bags are coated, specify the material used for coating N/A	and frequency of coating		
10. Does the baghouse collect asbestos containing material?			
	V		
Yes No Yes No			
11. If this control equipment is in series with some other control		fy the overall efficiency.	
N/A	1 , State and Speen	J	
12. Page number: Revision			
12. Page number: Revision	Number:	Date of Revision:	
12. Tage number. Revision	Number:	Date of Revision:	

on (he h		
1. Facility name:	2. Emi	ssion source (identify):
Bridgestone Americas Tire Operations, LLC,	Warren B (89-	0077-05) Rubber Mixing and Milling
Plant	00) 0	our objetablet wixing and willing
3. Stack ID or flow diagram point identification (s):		
B-DCEF-627C (627 carbon black dust c	ollector)	
	,	
	USE/FABRIC FILTER	
4. Describe the device in use. List the key operating parameter	ers of this device and their no	rmal operating range.
Dust collector used for raw material	recoverv. Pressu	re drop monitored - normal range 0.5"
minimum to 6.0"	,,	3
5. Manufacturer and model number (if available):		6. Year of installation:
N/A		2023
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each pollutan	t (see instructions).
Pollutant	Efficiency (%)	Source of data
Dertieulete Metter	00	
Particulate Matter	99	Vendor Guarantee
8. Discuss how collected material is handled for reuse or disp	osal.	
Collected material is reused or sent off-site for dispos	al.	
9. If the bags are coated, specify the material used for coating	and frequency of coating	
N/A		
10. Does the baghouse collect asbestos containing material?		
	Yes	No No
If "Yes", provide data as outlined in Item 10, Instructions f		uthe event officiency
11. If this control equipment is in series with some other control N/A	or equipment, state and specif	y the overall efficiency.
12. Page number: Revision	Number:	Date of Revision:
5		

1. Facility name: 2. Emission source (identify):		
Bridgestone Americas Tire Operations, LLC,	Warren B (89-0	0077-05) Rubber Mixing and Milling
Plant		
3. Stack ID or flow diagram point identification (s):	I	
B-DCEF-627P (627 Pigment dust collec	tor)	
· •	USE/FABRIC FILTER I	DESCRIPTION
4. Describe the device in use. List the key operating parameter		
Dust collector used for raw material	recovery Pressu	e drop monitored - normal range 0.5"
minimum to 6.0"		e arep memorea memarrange ele
5. Manufacturer and model number (if available):		6. Year of installation:
N/A		2023
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each pollutant	(see instructions).
Pollutant	Efficiency (%)	Source of data
1 onwant	Efficiency (70)	
Particulate Matter	99	Vendor Guarantee
8. Discuss how collected material is handled for reuse or disp	osal.	
Collected material is reused or sent off-site for dispos	al.	
9. If the bags are coated, specify the material used for coating N/A	and frequency of coating	
10. Does the baghouse collect asbestos containing material?		
	Yes	No 🖌
If "Yes", provide data as out lined in Item 10, Instructions f	or this form.	
11. If this control equipment is in series with some other control	ol equipment, state and specify	y the overall efficiency.
N/A		
12. Page number: Revision	Number:	Date of Revision:
	Da == 100 -£ 20	•

Γ

1. Facility name:	2. Emi	ssion source (identify):	
		B (89-0077-05) Rubber Mixing and Milling	
3. Stack ID or flow diagram point identification (s):	•		
B-DCEF-328C (328 carbon black dust c	ollector)		
	USE/FABRIC FILTER	DESCRIPTION	
4. Describe the device in use. List the key operating parameter			
Dust collector used for raw material recovery. Pressure drop monitored - normal range 0.5" minimum to 6.0"			
5. Manufacturer and model number (if available):		6. Year of installation:	
N/A		2023	
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each pollutan	t (see instructions).	
Pollutant	Efficiency (%)	Source of data	
Particulate Matter	99	Vendor Guarantee	
 Discuss how collected material is handled for reuse or disposal. Collected material is reused or sent off-site for disposal. 			
9. If the bags are coated, specify the material used for coating and frequency of coating N/A			
10. Does the baghouse collect asbestos containing material?			
If "Yes", provide data as outlined in Item 10, Instructions for this form.			
11. If this control equipment is in series with some other control equipment, state and specify the overall efficiency. N/A			
12. Page number: Revision	Number:	Date of Revision:	

1. Facility name:	2 Emi	ssion source (identify):
Bridgestone Americas Tire Operations, LLC, Plant	14/	0077-05) Rubber Mixing and Milling
3. Stack ID or flow diagram point identification (s):		
B-DCEF-329C (329 carbon black dust c	ollector)	
BAGHO	USE/FABRIC FILTER I	DES CRIPTION
4. Describe the device in use. List the key operating parameter	ers of this device and their no	mal operating range.
Dust collector used for raw material recovery. Pressure drop monitored - normal range 0.5" minimum to 6.0"		
5. Manufacturer and model number (if available):		6. Year of installation:
N/A		2023
7. List of pollutant(s) to be controlled and the expected control	ol efficiency for each pollutant	t (see instructions).
Pollutant	Efficiency $(0/)$	Source of data
Ponutant	Efficiency (%)	Source of data
Particulate Matter	99	Vendor Guarantee
8. Discuss how collected material is handled for reuse or disp	osal.	
Collected material is reused or sent off-site for dispos	sal.	
	10	
9. If the bags are coated, specify the material used for coating and frequency of coating N/A		
10. Does the baghouse collect asbestos containing material?		
If "Yes", provide data as outlined in Item 10, Instructions for this form.		
11. If this control equipment is in series with some other control	ol equipment, state and specif	y the overall efficiency.
N/A		
12. Page number: Revision	n Number:	Date of Revision:

Г

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE to 1200-03-09- 02(11) of the Tennessee Air Pollution (

requ mor duri	All sources that are subject to 1200-03-0902(11) of the Tennessee Air Pollution Control Regulations are required to certify compliance with all applicable requirements by including a statement within the permit application of the methods used for determining compliance. This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually and may need to be more frequent if specified by the underlying applicable requirement or the Technical Secretary.								
		GENERAL IDENTIFICATION AND DESCRIPT	TION						
1.	Facility name: Bridgestor	ne Americas Tire Operations, LLC, Warren Plant							
2.	Process emission source, fue	burning installation, or incinerator (identify): B (89-0077-05) - Rub	ber Mixing and Milling						
3.	Stack ID or flow diagram po	nt identification(s): See Attachment 10.2-A							
		METHODS OF DETERMINING COMPLIANCE							
4.		er I tem #2 of this application will use the following method(s) for determinitions from an existing permit). Check all that apply and attach the appropria							
	Continuous Emissi Pollutant(s):	on Monitoring (CEM) - APC 20							
	Emission Monitori Pollutant(s):	ng Using Portable Monitors - APC 21							
	Monitoring Contro Pollutant(s):	System Parameters or Operating Parameters of a Process - APC 22							
	Monitoring Mainter Pollutant(s):	nance Procedures - APC 23 Particulate matter							
	Stack Testing - AP Pollutant(s):	C 24							
	Fuel Sampling & A Pollutant(s):	nalysis (FSA) - APC 25							
	Recordkeeping - A Pollutant(s):	PC 26 VOC and HAP							
	Other (please descr Pollutant(s):	ibe) - APC 27							
5.	Compliance certification rep	orts will be submitted to the Division according to the following schedule:							
	Start date: One year	after permit issuance							
	And every day	/s thereafter.							
6.	Compliance monitoring repo	rts will be submitted to the Division according to the following schedule:							
	Start date:	s after permit issuance							
	And every day	/s thereafter.							
7.	Page number:	Revision number:	Date of revision:						

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY MONITORING MAINTENANCE PROCEDURES The monitoring of a maintenance procedure shall be acceptable as a compliance demonstration method provided that a correlation between the procedure and the

emission rate of a particular pollutant is established. **GENERAL IDENTIFICATION AND DESCRIPTION** 1. Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant Stack ID or flow diagram point identification(s): 2. See Attachment 10.2-A Emission source (identify): 3. B (89-0077-05) - Rubber Mixing and Milling **MONITORING DESCRIPTION** Pollutant(s) being monitored: 4. Particulate matter Procedure being monitored: 5. Dust collector inspection and maintenance Description of the method of monitoring and establishment of correlation between the procedure and the emission rate of a particular pollutant: 6. Dust collector emissions are guaranteed by the vendor at 99+%. Proper upkeep of the dust collectors will, therefore, yield a control efficiency commensurate with the vendor's guarantee. Quarterly inspections of the dust collector are currently being conducted and maintenance will be performed as required. Compliance has been achieved during the previous permit term using this method. 7. Compliance demonstration frequency (specify the frequency with which compliance will be demonstrated): Quarterly 8. Page number: Revision number: Date of revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY RECORDKEEPING

Recordkeeping shall be acceptable as a compliance demonstration method prov requirement is established.	ided that a correlation between the parameter value recorded and the applicable							
GENERAL IDENTIFICATION AND DESCRIPTION								
1. Facility name:	2. Stack ID or flow diagram point identification(s):							
Bridgestone Americas Tire Operations, LLC, Warren Plant	See attachment APC10.2-A							
3. Emission source (identify):								
B (89-0077-05) - Rubber Mixing and Milling								
4. Pollutant(s) or parameter being monitored:	RDKEEPING DESCRIPTION							
VOC and HAP								
5. Material or parameter being monitored and recorded:								
Rubber processed and rubber type used								
6. Method of monitoring and recording:								
VOO and UAD Emission Data								
VOC and HAP Emission Rate	a affected equipment will be recorded. VOC and							
Monthly quantities of rubber processed through each HAP emissions resulting from processing the rubbe								
developed by the Rubber Manufacturing Association								
based on a 12-month rolling period.								
7. Compliance demonstration frequency (specify the frequency with which comp	·							
12 month rolling sum for VOC and HAP allowat	ble emission rate.							
8. Page number: Revision number:	Date of revision:							

APC 26

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION EMISSIONS FROM PROCESS EMISSION SOURCE / FUEL BURNING INSTALLATION / INCINERATOR

GENERAL IDENTIFICATION AND DESCRIPTION 1. Facility name: 2. Stack ID or flow diagram point identification(s): Bridgestone Americas Tire Operations, LLC, Warren Plant See Attachment 10.2-A

Process emission source / Fuel burning installation / Incinerator (identify):
 B (89-0077-05) - Rubber Mixing and Milling

EMISSIONS SUMMARY TABLE - CRITERIA AND FUGITIVE EMISSIONS

4. Complete the following emissions summary for regulated air pollutants. Fugitive emissions shall be included. Attach calculations and emission factor references.

	Maximum Alle	owable Emissions	Actual Emissions			
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)		
Particulate Matter (TSP)	11.32		11.32			
(Fugitive Emissions)	N/A		N/A			
Sulfur Dioxide	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Volatile Organic Compounds	180.62		180.62			
(Fugitive Emissions)	N/A		N/A			
Carbon Monoxide	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Lead	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Nitrogen Oxides	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Total Reduced Sulfur	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			
Mercury	N/A		N/A			
(Fugitive Emissions)	N/A		N/A			

APC 28

		(Continued from last page)		711 C 20
		wable Emissions	Actual	Emissions
AIR POLLUT ANT	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)
Asbestos	N/A		N/A	
(Fugitive Emissions)	N/A		N/A	
Beryllium	N/A		N/A	
(Fugitive Emissions)	N/A		N/A	
Vinyl Chloride	N/A		N/A	
(Fugitive Emissions)	N/A		N/A	
Fluorides	N/A		N/A	
(Fugitive Emissions)	N/A		N/A	
Gaseous Fluorides	N/A		N/A	
(Fugitive Emissions)	N/A		N/A	
Greenhouse Gases in CO ₂ Equivalents	N/A		N/A	
E	MISSIONS SUMMARY TA	BLE – FUGITIVE HAZAF	RDOUS AIR POLLUTANTS	
5. Complete the following <u>emis</u> Attach calculations and emis	sions summary for regulated air r sion factor references.	pollutants that are hazardous air p	ollutant(s). Fugitive emissions sh	all be included.
	Maxim	um Allowable Emissions	Actu	al Emissions
Air Pollutant & CAS	Tons per Year	Reserved for State u (Pounds per Hour Item 7, APC 30)		Reserved for State use (Pounds per Hour- Item 8, APC 30)
Facility-Wide HAP Lim	it 9.9 (Single HAF	>)	9.9 (Single HAP)	
Facility-Wide HAP Lim	it 24.9 (Total HAF	>)	24.9 (Total HAP)	
6. Page number:	Revision nu	imber:	Date of revision	

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CURRENT EMISSIONS REQUIREMENTS AND STATUS

GENERAL IDENTIFICATION AND DESCRIPTION											
1. Facility name:				source number							
Bridgestone Americas Tire Operations, LLC, Warren Plant B (89-0077-05)											
3. Describe the process emission	3. Describe the process emission source / fuel burning installation / incinerator.										
B (89-0077-05) - Rub	B (89-0077-05) - Rubber Mixing and Milling										
	EMISSIONS AND REQUIREMENTS										
 Identify if only a part of the source is subject to this requirement 	5. Pollutant	 Applicable requirement(s): TN Air Polluti Regulations, 40 CFR, permit restrictions, air quality based standards 	on Control	7. Limitation	 Maximum actual emissions 	9. Compliance status (In/Out)					
See Attachment 10.2-A	Particulate	1200-3-701(5)		Previous Permit Limit							
ALL UNITS COMBINED	Particulate	1200-3-701(5)		25.5 lbs/hr		In					
ALL UNITS COMBINED	Particulate	1200-3-701(5)		Limit to avoid PSD							
				38.0 lb/hr & 11.32 Tons/Year	38.0 lb/hr & 11.32 Tons/Year	In					
	Opacity	1200-3-501(3)		10% (6 min. avg)	10%	In					
Facility-Wide	VOC	1200-3-707(2)		553.8 tpy	553.8 tpy	In					
Facility-Wide	HAP (indiv.)			9.9 tpy	9.9 tpy	In					
Facility-Wide	HAP (total)			24.9 tpy	24.9 tpy	In					
10. Other applicable requirements	s (new requirements that a	pply to this source during the term of this permit)									
N/A											
11. Page number:		Revision number:		Da	te of revision:						

FUTURE ACTUAL PM EMISSIONS Bridgestone Americas Tire Operations, Inc. Warren County Plant

1	Material Handled	1	PM_{Total}
		1	I ⊥VI Total
7			

Source	Point Number	Pollutant	Emission Factor	sion Factor Material Handled Potential		PM _{Total} (a)		PM ₁₀ (b)		PM _{2.5} (c)	
Source	I ont Number	Tonutant	(lb PM / lb Matl)	(lb/hr)	(lb/yr)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	CB-RRBH-001	PM				0.03	0.03	0.03	0.03	0.01	0.01
	CB-RRBH-002	PM				0.13	0.11	0.13	0.11	0.03	0.03
	CB-RRBH-003	PM				0.13	0.11	0.13	0.11	0.03	0.03
Railcar and Trailer Unloading, Storage, and	CB-STEF-001 to CB- STEF-020	РМ				0.18	0.16	0.18	0.16	0.04	0.04
Holding (89-0077-02)	CB-621V-001 to CB- 621V-010 & CB-623V- 001 to CB-623-V-010	PM				0.24	0.21	0.24	0.21	0.05	0.05
	CLAY001	PM				0.05	0.0014	0.05	0.0014	0.01	0.0003
	B-DCEF-FP1	PM				1.57	0.57	1.57	0.57	0.36	0.13
	B-DCEF-FP2	PM				1.57	0.57	1.57	0.57	0.36	0.13
TOTAL						3.90	1.78	3.90	1.78	0.90	0.41
	B-DCEF-621-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-623-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-624-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-625-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-621-P	PM				2.71	1.25	2.71	1.25	0.62	0.29
	B-DCEF-622-P	PM				2.71	1.25	2.71	1.25	0.62	0.29
Rubber Mixing and Milling	B-DCEF-623-P	PM				2.71	1.25	2.71	1.25	0.62	0.29
(89-0077-05)	B-DCEF-625-CL	PM				2.71	0.09	2.71	0.09	0.62	0.02
	B-DCEF-626-CL	PM				2.71	0.09	2.71	0.09	0.62	0.02
	B-DCEF-626-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-627-C	PM				2.71	0.62	2.71	0.62	0.62	0.14
	B-DCEF-627-P	PM				2.71	1.25	2.71	1.25	0.62	0.29
	B-DCEF-328-C	PM				2.71	1.23	2.71	1.23	0.62	0.28
	B-DCEF-329-C TOTAL	PM				2.71 37.99	1.23 11.32	2.71 37.99	1.23 11.32	0.62 8.74	0.28

(a) Example Calculation: PMTPM_{Total} (lb/hr) = Material Handled (lb/hr) x Dust to Dust Collector (%) x (100% - Control Efficiency (%))

(b) $PM_{10} = PM_{Total}$ (Conservative Assumption)

(c) PM2.5 estimated using an assumed 23% of total particulate. The particle distribution was taken from Appendix B-2, Generalized Particle Size Distributions, of AP-42.

PM EF Development

Bridge	estone Americ	as Tire Operations	, LLC	;							
•	n Plant	-	-								
								0.01			
PM Emi	ssion Factor Dev	velopment						gr/dscf			
Source	Stack I.D.	Source Description	Temp. deg. F	Temp deg. R	Moisture %	Flow Rate Actual CFM	Flow Rate DSCFM	PM Emissions (Ib/hr)	Max Throughput (Ib/hr)	Emission Factor (Ib PM / Ib Matl)	
-02	CB-RRBH-001	Rail Unloading Baghouse	70	530	1	400	395	0.034			
-02	CB-RRBH-002	Rail Unloading Baghouse	70	530	1	1,500	1,479	0.127			
-02	CB-RRBH-003	Rail Unloading Baghouse	70	530	1	1,500	1,479	0.127			
-02	CB-STEF	Silo Exhaust (Pre-Expansion)	70	530	1	700	690	0.118			Two Silos can be loaded at a time
-02	CB-STEF	Silo Exhaust (Post-Expansion)	70	530	1	700	690	0.178			Three Silos can be loaded at a time
-02	CB-621V & CB-623V	BB Day Bin Vents	70	530	1	700	690	0.237			Four bins can be loaded at one time
-02	B-DCEF-FP	Fin. Pigment Dust Coll.	70	530	1	18,600	18,345	1.572			
-02		Clay Silo Bin Vent	70	530	1	650	641	0.055			
-05	B-DCEF-P	Pigment Dust Coll.	70	530	1	32,100	31,659	2.714			
-05		Clay Dust Coll.	70	530	1	32,100	31,659	2.714			
-05	B-DCEF-C	Carbon Dust Coll.	70	530	1	32,100	31,659	2.714			
-05	B-DCEF-C (Tandem)	Carbon Dust Coll.(Tandem)	70	530	1	32,100	31,659	2.714			

Bridgestone Americas Tire Operations, LLC Warren Plant Process Emission Source: (89-0077-05)

Banbury Area VOC Emissions

Calculation methodology:

VOC Emissions (tons/month) = Material Processed (lbs/month) x RMA Emission Factor (lb VOC/lb Material Processed) /2000

EXAMPLE BANBURY MATERIAL PROCESSING

EAAMI LE DAIVDURT MATERIAL I ROCESSING			
MONTHLY LOG VOCs (89-0077-05)		Month	Year
		RMA EF	
	*Material	lb. VOC/	
	Processed	lb. Material	VOC Emissions
	lb./mo.	Processed	ton/mo.
Process			
Banbury			
Banbury Remill			
Total Banbury VO	C emissions		

*Material Processed means all material used in preparation of rubber at the Banbury Mixers Bridgestone Americas Tire Operations, LLC Warren Plant Process Emission Source: (89-0077-05)

Banbury Area HAP Emissions

Calculation methodology:

HAP Emissions (tons/month) = Banbury Material Processed (lbs/month) x RMA Emission Factor for each HAP (lb HAP/lb Material Processed-Banbury) / 2000 + Banbury Remill Material Processed (lbs/month) x RMA Emission Factor for each HAP (lb HAP/lb Material Processed-Banbury Remill) / 2000

EXAMPLE BANBURY MATERIAL PROCESSING MONTHLY LOG HAPs (89-0077-05)

RMA EFRMA EFRMA EFRMA EF"Material Processed"Material ProcessedProcessedHAP EmissionsProcess(Banbury)Remilly $HAP Emissions$ BanburyImage: Second Secon	MONTHLY LOG HAPs (89-0077-05)		-	Month	Ye	ear
Ib. Material Processed Ib./mo.Ib. Material Processed (Banbury)Ib. Material Processed (Banbury)HAP Emissions ton/mo.ProcessIb./mo.Remill)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
*Material Processed (Banbury)						
Processed lb./mo. Processed (Banbury) (Banbury) HAP Emissions ton/mo. Process Image: Second S		*Motorial				
Ib.mo.(Banbury)Remill)ton/mo.ProcessIdentifiedIdentifiedIdentifiedBanburyIdentifiedIdentifiedIdentifiedBanbury RemillIdentifiedIdentifiedIdentifiedBanbury RemillIdentifiedIdentifiedIdentifiedBanbury RemillIdentifiedIdentifiedIdentifiedBanbury RemillIdentifiedIdentifiedIdentifiedBanbury RemillIdentifiedIdentifiedIdentifiedI,1,1-TrichloroethaneIdentifiedIdentifiedIdentified1,3-ButadieneIdentifiedIdentifiedIdentified1,4-DichlorobenzeneIdentifiedIdentifiedIdentified2-MethylphenolIdentifiedIdentifiedIdentified4-Methyl-2-PentanoneIdentifiedIdentifiedIdentifiedAcetaldehydeIdentifiedIdentifiedIdentifiedAcetaldehydeIdentifiedIdentifiedIdentifiedAcetaldehydeIdentifiedIdentifiedIdentifiedAcetaldehydeIdentifiedIdentifiedIdentifiedBenzeneIdentifiedIdentifiedIdentifiedBiphenylIdentifiedIdentifiedIdentifiedBiphenylIdentifiedIdentifiedIdentifiedCarbon TetrachlorideIdentifiedIdentifiedIdentifiedCarbon TetrachlorideIdentifiedIdentifiedIdentifiedChromitum (Cr) CompoundsIdentifiedIdentifiedIdentified <td< td=""><td></td><td></td><td></td><td></td><td>нар</td><td>Emissions</td></td<>					нар	Emissions
Process Image: Constraint of the second						
Banbury Remill Image: Constraint of the second	Process			,		
Banbury Remill Image: Constraint of the second						
Banbury Remill Image: Constraint of the second						
HAPs1,1.1-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,3-Butadiene1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsDi-n-butylphthalateDi-n-butylphthalate	Banbury					
1,1,1-Trichloroethane1,1-Dichloroethane1,3-Butadiene1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalateDi-n-butylphthalate	Banbury Remill					
1,1,1-Trichloroethane1,1-Dichloroethane1,3-Butadiene1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalateDi-n-butylphthalate						
1,1-Dichloroethene1,3-Butadiene1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	HAPs					
1,3-Butadiene1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	1,1,1-Trichloroethane					
1,4-Dichlorobenzene2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChromium (Cr) CompoundsCumeneDi-n-butylphthalateImage: Carbon CompoundsCumeneImage: Carbon CompoundsImage: Carbon Compounds <td>1,1-Dichloroethene</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1-Dichloroethene					
2-Methylphenol4-Methyl-2-PentanoneAcetaldehydeAcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalateImage: Carbon Section (Cr) CompoundsCumeneImage: Carbon Section (Cr) CompoundsImage: Carbon Cristical (Cristical (Cristica	1,3-Butadiene					
4-Methyl-2-Pentanone Acetaldehyde Acetophenone Aniline Benzene Biphenyl bis(2-Ethylhexyl)phthalate Bromoform Cadmium (Cd) Carbon Disulfide Carbon Tetrachloride Chloromethane Chromium (Cr) Compounds Di-n-butylphthalate	1,4-Dichlorobenzene					
AcetaldehydeImage: Composition of the sector of	2-Methylphenol					
AcetophenoneAnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	4-Methyl-2-Pentanone					
AnilineBenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	Acetaldehyde					
BenzeneBiphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	Acetophenone					
Biphenylbis(2-Ethylhexyl)phthalateBromoformCadmium (Cd)Carbon DisulfideCarbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate	Aniline					
bis(2-Ethylhexyl)phthalate Bromoform Cadmium (Cd) Carbon Disulfide Carbon Tetrachloride Chloromethane Chromium (Cr) Compounds Cumene Di-n-butylphthalate	Benzene					
Bromoform Image: Carbon Disulfide Carbon Disulfide Image: Carbon Tetrachloride Carbon Tetrachloride Image: Chloromethane Chloromethane Image: Chromium (Cr) Compounds Cumene Image: Chloromethalate Di-n-butylphthalate Image: Chloromethalate	Biphenyl					
Cadmium (Cd)Image: Carbon DisulfideCarbon TetrachlorideImage: Carbon TetrachlorideChloromethaneImage: Chromium (Cr) CompoundsCumeneImage: Carbon CumeneDi-n-butylphthalateImage: Carbon Cumene	bis(2-Ethylhexyl)phthalate					
Carbon DisulfideImage: Carbon TetrachlorideCarbon TetrachlorideImage: Carbon TetrachlorideChloromethaneImage: Carbon CompoundsChromium (Cr) CompoundsImage: Carbon CompoundsCumeneImage: Carbon CompoundsDi-n-butylphthalateImage: Carbon Compounds	Bromoform					
Carbon TetrachlorideChloromethaneChromium (Cr) CompoundsCumeneDi-n-butylphthalate						
Chloromethane Image: Chromium (Cr) Compounds Cumene Image: Chromitian (Cr) Compounds Di-n-butylphthalate Image: Chromitian (Cr) Compounds	Carbon Disulfide					
Chromium (Cr) Compounds Cumene Di-n-butylphthalate	Carbon Tetrachloride					
Cumene Di-n-butylphthalate						
Di-n-butylphthalate	Chromium (Cr) Compounds					
	Cumene					
Dibenzofuran	Di-n-butylphthalate					
	Dibenzofuran					

Dimethylphthalate		
Ethylbenzene		
Hexane		
Hydroquinone		
Isooctane		
Isophorone		
Lead (Pb) Compounds		
m-Xylene + p-Xylene		
Methylene Chloride		
Naphthalene		
Nickel (Ni) Compounds		
o-Xylene		
Phenol		
Styrene		
Tetrachloroethene		
Toluene		
	•	

*Material Processed means all material used in preparatio

ixers

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

POWER HOUSE

PROCESS EMISSION SOURCE: 89-0077-10

TITLE V PERMIT APPLICATION FUEL BURNING NON-PROCESS EQUIPMENT

GENERAL IDENTIFICATION AND DESCRIPTION									
1. Facility name: Bridgestone Americas T	1. Facility name: Bridgestone Americas Tire Operations, LLC - Warren Plant								
-	 Stack ID or flow diagram point identification (s): PH-BEF-001, PH-BEF-002, PH-BEF-003, and PH-HHEF-001 								
2 List all first humin a series		RNING EQUIPM			a a anti-				
	ment that is at this fuel burning ins	tallation (please com	plete an APC 4	form for each piece of fue i burnir	ig equipment).				
	r House Irn natural gas only, exce I fuel. During these perio				erruption, startups, or				
4. Fuel burning equipment ic	lentification number:								
5. Fuel burning equipment d	escription:								
Three boilers - 75 mmB One hydronic heater - 1									
2010 - Removal of 3 Hita	modification of fuel burning equip achi Hydronic Heaters (M								
7. Furnace type:				acturer model number (if available	e):				
N/A				nd Wilcox boiler					
9. Location of this fuel burni	ng installation in UTM coordinate	s: UTM Ve	rtical: <u>601.75</u>	dronic heater/chiller	ontal: _3943.518				
	e: <u>24</u> Hrs./Day <u>7</u>		Days/Yr.						
		ROLS, AND MON							
11. Maximum rated heat input 235.3	t capacity (in million BTU/Hour)			l is used as a fuel, specify the amo l heat input.	unt of wood used as a fraction				
13. Fuels:	Primary fuel	Backup fue	el #1	Backup fuel #2	Backup fuel #3				
Fuel name	Natural Gas	#2 Fuel	Oil						
Actual yearly consumption	2,020.8 MMCF/Year	7,339,364 G/							
14. If emissions from this fuel N/A	burning equipment are controlled	for compliance, pleas	se specify the ty	ype of control:					
 15. If emissions from this fuel burning equipment are monitored for compliance, please specify the type of monitoring: N/A 									
 Describe any fugitive emissions associated with this process, such as outdoor storage piles, open conveyors, material handling operations, etc. (please attach a separate sheet if necessary). N/A 									
17. Page number:	Revision	Number:		Date of Revision:					

	GENERAL IDENTIFICATION AND DESCRIPTION							
1.	1. Facility name:							
	Bridgestone Americas Tire Operations, LLC, Warren Plant							
2.	Emission source (identify): H (89-0077-10) - Power House							
3.	Stack ID (or flow diagram point identification):	SCRIPTION						
э.	PH-BEF-003 (boiler #3 exhaust)							
4.	Stack height above grade in feet:							
	49.5							
5.	Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:						
	37.8 (Actual feet per second)	3.5						
7.	Exhaust flow rate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):						
	21,800	16,454						
9.	Exhaust temperature:	10. Moisture content (data at exit conditions):						
	Degrees Fahrenheit (°F)	12.8 N/A Grains per dry standard cubic foot (gr./dscf.)						
11.	Exhaust temperature that is equaled or exceeded during ninety (90) percent or	rmore of the operating time (<u>for stacks subject to diffusion equation only</u>):						
	N/A (°F)							
12.		ired for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,						
N/A	$SO_{2,} NO_{x}, etc.)?$							
1 1/7	,							
	Complete the appropriate APC form(s) 4,5,7,8,9, or 10 for each source exh	austing through this stack.						
	BYPASS STACI	K DES CRIPTION						
13.	Do you have a bypass stack?							
		No						
	If yes, describe the conditions which require its use & complete APC form 4 th number(s) exhausting through this bypass stack.	for the bypass stack. Please identify the stack number(s) of flow diagram point						
14.	Page number: Revision Number:	Date of Revision:						

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE

requ mor duri	sources that are subject to 1200-03-09-02(11) of the Tennessee Air Pollution Control Regulations are required to certi- internents by including a statement within the permit application of the methods used for determining compliance. This statemen nitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for co- ng the permit term. These submittals must be no less frequent than annually and may need to be more frequent if spec internent or the Technical Secretary.	nt must include a description of the ompliance certification submittals
	GENERAL IDENTIFICATION AND DESCRIPTION	
1.	Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant	
2.	Process emission source, fuel burning installation, or incinerator (identify): PH (89-0077-10), Power H	ouse
3.	Stack ID or flow diagram point identification(s): PH-BEF-001 through -003, and PH-HHEF-001	
	METHODS OF DETERMINING COMPLIANCE	
4.	This source as described under Item #2 of this application will use the following method(s) for determining compliance with a (and special operating conditions from an existing permit). Check all that apply and attach the appropriate form(s)	pplicable requirements
	Continuous Emission Monitoring (CEM) - APC 20 Pollutant(s):	
	Emission Monitoring Using Portable Monitors - APC 21 Pollutant(s):	
	Monitoring Control System Parameters or Operating Parameters of a Process - APC 22 Pollutant(s):	
	Monitoring Maintenance Procedures - APC 23 Pollutant(s):	
	Stack Testing - APC 24 Pollutant(s):	
	✓ Fuel Sampling & Analysis (FSA) - APC 25	
	Pollutant(s): % Sulfur for fuel oil	
	Recordkeeping - APC 26	
	Pollutant(s): Particulate matter, VOC, sulfur dioxide, nitrogen oxides	
	Other (please describe) - APC 27 Pollutant(s):	
5.	Compliance certification reports will be submitted to the Division according to the following schedule: One year after permit issuance Start date:	
	And every days thereafter.	
6.	Compliance monitoring reports will be submitted to the Division according to the following schedule:	
	Start date: Six months after permit issuance	
	And every days thereafter.	
7.	Page number:Revision number:Date of revision:	

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION COMPLIANCE DEMONSTRATION BY FUEL SAMPLING AND ANALYSIS

CONFLIANCE		DIFUEL SAWIFLING AND ANALISIS
	GENERAL IDENTIFICA	ATION AND DESCRIPTION
1. Facility name:		2. Stack ID or flow diagram point identification(s):
Bridgestone Americas Tire Operations,	LLC - Warren Plant	PH-BEF-001 through -003, and PH-HHEF-001
3. Emission source (identify):		
PH (89-0077-10), Power House		
MC	NITORING THROUGH FI	UEL SAMPLING AND ANALYSIS
4. Pollutant(s) being monitored:		
Sulfur dioxide via sulfur content in fuel		
5. Fuel being sampled:		
#2 Fuel Oil		
6. List the fuel sample collecting and analyz	ing method used (if an ASI M me	thod is not applicable, propose a method acceptable to the Technical Secretary).
Sample collection and analysis is perfo	rmed in accordance with 4(CFR 60.44c(h), Subpart Dc by the supplier or the plant.
7. Compliance demonstration frequency (sp	ecify the frequency with which as	muliance will be demonstrated):
		content by weight percent of each shipment of fuel oil or a
statement nom each on supplier		he company complies with the allowable sulfur content limit.
0 Door number	Davisian mentant	Data of multi-
8. Page number:	Revision number:	Date of revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY RECORDKEEPING

	keeping shall be acceptable as a compliance d ment is established.	emonstration method prov	vided that a correlation betw	veen the parameter value recorded and the applicable
		NERAL IDENTIFICA	TION AND DESCRIPT	ION
1. F	acility name:		2. Stack ID or flow diag	gram point identification(s):
Bridge	stone Americas Tire Operations, LLC, V	Varren Plant	PH-BEF-001 through	-003, and PH-HHEF-001
3. E	mission source (identify):			
PH	(89-0077-10), Power House			
	MONI	FORING AND RECO	RDKEEPING DESCRII	PTION
4. P	ollutant(s) or parameter being monitored:			
Pa	rticulate matter, sulfur dioxide, No.2 fue	l oil combustion		
5. N	laterial or parameter being monitored and recorde	ed:		
Fuel ι	Isage			
6. N	lethod of monitoring and recording:			
	ulate Matter and Sulfur Dioxide - Ib/mm			
				tal heat input capacity and the particulate emission factors are constants meaning the
	BTU will also be a constant less than or			
-Mont	Dioxide - ton/yr hly emissions will be calculated using m nonth rolling period.	onthly fuel usage and	AP-42 emission factors	s; compliance will be demonstrated based on
No 2	Fuel Oil Combustion			
-Mont			d to maintain a 12-mon	th rolling average to demonstrate compliance
	ompliance demonstration frequency (specify the	frequency with which com	pliance will be demonstrated):
Month	ly			
0 -		D		
8. P	age number:	Revision number:		Date of revision:

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION EMISSIONS FROM PROCESS EMISSION SOURCE / FUEL BURNING INSTALLATION / INCINERATOR

GENERAL IDENTIFICAT	ION AND DESCRIPTION
1. Facility name:	2. Stack ID or flow diagram point identification(s):
Bridgestone Americas Tire Operations, LLC, Warren Plant	PH-BEF-001 through -003, and PH-HHEF-001

3. Process emission source / Fuel burning installation / Incinerator (identify): PH (89-0077-10), Power House

EMISSIONS SUMMARY TABLE - CRITERIA AND FUGITIVE EMISSIONS

4. Complete the following emissions summary for regulated air pollutants. Fugitive emissions shall be included. Attach calculations and emission factor references.

	Maximum Alle	owable Emissions	Actual Emissions		
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
Particulate Matter (TSP)	15.96		N/A		
	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Sulfur Dioxide	78.46		N/A		
(Fugitive Emissions)	N/A		N/A		
Volatile Organic Compounds	5.56		N/A		
(Fugitive Emissions)	N/A		N/A		
Carbon Monoxide	84.87		N/A		
(Fugitive Emissions)	N/A		N/A		
Lead	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Nitrogen Oxides	95.16		N/A		
(Fugitive Emissions)	N/A		N/A		
Total Reduced Sulfur	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Mercury	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		

APC 28

			(<u>Co</u>	ntinued from last page)			APC28	
		Maximum Allowable Emissions				Actual Emissions		
AIR POLLUT ANT	Tons per Year			Reserved for State use (Pounds per Hour - Item 7, APC 30)		Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
Asbestos		N/A				N/A		
(Fugitive Emissions)		N/A				N/A		
Beryllium		N/A				N/A		
(Fugitive Emissions)		N/A				N/A		
Vinyl Chloride		N/A				N/A		
(Fugitive Emissions)		N/A				N/A		
Fluorides		N/A				N/A		
(Fugitive Emissions)		N/A				N/A		
Gaseous Fluorides		N/A				N/A		
(Fugitive Emissions)		N/A				N/A		
Greenhouse Gases 144,579 144,579		144,579				N/A		
				C – FUGITIVE HAZARI				
5. Complete the following <u>emis</u> Attach calculations and emis	ssions sumr ssion factor	nary for regulated air p references.	olluta	ants that are hazardous air po	ollutant	t <u>(s)</u> . Fugitiveemissions sha	ll be included.	
		Maximum Allowable Emissions			Actua	l Emissions		
Air Pollutant & CAS		Tons per Year		Reserved for State use (Pounds per Hour - Item 7, APC 30)	e	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
6. Page number:		Revision nu	mber			Date of revision		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CURRENT EMISSIONS REQUIREMENTS AND STATUS

GENERAL IDENTIFICATION AND DESCRIPTION										
1. Facility name:	1. Facility name: 2. Emission source number Bridgestone Americas Tire Operations, LLC, Warren Plant PH (89-0077-10)									
-	-		PH (89-0	077-10)						
	 Describe the process emission source / fuel burning installation / incinerator. PH (89-0077-10), Power House 									
	EMISSIONS AND REQUIREMENTS									
 Identify if only a part of the source is subject to this requirement 	5. Pollutant	 Applicable requirement(s): TN Air Polluti- Regulations, 40 CFR, permit restrictions, air quality based standards 	on Control	7. Limitation	8. Maximum actual emissions	9. Compliance status (In/Out)				
Entire source	Sulfur Dioxide	1200-3-1401(3)		35.3 lbs/hr, 78.46 tpy		In				
Entire source	Fuel Oil Sulfur Content	40 CFR 60, Subpart D		0.15% sulfur		In				
Entire source	Opacity	1200-3-5-01(1) (natural gas) 40 CFR 60, Subpart DC (No. 2 fu		20% (aggregate) for N.G. 20% (6 min. avg.) for No. 2		In				
Entire source	Particulate Matter	1200-3-603(2)		5.55 lb/hr, 16.0 tpy		In				
Entire source	Nitrogen Oxides	1200-3-603(2)		95.16 tpy		In				
Entire source	VOC	1200-3-603(2)		5.6 tpy		In				
Entire source	Fuel Oil	1200-3-603(2)		7,339,364 gal/yr		In				
Entire source	Heat Input	1200-3-603(2)		235.3 MMBtu/hr		In				
10. Other applicable requirement	10. Other applicable requirements (new requirements that apply to this source during the term of this permit)									
N/A										
11. Page number:	1. Page number: Revision number: Date of revision:									

APC 30

Bridgestone Americas Tire Operations, LLC Warren Plant

Emission Source: 10 Two Babcock & Wilcox Boilers (75 MMBtu/hr, each) One Hitachi Hydronic Heater (10.3 MMBtu/hr)

Operating Parameters

Fuel Type	Natural Gas		No. 2 Fuel O	il
Babcock & Wilcox Boiler 1	75.0	MMBtu/hr		
Babcock & Wilcox Boiler 2	75.0	MMBtu/hr		
Hitaachi Hydronic Heater	10.3	MMBtu/hr		
Maximum Firing Rate	160.3	MMBtu/hr		
Operating Hours	8,760	hr/yr	4,367	hr/yr
Heat Content of Fuel	1,020	Btu/cf	140,000	Btu/gal
Fuel Consumption	157,157	cf/hr	1,145	gal/hr
	1376.69	MMcf/yr	5,000	1000 gal/yr

Emission Calculations

Emission Factors for Natural Gas Combustion^{1,2}

<u>Pollutant</u>	lb/10 ⁶ scf	Ib/MMBtu-HHV	Source	
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42 Table 1.4-2	
Nitrogen Oxides (NO _x)	50	0.0490	AP-42 Table 1.4-1	(used for existing boilers)
Nitrogen Oxides (NO _x)	100	0.0980	AP-42 Table 1.4-1	(used for Hydronic Heater)
Carbon Monoxide	84	0.0824	AP-42 Table 1.4-1	
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42 Table 1.4-2	
VOC	5.5	0.0054	AP-42 Table 1.4-2	
Carbon Dioxide (CO ₂)		116.98	40 CFR 98, Table C-1	
Methane (CH ₄)		0.0022	40 CFR 98, Table C-2	
Nitrous Oxide (N ₂ O)		0.0002	40 CFR 98, Table C-2	
Lead (Pb)	0.0005		AP-42 Table 1.4-2	

	Maximum ⁴ lb/hr	Annual ⁵ ton/year
Particulate Matter (PM _{Total})	1.19	5.23
Nitrogen Oxides (NO _x) from 2 Boilers	7.35	32.21
Nitrogen Oxides (NO _x) from 1 Heater	1.01	4.42
Carbon Monoxide	13.20	57.82
Sulfur Dioxide (SO ₂)	0.094	0.41
Combustion VOC	0.86	3.79
Carbon Dioxide (CO ₂)	18,751	82,131
Methane (CH ₄)	0.35	1.55
Nitrous Oxide (N ₂ O)	0.04	0.15
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		82,215
Lead (Pb)	7.86E-05	3.44E-04

Emission Factors for No. 2 Fuel Oil Combustion^{1,2}

	<u>lb/10³ gal</u>	Ib/MMBtu-HHV		
Particulate Matter (PM _{Total})	3.3	0.024	AP-42 Table 1.3-2	
Nitrogen Oxides (NO _x)	20	0.143	AP-42 Table 1.3-1	
Carbon Monoxide	5	0.036	AP-42 Table 1.3-1	
Sulfur Dioxide (SO ₂)	21.3	0.152	AP-42 Table 1.3-1 (142S. S = Sulfur Content<	0.1500 %)
VOC	0.2	0.001	AP-42 Table 1.3-3	
Carbon Dioxide (CO ₂)		163.05	40 CFR 98, Table C-1	
Methane (CH ₄)		0.0066	40 CFR 98, Table C-2	
Nitrous Oxide (N ₂ O)		0.0013	40 CFR 98, Table C-2	
Lead (Pb)	1.3E-03	9.0E-06	AP-42 Table 1.3-10	

	Maximum ⁴ Ib/hr	Annual ⁵ ton/year
Particulate Matter (PM _{Total})	3.78	8.25
Nitrogen Oxides (NO _x)	22.90	50.00
Carbon Monoxide	5.73	12.50
Sulfur Dioxide (SO ₂)	24.39	53.25
Combustion VOC	0.23	0.50
Carbon Dioxide (CO ₂)	26,137	57,068
Methane (CH ₄)	1.06	2.31
Nitrous Oxide (N ₂ O)	0.21	0.46
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		57,264
Lead (Pb)	1.44E-03	3.15E-03

Summary of Emissions⁶

	Maximum ⁴ Ib/hr	Annual ⁵ ton/year
Particulate Matter (PM _{Total})	3.78	10.87
Particulate Matter (PM ₁₀)	3.78	10.87
Particulate Matter (PM _{2.5})	3.78	10.87
Nitrogen Oxides (NO _x)	22.90	68.37
Carbon Monoxide	13.20	57.82
Sulfur Dioxide (SO ₂)	24.39	53.46
Combustion VOC	0.86	3.79
Carbon Dioxide (CO ₂)	26,137	98,257
Methane (CH ₄)	1.06	3.09
Nitrous Oxide (N ₂ O)	0.21	0.54
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		98,496
Lead (Pb)	1.44E-03	3.32E-03

Example Calculations/Notes:

(1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Sections 1.3 and 1.4, July 1998, Small Boilers < 100 MMBtu/hr

(2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from $lb/10^6$ scf to kg/10⁶ m³, multiply by 16. To convert from $lb/10^6$ scf to lb/MMBtu, divide by 1,020.

(3) Assume PM= PM_{2.5}, PM₁₀

(4) Maximum Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Firing Rate (MMBtu/hr)

(5) Annual Emissions (tpy) = Annual Fuel Usage (MMCF or 1000 gal) * Emission Factor (lb/MMCF or lb/1000 gal) / 2,000 (lb/ton)

(6) Summary of Emissions: Hourly and Daily emissions are the worst case (NG vs Fuel Oil).

Annual Emissions = Natural gas emissions + fuel oil emissions

(7) CO_2 Equivalent (CO_2eq) = CO_2 + [$GWP_{CH4} * CH_4$] + [$GWP_{N2O} * N_2O$]

(8) $GWP_{CH4} = 25$, $GWP_{N2O} = 298$; 40 CFR 98 Table A-1

Bridgestone Americas Tire Operations, LLC Warren Plant

Emission Source: 10 One Babcock & Wilcox Boilers (75 MMBtu/hr)

Proposed Boiler

Operating Parameters

Fuel Type	Natural Gas		No. 2 Fuel	Oil
Maximum Firing Rate	75.0	MMBtu/hr		
Operating Hours	8,760	hr/yr	4,367	hr/yr
Heat Content of Fuel	1,020	Btu/cf	140,000	Btu/gal
Fuel Consumption	73,529	cf/hr	536	gal/hr
	644.12	MMcf/yr	2,339	1000 gal/yr

Emission Calculations

Emission Factors for Natural Gas Combustion ^{1,2}

<u>Pollutant</u>	lb/10 ⁶ scf	lb/MMBtu-HHV	Source
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42 Table 1.4-2
Nitrogen Oxides (NO _x)	50	0.0490	AP-42 Table 1.4-1 (Low-NOx Technology)
Carbon Monoxide	84	0.0824	AP-42 Table 1.4-1
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42 Table 1.4-2
VOC	5.5	0.0054	AP-42 Table 1.4-2
Carbon Dioxide (CO ₂)		116.98	40 CFR 98, Table C-1
Methane (CH ₄)		0.0022	40 CFR 98, Table C-2
Nitrous Oxide (N ₂ O)		0.0002	40 CFR 98, Table C-2
Lead (Pb)	0.0005		AP-42 Table 1.4-2

	Maximum ⁴ Ib/hr	Annual ⁵ ton/year
Particulate Matter (PM _{Total})	0.56	2.45
Nitrogen Oxides (NO _x)	3.68	16.10
Carbon Monoxide	6.18	27.05
Sulfur Dioxide (SO ₂)	0.044	0.19
Combustion VOC	0.40	1.77
Carbon Dioxide (CO ₂)	8,773	38,427
Methane (CH ₄)	0.17	0.72
Nitrous Oxide (N ₂ O)	0.02	0.07
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		38,466
Lead (Pb)	3.68E-05	1.61E-04

Emission Factors for No. 2 Fuel Oil Combustion^{1,2}

	<u>lb/10³ gal</u>	lb/MMBtu-HHV		
Particulate Matter (PM _{Total})	3.3	0.024	AP-42 Table 1.3-2	
Nitrogen Oxides (NO _x)	16	0.114	AP-42 Table 1.3-1	
Carbon Monoxide	5	0.036	AP-42 Table 1.3-1	
Sulfur Dioxide (SO ₂)	21.3	0.152	AP-42 Table 1.3-1 (142S. S = Sulfur Content<	0.1500 %)
VOC	0.2	0.001	AP-42 Table 1.3-3	
Carbon Dioxide (CO ₂)		163.05	40 CFR 98, Table C-1	
Methane (CH ₄)		0.0066	40 CFR 98, Table C-2	
Nitrous Oxide (N ₂ O)		0.0013	40 CFR 98, Table C-2	
Lead (Pb)	1.3E-03	9.0E-06	AP-42 Table 1.3-10	

	Maximum ⁴ Ib/hr	Annual ⁵ ton/year
Particulate Matter (PM _{Total})	1.77	3.86
Nitrogen Oxides (NO _x)	8.57	18.71
Carbon Monoxide	2.68	5.85
Sulfur Dioxide (SO ₂)	11.41	24.91
Combustion VOC	0.11	0.23
Carbon Dioxide (CO ₂)	12,229	26,701
Methane (CH ₄)	0.50	1.08
Nitrous Oxide (N ₂ O)	0.10	0.22
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		26,792.32
Lead (Pb)	6.75E-04	1.47E-03

Summary of Emissions⁶

nmary of Emissions [®]		
	Maximum ⁴	Annual ⁵
_	lb/hr	ton/year
Particulate Matter (PM _{Total})	1.77	5.09
Particulate Matter (PM ₁₀)	1.77	5.09
Particulate Matter (PM _{2.5})	1.77	5.09
Nitrogen Oxides (NO _x)	8.57	26.79
Carbon Monoxide	6.18	27.05
Sulfur Dioxide (SO ₂)	11.41	25.01
Combustion VOC	0.40	1.77
Carbon Dioxide (CO ₂)	12,229	45,972
Methane (CH ₄)	0.50	1.45
Nitrous Oxide (N ₂ O)	0.10	0.25
CO ₂ Equivalent (CO ₂ eq) ^{7,8}		46,083
Lead (Pb)	6.75E-04	1.55E-03

Example Calculations/Notes:

(1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Sections 1.3 and 1.4, July 1998, Small Boilers < 100 MMBtu/hr

(2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from $lb/10^6$ scf to kg/ 10^6 m³, multiply by 16. To convert from $lb/10^6$ scf to lb/MMBtu, divide by 1,020.

(3) Assume PM= PM_{2.5}, PM₁₀

(4) Maximum Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Firing Rate (MMBtu/hr)

(5) Annual Emissions (tpy) = Annual Fuel Usage (MMCF or 1000 gal) * Emission Factor (lb/MMCF or lb/1000 gal) / 2,000 (lb/ton)

(6) Summary of Emissions: Hourly and Daily emissions are the worst case (NG vs Fuel Oil).

Annual Emissions = Natural gas emissions + fuel oil emissions

(7) CO₂ Equivalent (CO₂eq) = CO₂ + [GWP_{CH4} * CH₄] + [GWP_{N20} * N₂O]

(8) GWP_{CH4} = 25, GWP_{N2O} = 298; 40 CFR 98 Table A-1

BRIDGESTONE TIRE MANUFACTURING 201-3094 SCOPE OF SUPPLY

NO. PER FM10-70 BOILER WITH TRIM BOILER 1 Rectangualar finned tube economizer with sootblower & relief valve 1 CHX Condensing Heat Exchanger System 1 Non-Return Valve 1 Flues & Ducts & Dampers 1 Corten Steel Stack with Platform and Ladder Forced Draft Fan with Inlet Silencer 1 F.D. Fan Motor Drive 1 1 F.D. Fan Turbine Drive Kato Generator 1 1 Coen Low-Nox Burner & Controls Miscellaneous Instrumentation 1 1 Feedwater Control (3-Element) 2 Diamond G9B Sootblowers for Boiler 1 Diamond G9B Sootblower for Economizer

BABCOCK & WILCOX INDUSTRIAL POWER GENERATION DIVISION

7A(IPGD) IK-7A3-I MARCH, 83

OPERATING INSTRUCTIONS

BOILERS AND Page T390 P202 SSURE PARTS

BRIDGESTONE/FIRESTONE, INC. Morrison, TN 37357 B&W CONTRACT NO.: 201-3284

February 15, 1999

MANUAL CONTENTS

SCOPE OF SUPPLY/DESCRIPTION

One Babcock & Wilcox FM10-70 Boiler, left hand, with steam flow of 60,000 lbs/hr. Of saturated steam at a pressure of 260 PSIG when being supplied with feedwater at 240°F and when being fired with natural gas or No.2 fuel oil. Boiler design pressure is 400 PSIG. Scope includes: Coen DAF-26 multi-stage low Nox burner with fuel trains, BMS and Combustion Controls; Eco fin tube rectangular economizer; Clarage FD fan with generator; Warren 42" diameter, 50 feet high stack; boiler sootblower, economizer sootblower; various boiler trim.

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

TIRE CURING

PROCESS EMISSION SOURCE: 89-0077-22

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION MISCELLANEOUS PROCESSES

1. Facility name: Bridgestone Americas Tire Operations, LLC, Warren Plant							
2. Process emission source ((identify):						
C (89-0077-22) - Tire Curi 3. Stack ID or flow diagram		ear of construction or last modification:					
3. Stack ID or flow diagram point identification (s): 4. Year of construction or last modification: CR-EF-301 through -310, -314 through -321, and -326 through -337 2018							
-	olled for compliance, attach an appropriate Air Pollution Con	ntrol system form.					
5. Normal operating schedul	e: 24 Hrs./Day 7 Days/Wk. 365 I	Days/Yr.					
6. Location of this process en	mission source in UTM coordinates: UTM Vertic	al: <u>601222</u> UTMHorizontal: <u>39</u>	943481				
7. Describe this process (Ple	ase attach a flow diagram of this process) and check one of	the following:					
✓ Batch	Continuous						
	PROCESS MATERIAL INPU	T AND OUTPUT					
8. List the types and amount	s of raw materials input to this process:						
Material	Storage/Material handling process	Average usage (units)	Maximum usage (units)				
Green Tire	Stored on skids and transported by forklift						
9. List the types and amount	s of primary products produced by this process:		l				
Material	Storage/Material handling process	Maximum usage (units)					
Finished Tire	Stored on skids and transported by forklift	Varies					
10. Process fuel usage:							
Type of fuel	Max heat input (10° BT U/Hr.)	Average usage (units)	Maximum usage (units)				
N/A	N/A						
11. List any solvents, cleaners, etc., associated with this process:							
N/A							
If the emissions and/or operations of this process are monitored for compliance, please attach the appropriate Compliance Demonstration form.							
12. Describe any fugitive emissions associated with this process, such as outdoor storage piles, open conveyors, open air sand blasting, material handling operations,							
etc. (please attach a separate sheet if necessary).							
13. Page number: Date of Revision:							
Č.							

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION STACK IDENTIFICATION

GENERAL IDENTIFICATION AND DESCRIPTION								
1. Facility name:								
Bridgestone Americas Tire Operations, LLC, Warren Plant								
C (89-0077-22) - Tire Curing	C (89-0077-22) - Tire Curing							
	DESCRIPTION							
3. Stack ID (or flow diagram point identification):	d. 000 through 007 (00 identical stacks)							
CR-EF-301 through -310, -314 through -321, ar	ia -326 through -337 (30 identical stacks)							
4. Stack height above grade in feet:								
37.5								
5. Velocity (data at exit conditions):	6. Inside dimensions at outlet in feet:							
43.2 (Actual feet per second)	5 ft diameter							
7. Exhaust flowrate at exit conditions (ACFM):	8. Flow rate at standard conditions (DSCFM):							
50,900	46,487							
9. Exhaust temperature:	10. Moisture content (data at exit conditions):							
	Grains per dry							
100 Degrees Fahrenheit (°F)	3.5 19.02 standard cubic foot (gr./dscf.)							
11. Exhaust temperature that is equaled or exceeded during ninety (90) percent or more of the operating time (<u>for stacks subject to diffusion equation only</u>):								
N/A								
(Τ)							
	required for compliance, what pollutant(s) does this equipment monitor (e.g., Opacity,							
$SO_2, NO_x, etc.)?$ N/A								
N/A								
Complete the appropriate APC form(s) 4, 5, 7, 8, 9, or 10 for each sourc	e exhausting through this stack.							
BYPASS ST	ACK DESCRIPTION							
13. Do you have a bypass stack?								
Yes No								
	m 4 for the bypass stack. Please identify the stack number(s) of flow diagram point							
number(s) exhausting through this by pass stack.								
14. Page number: Revision Number:	Date of Revision:							

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

Г

Public Version - Trade Secret Information Redacted

TITLE V PERMIT APPLICATION COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE to 1200-03-09- 02(11) of the Tennessee Air Pollution (

requ mor durii	All sources that are subject to 1200-03-0902(11) of the Tennessee Air Pollution Control Regulations are required to certify compliance with all applicable requirements by including a statement within the permit application of the methods used for determining compliance. This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually and may need to be more frequent if specified by the underlying applicable requirement or the Technical Secretary.						
	GENERAL IDENTIFICATION AND DESCRIPTION						
1.	Facility name:	Bridgestone Americas Tire Operations, LLC, Warren Plant					
2.	Process emission	n source, fuel burning installation, or incinerator (identify): C (89-0077-22) - Tire Curir	ng				
3.	Stack ID or flow	diagram point identification(s): CR-EF-301 through -310, -314 through -321, and	-326 through -337				
		METHODS OF DETERMINING COMPLIANCE					
4.		scribed under Item #2 of this application will use the following method(s) for determining con ating conditions from an existing permit). Check all that apply and attach the appropriate form					
	Contin Polluta	uous Emission Monitoring (CEM) - APC 20 nt(s):					
	Emissic Polluta	on Monitoring Using Portable Monitors - APC 21 nt(s):					
	Monito Polluta	oring Control System Parameters or Operating Parameters of a Process - APC 22 nt(s):					
	Monito Polluta	pring Maintenance Procedures - APC 23 nt(s):					
	Stack T Polluta	esting - APC 24 nt(s):					
	Fuel Sampling & Analysis (FSA) - APC 25 Pollutant(s):						
	Record Polluta	keeping- APC 26 nt(s): VOC and HAP					
	Other (Polluta	please describe) - APC 27 nt(s):					
5.		fication reports will be submitted to the Division according to the following schedule:					
	Start date:	One year after permit issuance					
	Andevery	days thereafter.					
6.		itoring reports will be submitted to the Division according to the following schedule:					
	Start date:	Six months after permit issuance					
	Andevery	180 days thereafter.					
7.	Page number:	Revision number: Date	e of revision:				

Public Version - Trade Secret Information Redact
--

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION

COMPLIANCE DEMONSTRATION BY RECORDKEEPING

Recordkeeping shall be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the applicable requirement is established.						
GENERAL IDENTIFICATION AND DESCRIPTION						
1. Facility name:	2. Stack ID or flow diagram point identification(s):					
Bridgestone Americas Tire Operations, LLC, Warren Plant	CR-EF-301 through -310, -314 through -321, and -326 through -337					
3. Emission source (identify):						
C (89-0077-22) - Tire Curing						
MONITORING AND RECO	DRDKEEPING DESCRIPTION					
4. Pollutant(s) or parameter being monitored:						
VOC and HAP						
5. Material or parameter being monitored and recorded:						
Rubber Cured						
6. Method of monitoring and recording:						
VOC and HAP Emission Rate Monthly quantity of rubber cured will be recorded. VOC and HAP emissions resulting from curing will be calculated using emission factors developed by Bridgestone in 2005. Compliance with the allowable limit will be based on a 12-month rolling period.						
7. Compliance demonstration frequency (specify the frequency with which compliance will be demonstrated):						
12 month rolling sum for VOC and HAP allowable emission rate.						
8. Page number: Revision number:	Date of revision:					

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION EMISSIONS FROM PROCESS EMISSION SOURCE / FUEL BURNING INSTALLATION / INCINERATOR

GENERAL IDENTIFICATION AND DESCRIPTION						
1. Facility name: 2. Stack ID or flow diagram point identification(s):						
Bridgestone Americas Tire Operations, LLC, Warren Plant	CR-EF-301 through -310, -314 through -321, and -326 through -337					

3. Process emission source / Fuel burning installation / Incinerator (identify):

C (89-0077-22) - Tire Curing

EMISSIONS SUMMARY TABLE - CRITERIA AND FUGITIVE EMISSIONS

4. Complete the following emissions summary for regulated air pollutants. Fugitive emissions shall be included. Attach calculations and emission factor references.

	Maximum Alle	owable Emissions	Actual Emissions		
Air Pollutant	Tons per Year	Reserved for State use (Pounds per Hour - Item 7, APC 30)	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
Particulate Matter (TSP)	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Sulfur Dioxide	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Volatile Organic Compounds	104.77		104.77		
(Fugitive Emissions)	N/A		N/A		
Carbon Monoxide	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Lead	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Nitrogen Oxides	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Total Reduced Sulfur	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		
Mercury	N/A		N/A		
(Fugitive Emissions)	N/A		N/A		

APC 28

		((((ontinued from last page)			APC 28	
						Emissions	
AIR POLLUT ANT	Tons per Year		Reserved for State use (Pounds per Hour - Item 7, APC 30)		ns per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
Asbestos	N/A				N/A		
(Fugitive Emissions)	N/A				N/A		
Beryllium	N/A				N/A		
(Fugitive Emissions)	N/A				N/A		
Vinyl Chloride	N/A				N/A		
(Fugitive Emissions)	N/A				N/A		
Fluorides	N/A				N/A		
(Fugitive Emissions)	N/A				N/A		
Gaseous Fluorides	N/A				N/A		
(Fugitive Emissions)	N/A				N/A		
Greenhouse Gases in CO ₂ Equivalents	N/A				N/A		
			E – FUGITIVE HAZARI				
5. Complete the following <u>emis</u> Attach calculations and emis		lair pollu	tants that are hazardous air po	<u>ollutant(s)</u> . F	rugitive emissions sha	ll be included.	
	Ma	Maximum Allowable Emissions			Actual	Emissions	
Air Pollutant & CAS	Tons per V	(ear	Reserved for State use (Pounds per Hour - Item 7, APC 30)	, ,	Tons per Year	Reserved for State use (Pounds per Hour- Item 8, APC 30)	
Facility-Wide HAP Lin	nit 9.9 (Single	HAP)		9.9	9 (Single HAP)		
Facility-Wide HAP Lin	nit 24.9 (Total	HAP)		24	.9 (Total HAP)		
6. Page number:	Revisio	on numbe	r:	D	ate of revision		

State of Tennessee Department of Environment and Conservation Division of Air Pollution Control William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243 Telephone: (615) 532-0554

TITLE V PERMIT APPLICATION CURRENT EMISSIONS REQUIREMENTS AND STATUS

GENERAL IDENTIFICATION AND DESCRIPTION								
1. Facility name: 2. Emission source number								
Bridgestone Americas	-		C (89-0077-22)					
3. Describe the process emission	B. Describe the process emission source / fuel burning installation / incinerator.							
Tire Curing								
	-	EMISSIONS AND						
 Identify if only a part of the source is subject to this requirement 	5. Pollutant	 Applicable requirement(s): TN Air Pollut Regulations, 40 CFR, permit restrictions, air quality based standards 	ion Control	7. Limitation	8. Maximum actual emissions	9. Compliance status (In/Out)		
Entire Section	VOC	1200-3-707(2)		553.8 tpy	553.8 tpy	In		
				(Facility Wide)	(Facility Wide)			
Entire Section	HAP (indiv.)			9.9 tpy	9.9 tpy	In		
				(Facility Wide)	(Facility Wide)			
Entire Section	HAP (total)			24.9 tpy	24.9 tpy	In		
				(Facility Wide)	(Facility Wide)			
10. Other applicable requirements (new requirements that apply to this source during the term of this permit)								
N/A								
11. Page number: Revision number: Date of revision:								

Bridgestone Americas Tire Operations, LLC Warren Plant Process Emission Source: (89-0077-22)

Tire Curing VOC Emissions

Calculation methodology:

VOC Emissions (tons/month) = Material Processed (lbs/month) x RMA Curing Emission Factor (lb VOC/lb Material Processed) / 2000

EXAMPLE CURING MATERIAL PROCESSING

MONTHLY LOG VOCs (89-0077-22)		Month	Year
		RMA EF	
	*Material	lb. VOC/	
	Processed	lb. Material	VOC Emissions
	lb./mo.	Processed	ton/mo.
Process			
Curing			
Total Curing VOC	C emissions		

*Material Processed means rubber component of tires cured

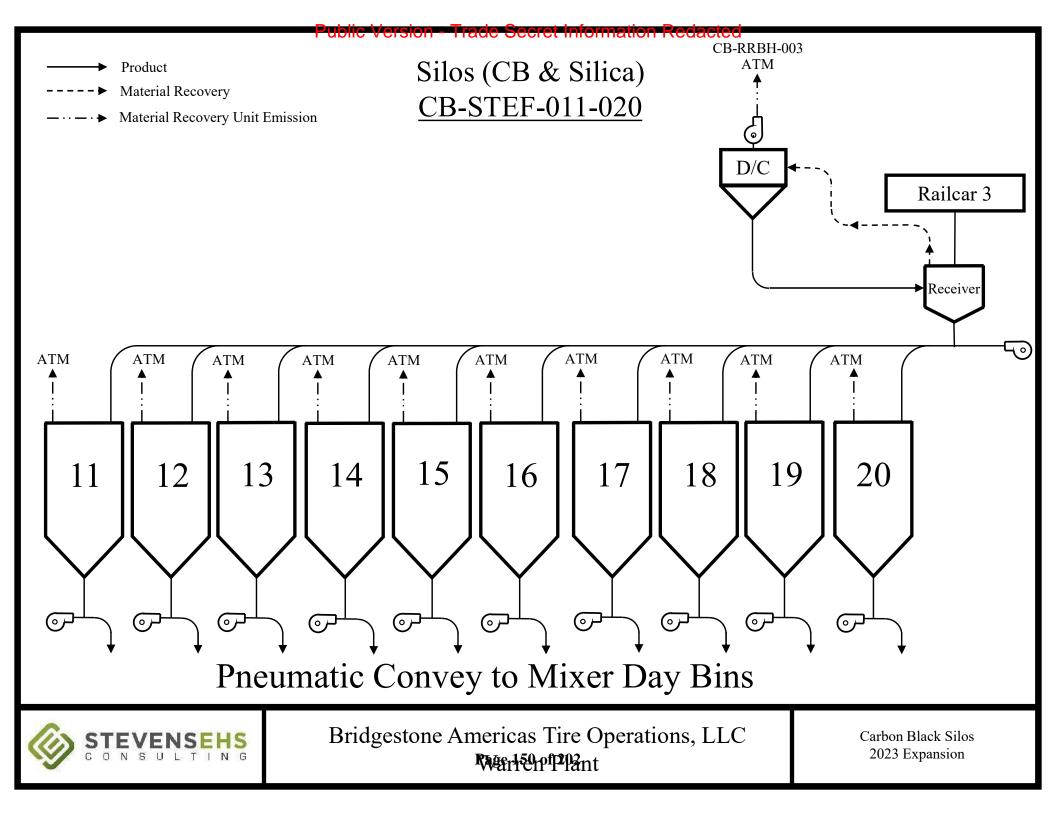
Bridgestone Americas Tire Operations, LLC Warren Plant

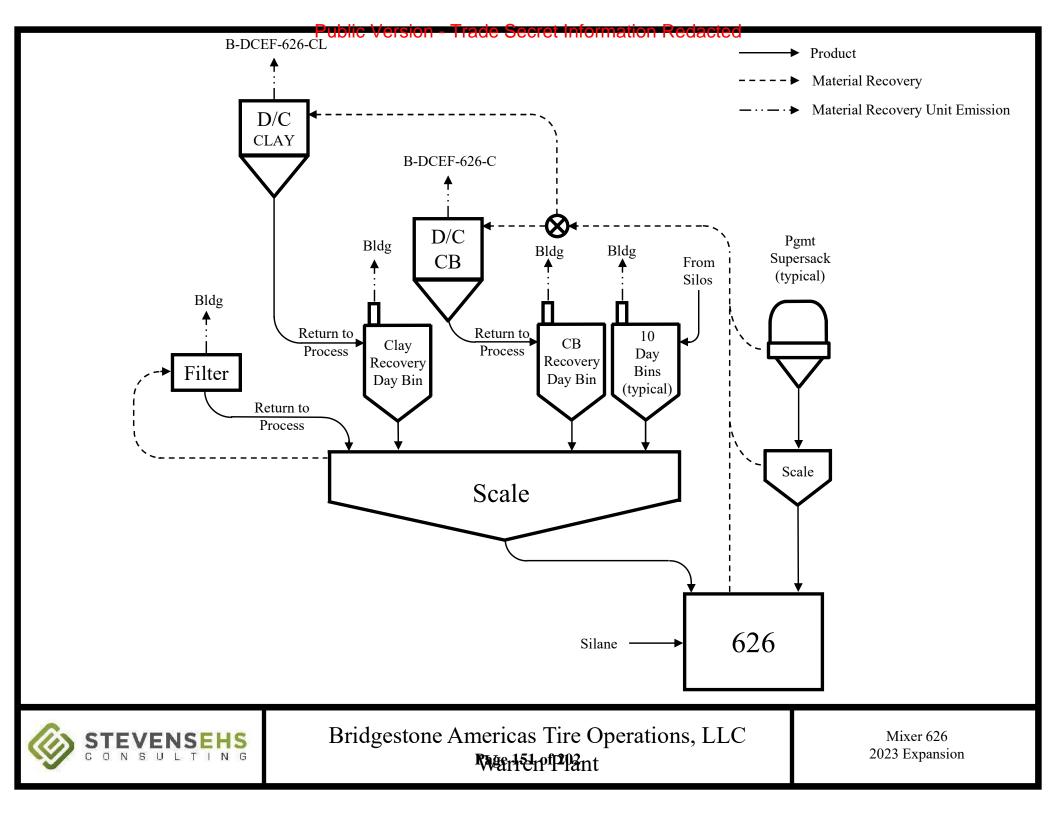
Process Emission Source: (89-0077-22)

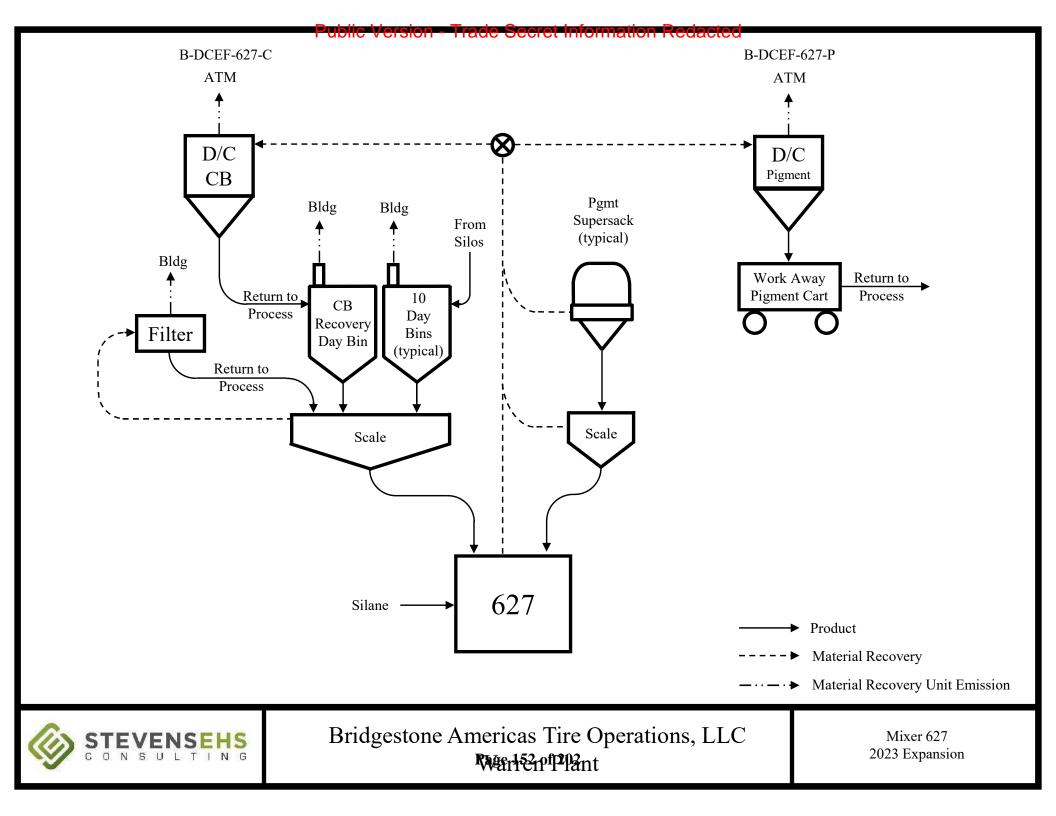
Curing Area HAP Emissions

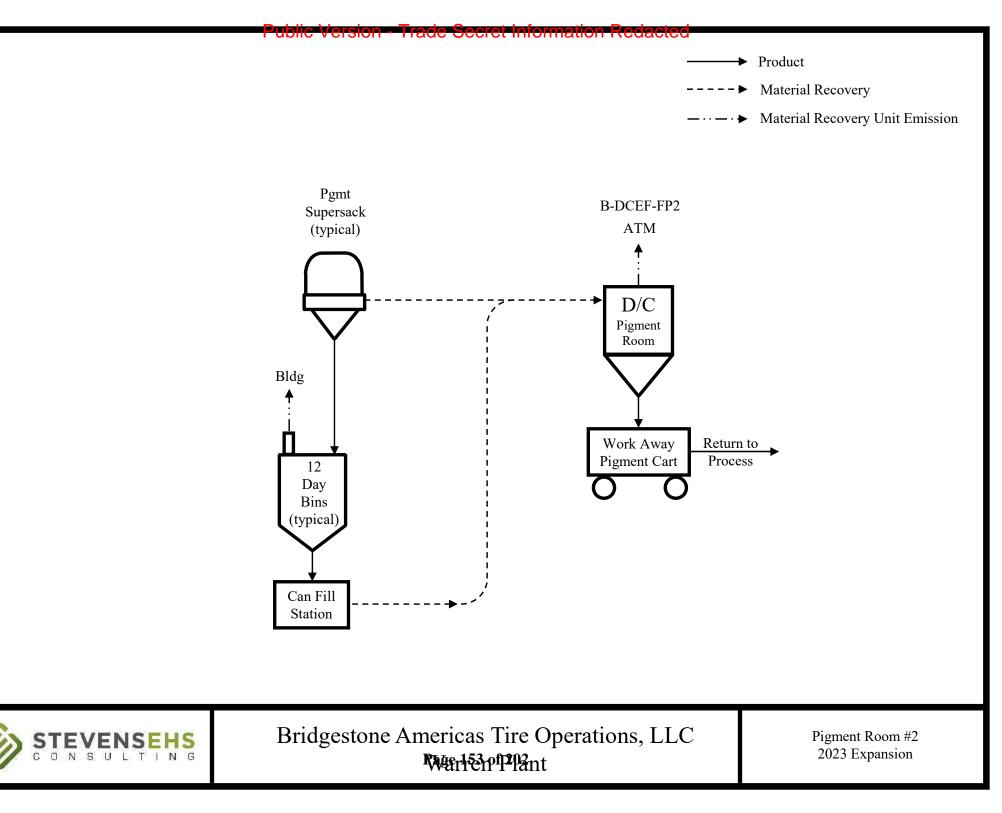
Calculation methodology:

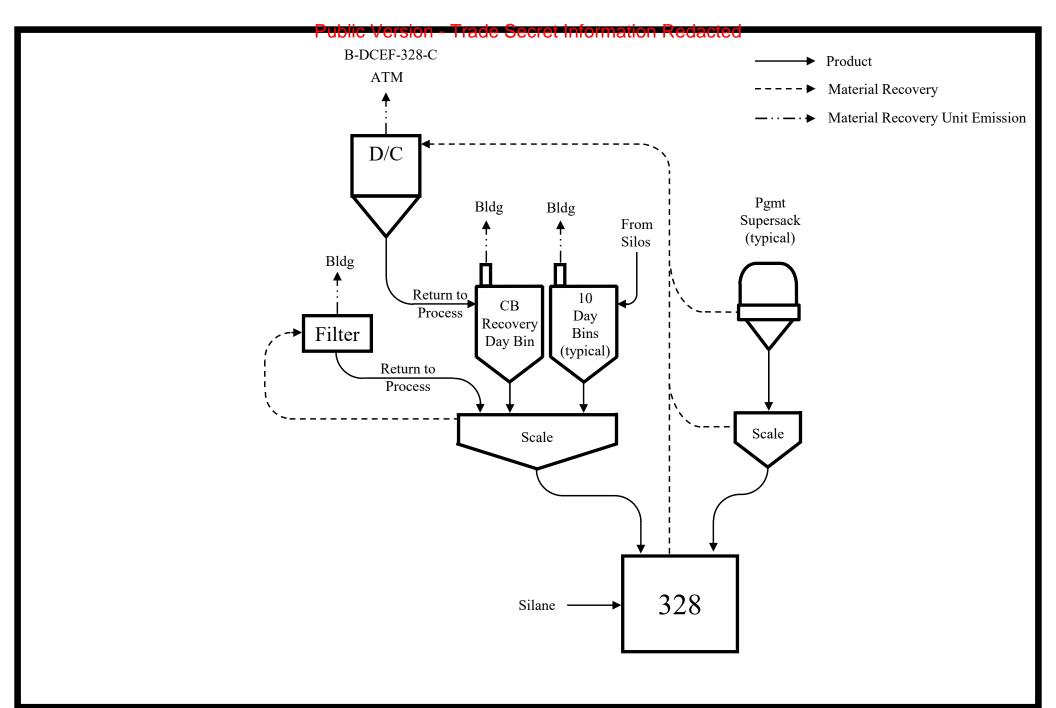
HAP Emissions (tons/month) = Curing Material Processed (lbs/month) x RMA Emission Factor for each HAP (Ib HAP/Ib Material Processed) / 2000

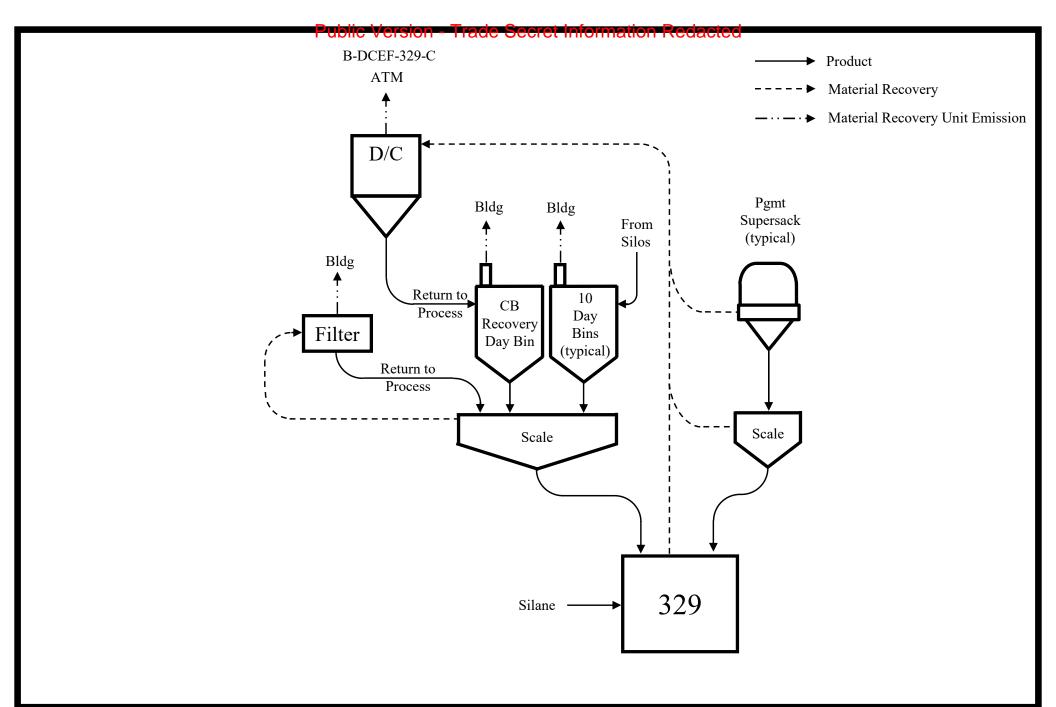

EXAMPLE CURING MATERIAL PH MONTHLY LOG HAPs (89-0077-22)		Month	Year	
	*Material Processed lb./mo.	RMA EF lb. HAP/ lb. Material Processed	HAP Emission ton/mo.	15
Process				
Curing				
HAPs		-		
4-Methyl-2-Pentanone				
Carbon Disulfide		+		
m-Xylene + p-Xylene				
Hexane				
Benzene				
Toluene				
Chloromethane				
Aniline				
Cumene				
Phenol				
Di-n-butylphthalate				
Naphthalene		-		
1,2-Dibromo-3-Chloropropane				
Acetophenone				
Biphenyl				
bis(2-Ethylhexyl)phthalate		+		
Dimethylphthalate				
o-Toluidine				
2-Methylphenol				
Dibenzofuran				
Isophorone				
Acenaphthylene				
Fluoranthene				
Phenanthrene				
Pyrene				
2-Methylnaphthalene				
Diphenylamine				
TOTAL POM HAP				


EXAMPLE CURING MATERIAL PROCESSING


*Material Processed means rubber component of tires cured


BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC


<u>APPENDIX E</u> PROCESS FLOW DIAGRAMS



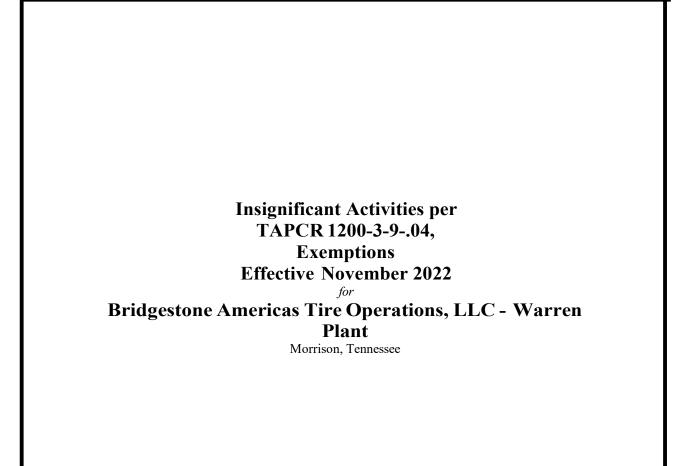
Bridgestone Americas Tire Operations, LLC

STEVEN C O N S U L

ING

Mixer 328 2023 Expansion

Bridgestone Americas Tire Operations, LLC


STEVEN C O N S U L

ING

Mixer 329 2023 Expansion

BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC

<u>APPENDIX F</u> INSIGNIFICANT ACTIVITIES

Table of Contents

- A. Introduction
- B. Insignificant Activities Listed in Title V Permit Application
- C. Categorical Insignificant Activities if Below Emission Limits
- D. Categorical Insignificant Activities

A: Introduction

The Tennessee Air Pollution Control Regulations (TAPCR) concerning Title V Permit applications include "insignificant activities", which are activities which are not required to be included in Title V Permit applications. Some of these insignificant activities are required to be listed in the application, but the associated calculations are not required unless requested by the State. Other insignificant activities are not required to be listed in the application but have emission limits to qualify as insignificant activities. The final group of insignificant activities is identified by category only. This document includes the insignificant activities identified for the Bridgestone Americas Tire Operations, LLC – Warren (BATO-Warren) facility in Morrison, Tennessee.

The insignificant activities listed in the Title V Permit application are identified in TAPCR 1200-3-9-.04(5)4 (i) as follows:

Any air emissions from an air emissions unit or activity at a stationary source for which the
emissions unit or activity has a potential to emit less than 5 tons per year of each regulated air
pollutant that is not a hazardous air pollutant, and less than 1,000 pounds per year of each
hazardous air pollutant. Such emission units and activities or types of emission units and
activities must be listed in the permit application.

These activities are listed with applicable calculations in Section B of this document.

The categorical insignificant activities with emission limits are identified in TAPCR 1200-3-9-.04(5)4 (ii) as follows:

The emission unit or activity, with the exception of parts 19. and 84., is listed in subparagraph (5) (f) as not having to be included in a Title V application. For an activity listed in subparagraph (5) (f), with the exception of parts 1., 2., 19., and 84., the emissions unit or activity must have a potential to emit less than 5 tons per year of each regulated air pollutant that is not a hazardous air pollutant, and less than 1,000 pounds per year of each hazardous air pollutant.

These activities are listed with applicable calculations in Section C of this document.

The categorical insignificant activities are identified in TAPCR 1200-3-9-.04(5)4.(iii) as follows:

• The emission unit or activity is listed in subparagraph (5) (g) as not having to be included in a Title V application.

These activities are listed in Section D of this document.

B: Insignificant Activities Listed in Title V Permit Application

The following insignificant activities, per TAPCR 1200-3-9-.04(5)4 (i), are listed in the Title V Permit Application:

- 1. Learning Center and Employee Services Boilers/Heaters < 10 MMBtu/hr heat input capacity
- 2. Solvent Storage Tank
- 3. Tire Spraying (Dopers)
- 4. Cement Spraying (PM only)
- 5. Tire Repair
- 6. Final Inspection Marking
- 7. Hot Knife Cutting
- 8. Ultrasonic Knife
- 9. Oil Storage Tanks
- 10. Tire Testing Room
- 11. Electron Beam Generator (Precure Machine)
- 12. Mold Cleaning
- 13.-Tread Grinders (REMOVED)
- 14. Inside Day Bins

The applicable calculations for emissions from these insignificant activities are detailed as follows;

1. Learning Center and Employee Services Boilers/Heaters <10 MMBtu/hr heat input capacity

These boilers/heaters have a maximum heat input capacity of 0.8612 MMBtu/hr each and burn natural gas only. The potential emissions are based upon the emission factors in the Fifth Edition of AP-42 with Supplement D, 1998 - 1.4 Natural Gas Combustion.

Annual Gas Usage:	2 * 0.8612 MMBtu/hr / 1020 Btu/scf gas * 8760 hr/yr	= 14.79 MMscf/yr				
Nitrogen Oxides:	100 lb/MMscf x 14.79 MMscf/yr / 2000 lb/ton	= 0.740 tons NOx/yr				
Carbon Monoxide:	84 lb/MMscf x 14.79 MMscf/yr / 2000 lb/ton	= 0.621 tons CO/yr				
Particulate – PM10:	7.6 lb/MMscf x 14.79 MMscf/yr / 2000 lb/ton	= 0.056 tons PM10/yr				
Sulfur Dioxide:	0.6 lb/MMscf x 14.79 MMscf/yr / 2000 lb/ton	= 0.004 tons SO2/yr				
VOC*:	5.5 lb/MMscf x 14.79 MMscf/yr / 2000 lb/ton	= 0.041 tons VOC/yr				
*VOC - Volatile Organic Compounds						

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs

HAP emissions are included in overall Natural Gas usage. Total HAP= 1.89 lbs HAP/million scf / 42,016.8 lbs per million scf= 4.49E-05 lbs HAP/ lb natrl gas Formaldehyde= 1.79E-06 lbs HAP/lbs natrl gas Hexane= 4.28E-05 lbs HAP/lbs natrl gas

2. Solvent Storage Tank

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the Cement Storage Tank. The printout from the TANKS software is in Appendix B.

Annual VOC emissions from the Solvent Storage Tank: 238 lbs /yr/ 2000 = 0.12 tons VOC/yr

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs

HAP - no emissions

3. Tire Spraying (Dopers)

Dope is sprayed on the inside of green tires to prevent the tires from sticking to the tire curing presses. The doping operations are ventilated to control overspray and have cyclones to prevent overspray particulate from accumulating in the stack. Each doper is a separate emission source that works independently from the other dopers.

Doper - Maximum

Assumptions:

- 1. The maximum capacity per doper is **the set of the se**
- 2. A maximum of grams of dope is applied to the tires
- 3. Overspray is 5%
- 4. Cyclone efficiency is 80%

VOC Emissions - included in permit reporting

PM Emissions:

Actual Maximum

tires/year)(g/tire) g Solids/ g Dope)(.05 Overspray)(.20 Control Efficiency)(1.0 lb/ 453.6 g) (ton/ 2000 lb)= 0.453 tons PM per year

Maximum Potential - Cyclone efficiency is not used

(tires/year) g/tire) g/tire)

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAP - no emissions

4. Cement Spraying (PM only)

Cement is sprayed on the surface of the tire tread prior to assembly. Overspray catch pans, exhaust air system, and in-line particulate filters are used to control emissions from this operation.

Assumptions:

- 1. The maximum capacity is **see the set of t**
- 2. An average of 11 grams of cement is applied to each tire.
- 3. Overspray is 10%, with 100% capture.
- 4. Solids content of the cement is 9%.

PM Emissions:

Maximum Potential

tires/yr) g/tire)(solids)(lb/454 g)(0.10)(ton/2000 lb)= 0.54 tons PM per year

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAP - no emissions

5. Tire Repair

This source consists of tire repair, where small amounts of rubber are removed from the tires and filled with uncured rubber. These areas are then spot cured. There are particulate and VOC emissions associated with buffing the repaired areas with a small hand-held buffing wheel, particulate and VOC emissions from application of tire repair paint (VOC emissions are permitted) and VOC emissions associated with the spot curing.

Assumptions:

- 1. The maximum capacity is
- 2. An average of 2% of the tires require repair.
- 3. An average of 45 grams of rubber is removed per repair with an average of 45 grams of rubber cured onto the repair.
- 4. Particulate emissions from each tire repair station enter the plant building, where 50% settle to the plant floor and 50% discharge to atmosphere.
- 5. Cyclone efficiency is 80% and Fabric Filter efficiency is 99%.
- 6. The emission factor for rubber curing is 2.24E-04 lb VOC per lb of rubber.
- 7. The emission factor for rubber grinding is 1.59E-02 lb VOC per lb of rubber removed.
- 8. Tire repair paint maximum usage is 266.7 gallons/month with 15.6% solids (VOCs are accounted for in permit PM emissions are insignificant).
- 9. Tire repair paint density is 7.17 lbs/gal.
- 10. Tire repair paint overspray is 50%.

VOC Emissions:

(2 repair/ 100 tires)(45 g rubber/ repair)(1.0 lb/ 453.6 g) (2.24E-04 lb VOC/ lb rubber)(ton / 2000 lb)= 0.0011 tons VOC per year from curing.

(2 repair/ 100 tires)(45 g rubber/ repair)(1.0 lb/ 453.6 g)

(1.59E-02 lb VOC/ lb rubber)(ton / 2000 lb)= 0.0785 tons VOC year from grinding.

Total VOC = 0.0796 tons VOC per year

HAP Emissions from Tire Repair Curing HAPs with POMs = 1.15E-03 lbs HAP/ lb rubber cured Grinding HAPs with POMs = 1.13E-03 lbs HAP/ lb rubber grinding Buffing HAPs with POMs = 1.687E-03 lbs HAP/ lb rubber buffed

Total HAPs with POMs = Tire repair curing + Grinding + Buffing = 3.971E-03 lbs HAP/ lb rubber repaired

Total HAPs (4 repair/100 tires)(45 g rubber/repair) (1.0 lb/453.6 g) (3.971 E-03 lbs HAP/ lb rubber repaired) = 78.45 lbs HAPs per year

PM Emissions:

Actual Maximum

Rubber grinding – **Mathematical (2** repair/ 100 tires)(45 g Rubber/ repair)(.50 Room Settling) (0.01 water filter efficiency)(1.0 lb**/** 453.6 g)(ton / 2000 lb**)=** 0.0247 tons PM per year

Tire repair paint – (266.7 gal/mo)(12 mo/yr)(7.17 lbs/gal)(0.156 solids)(0.50 overspray)(.50 Room Settling)(0.01 water filter efficiency)(ton / 2000 lb)= 0.0045 tons PM per year

Total Actual Maximum: 0.0247 + 0.0045 = 0.0292 tons PM per year

Maximum Potential – do not use cyclone and fabric filter control efficiency Rubber grinding – **Maximum (2** repair/ 100 tires)(45 g Rubber/ repair)(.50 Room Settling)

(1.0 lb/ 453.6 g)(ton / 2000 lb)= 2.47 tons PM per year

Tire repair paint – (266.7 gal/mo)(12 mo/yr)(7.17 lbs/gal)(0.156 solids)(0.50 overspray)(.50 Room Settling) (ton/ 2000 lb)= 0.447 tons PM per year

Total Actual Maximum: 2.47 + 0.447 = 2.917 tons PM per year

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAP emissions for particulate are included in HAP emission calculations

6. Final Inspection Marking

Aerosol spray cans to mark scrap tires in Final Inspection.

Assumptions:

1. 200 spray paint cans per year are used on average to mark scrap tires. Assume double (400 cans) are used to be extra conservative.

VOC Emissions:

400 spray cans/yr (10 oz/can)(lb/16oz) = 250 lbs VOC/year or 0.125 tons VOC/year

HAP Emissions:

400 spray cans/yr (10 oz/can)(lb/16oz) * 14% = 35 lbs HAP/year Aerosol spray cans contain 14% Toluene Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <l 000 pounds HAPs

7. Hot Knife Cutting

0 Emissions in tons per year – Engineering Judgement

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAPs – no emissions

8. Ultrasonic Knife

0 Emissions in tons per year – Engineering Judgement

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAPs – no emissions

9. Oil Storage Tanks

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the Oil Storage Tanks.

RM010 Tank = 0.25 lbs/year Additional (NEW) RM010 Tank = 0.25 lbs/year (identical size and contents) RS012 Tank = 28.49 lbs/year Additional (NEW) RS012 Tank = 28.49 lbs/year (identical size and contents) WS019 Tank = 9.07 lbs/year Additional (NEW) WS019 Tank = 9.07 lbs/year (identical size and contents) RS300 Tank (*EMPTY*) = (*11.58 previously*) 0 lbs/year since tank is *EMPTY* RS220 Tank = 11.58 lbs/year Total 87.2 lbs / 2000 = 0.044 tons/year

Annual VOC emissions from the Oil Storage Tanks: 0.044 tons VOC/yr

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs

10. Tire Testing Room

Tires are tested at the facility to simulate road performance. Rubber worn from the tread surface is collected in a dust collector system, which discharges material to a collection drum.

Assumptions:

- 1. All worn rubber is collected by the air duct system. There are no other vents to atmosphere.
- 2. The dust collector/separator efficiency is 99%.
- 3. The collection drum receives 0.525 pounds of rubber per day, 365 day per year.

PM Emissions:

```
PM = Throughput (1-eff)
Collection= Throughput
(eff) Therefore,
Actual Maximum
PM = Collection (1-eff) / (eff) = 0.525 lbs/day (365 days/yr) (ton/2000 lbs) (1-0.99) / (0.99)
= 0.001 tons PM per year
```

Maximum Potential – dust collector/separator efficiency is

not used PM= 0.525 lbs/day (365 days/yr) (ton/2000 lbs) = 0.1 tons PM per year

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAPs – no emissions

11. Two Electron Beam Generators (Precure machine)

Select rubber components are cured prior to assembly. The electron beam generator device generates ozone, VOC, and NOx. There are no emissions control devices. Each Electron Beam Generator is a separate emission source that works independently from the other Electron Beam Generator.

Assumptions:

- 1. The rate of ozone generation $R_0,$ is 0.11 kg/kw-hr.
- 2. Ozone generation is given by the equation $Q=R_0W$ where W = energy loss per unit time (kw)
- 3. Energy loss is given by the equation $W = V_L x I x A$ where $V_L =$ voltage loss in air path

I = electron beam

current

A = effective beam area

- 4. From Bridgestone/Firestone records, voltage loss V_L is 52.9 kV.
- 5. NHV America, Inc., vendor of the electron beam generator, state the electron beam current I for this application equals 40 mA rather than the rated amperage of 68 mA.
- 6. The effective beam area is assumed to be 100%, with two heads in use.
- 7. The maximum capacity is

subject to pre- curing.

- 8. Emission factors for VOC and NOx are 3.37E-04 and 0.5 pounds per hour, respectively, based upon engineering judgement.
- 9. VOC emissions from this source are included in the emission factors for curing, therefore the VOC emissions are 0 for this source to avoid double counting.

Ozone Emissions:

 $Q = R_0 W$ $W = V_L \times I \times A$

Therefore,

 $Q=R_0[V_L \times I \times A]$ Q=0.11 kg/kw-hr[52.9 kV(0.04 A) 100% (2 heads)] (2.2 lb/kg) (8760 hr/yr)(ton/2000 lb) Q = 4.486 tons Ozone per year, each

VOC Emissions:

0 VOC tons per year - emissions are included in the permitted curing source.

A calculated emission rate for VOC from this source is 1.8 tons VOC per year, each. This is based upon a 50% cure at this source. This curing VOC emission is accounted for in the emission calculations for tire curing.

NOx Emissions:

0.5 lb NOx/hr(8760 hr/yr) (ton/2000 lb) = 2.19 tons NOx per year, each

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) HAPs - no emissions

12. Mold Cleaning

Tire curing molds are cleaned periodically using metal beads.

Assumptions:

- 1. Mold cleaning typically requires the addition of 30,000 pounds of beads annually.
- 2. Added beads replace fractured or eroded beads, which are potential air pollutants.
- 3. Exhaust from mold cleaning has a 99% efficiency dry filter.
- 4. Minimum efficiency for system particulate control is 50%.
- 5. Particulate emissions from each bin enter the plant building, where 50% settle to the plant floor and 50% discharge to atmosphere.

Exhaust is vented into the work area; therefore the dry filter must be in place for mold cleaning to be conducted.

PM Emissions:

Actual Maximum 30,000 lbs/year (ton/2000 lbs)(1-0.99)(0.5) = 0.075 tons PM per year

Maximum Potential 30,000 lbs/year (ton/2000 lbs)(1-0.5)(0.5) = 3.75 tons PM per year

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) < 5 tons criteria pollutants, <1000 pounds HAPs HAPs – no emissions

13. Tread Grinders – (REMOVED)

14. Inside Day Bins

Day bins for storage of carbon black are located within the plant building. These bins vent to the plant interior.

Assumptions:

- 1. A total of 57 bins are present.
- 2. Only three (3) bins receive carbon black at any given time along with two (2) clay bins.
- 3. A 6" diameter duct conveys carbon black at 4,000 feet per minute, or 785 cubic feet per minute.
- 4. Total bin vent emissions are 0.015 grains per dry standard cubic foot.
- 5. Particulate emissions from each bin enter the plant building, where 50% settle to the plant

floor and 50% discharge to atmosphere.

6. Minimum control from bin vent filters is 0.03 grains per dry standard cubic foot (1/2 control efficiency)

Exhaust is vented into the work area; therefore the bin vent filters must be in place for carbon black/pigment transfers to be conducted.

PM Emissions:

Actual Maximum

5 * 785 cfm (0.015 gr./dscf)(lb./7000 gr.)(60 min/hour)(8760 hr/year)(ton/2000 lbs)(0.50) = 1.105 tons PM per year

Maximum Potential

5 * 785 cfm (0.03 gr./dscf)(lb./7000 gr.)(60 min/hour)(8760 hr/year)(ton/2000 lbs)(0.50) = 2.21 tons PM per year

Citation: TAPCR 1200-3-9-.04(5)(a)4.(i) HAPs, For carbon black handling (all)= 1.35E-08 lbs PACs / lb carbon black usage

x I.35E-08 lbs PACs / lb carbon black usage = 1.96 lbs

HAPs/year

C: Categorical Insignificant Activities if Below Emission Limits

The following insignificant activities are not required to be listed in the Title V Permit Application if the potential emissions are below the insignificant activity emission limits:

	5 ,	
1.	Two 30,000 gallon #2 Fuel Oil Storage Tanks	TAPCR 1200-3-904(5)(f)17
2.	300 gallon Diesel Tanks (2)	TAPCR 1200-3-904(5)(f)17
3.	300 gallon Kerosene Tank	TAPCR 1200-3-904(5)(f)17
4.	300 gallon Gasoline Tank	TAPCR 1200-3-904(5)(f)17
5.	Portable Diesel Air Compressors	TAPCR 1200-3-904(5)(f)37
6.	Standby Diesel Emergency Generator	TAPCR 1200-3-904(5)(f)37
7.	Standby Natural Gas Generator	TAPCR 1200-3-904(5)(f)37
8.	Diesel Powered Emergency Water Pumps	TAPCR 1200-3-904(5)(f)37
9.	Two 550 gallon Diesel Tanks	TAPCR 1200-3-904(5)(f)17
10.	Space Heaters	TAPCR 1200-3-904(5)(f)14
11.	Water Cooling Towers	TAPCR 1200-3-904(5)(f)15
12.	Parts Washer	TAPCR 1200-3-904(5)(f)76
13.	Personal Protective Equipment Vacuum Stations	TAPCR 1200-3-904(5)(f)94

1. Two 30,000 gallon #2 Fuel Oil Storage Tanks

EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the two #2 fuel oil storage tanks.

Annual VOC emissions from the #2 Fuel Oil Storage Tanks: 35.74 lbs x 2 tanks/ 2000 = 0.04 tons VOC/yr HAPs – 1.44E-06 lbs HAPs / lbs #2 Fuel Oil combusted, AP-42, no HAPs in #2 Fuel Oil MSDS.

2. 300 gallon Diesel Tanks (2)

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the two 300 gallon diesel tanks.

Annual VOC emissions from the Diesel Storage Tanks: (0.07 lbs+ 0.13 lbs)/ 2000 = 0.0001 tons VOC/yr HAPs – 1.25E-04 lbs HAPs/ lbs Diesel combusted, AP-42, no HAPs listed in MSDS for Diesel.

3. 300 gallon Kerosene Tank

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the 300 gallon kerosene tank.

Annual VOC emissions from the Kerosene Storage Tank: 0.21 lbs/ 2000 = 0.0001 tons VOC/yr HAPs - no emissions

4. 300 gallon Gasoline Tank

UNIT NO LONGER EXEMPT PER SUBPART CCCCCC (added through Minor Modification submitted January 30,2015)

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the 300 gallon gasoline tank.

TAPCR 1200-3-9-.04(5)(f)17

TAPCR 1200-3-9-.04(5)(f)17

TAPCR 1200-3-9-.04(5)(f)17

TAPCR 1200-3-9-.04(5)(f)17

Annual VOC emissions from the Gasoline Storage Tank: 96.01 lbs/ 2000 = 0.05 tons VOC/yr Annual HAP emissions from Gasoline Storage Tank: 96.01 lbs/yr* 20.2% = 19.39 lbs HAP/yr HAP factor per gallons of gas used: 19.39 lbs HAP/yr/ (450 gallons gas/yr* 6.123 lbs/gal) = 7.0E-03 lbs HAP/ lb of gas

5. Portable Diesel Air Compressors

TAPCR 1200-3-9-.04(5)(f)37

These portable diesel air compressors have a maximum fuel input capacity of 6.447 MMBtu/hr (2 @ 1500 CFM portable air compressors of 23.53 gal/hr diesel x 0.137 MMBtu/gal x 2 = 6.447 MMBtu/hr each). The potential emissions are based upon the emission factors in the Fifth Edition of AP-42-3.3 Gasoline and Diesel Industrial Engines.

Annual Hours used	: 240 (10 days)					
Nitrogen Oxides: lb/ton	4.41 lb NOx/MMBtu x 6.447 MMBtu/hr x 240 hrs/yr / 2000	= 3.4 tons NOx/yr				
Carbon Monoxide: lb/ton	0.95 lb CO/MMBtu x 6.447 MMBtu/hr x 240 hrs/yr / 2000	= 0.7 tons CO/yr				
Particulate – PM10 lb/ton	: 0.31 lb PM10/MMBtu x 6.447 MMBtu/hr x 240 hrs/yr / 2000	= 0.2 tons PM10/yr				
Sulfur Dioxide: lb/ton	0.29 lb SO2/MMBtu x 6.447 MMBtu/hr x 240 hrs/yr / 2000	= 0.2 tons SO2/yr				
VOC*: lb/ton	0.36 lb VOC/MMBtu x 6.447 MMBtu/hr x 240 hrs/yr / 2000	= 0.3 tons VOC/yr				
*VOC - Volatile Organic Compounds						
HAPs - included ab						

6. Standby Diesel Emergency Generator - UNIT NO LONGER EXEMPT PER SUBPART ZZZZ (added through Minor Modification submitted January 30, 2015)

This standby diesel emergency generator has a horsepower rating of 15.4. The potential emissions are based upon the emission factors in the Fifth Edition of AP-42 – 3.3 Gasoline and Diesel Industrial Engines.

Max Rated HP		15.4 HP		11.5 KW = 15.4 HP		
	Days	Hours	lb/HP	HP rating	Lbs/year	Ton/year
Nitrogen Oxide	20	480	0.031	15.4	229	0.11
Carbon Monoxide	20	480	0.00668	15.4	49	0.02
PM10	20	480	0.0022	15.4	16	0.01
Sulfur Dioxide	20	480	0.00205	15.4	15	0.01
VOC	20	480	0.00251	15.4	19	0.01

HAPs - included above at #2

7. Standby Natural Gas Emergency Generator

This standby natural gas emergency generator has a horsepower rating of 153.7. The potential emissions are based upon the emission factors in the Fifth Edition of AP-42 - 3.3 Gasoline and Diesel Industrial Engines.

Max Rated HP	153.7 HP		153.7 HP = 0.39	r		
	Days	Hrs	Lb/MMBtu	MMBtu/hr	Lbs/year	Tons/year
NOx	20	480	2.27	0.3913413	426	0.2132
CO	20	480	3.51	0.3913413	659	0.3297
PM10	20	480	9.50E-03	0.3913413	2	0.0009
Sulfur Dioxide	20	480	5.88E-04	0.3913413	0	0.0001
VOC	20	480	2.96E-02	0.3913413	6	0.0028

HAPs

985.225	SCF/MMBtu		
480	Hrs/year		
0.391341	MMBtu/hr		
185,068	SCF/year	From HAP calc. sheet	0.35 lbs/year

Public Version - Trade Secret Information Redacted

8. Diesel Powered Emergency Water Pumps TAPCR 1200-3-9-.04(5)(f)37 UNITS NO LONGER EXEMPT PER SUBPART ZZZZ (added through Minor Modification submitted January 30, 2015)

These diesel powered emergency water pumps have a maximum horsepower of 532 hp (2 water pumps of 266 hp each). The potential emissions are based upon the emission factors in the Fifth Edition of AP-42-3.3 Gasoline and Diesel Industrial Engines.

Max Rated HP266 HP X 2 PUMPS396.7 KW = 532 HPEMISSIONS INCLUDED IN PLANTWIDE EMISSIONS CALCULATIONS EXCEL FILE.

9. Two 550 gallon Diesel Tanks TAPCR 1200-3-9-.04(5)(f)17

The EPA storage tank emission calculation software – TANKS Version 4.0.9d was used to determine the emissions from the Cement Storage Tank. The printout from the TANKS software is in Appendix B.

Annual VOC emissions from the Diesel Storage Tanks: 2 x 0.3 lbs/ 2000 = 0.0003 tons VOC/yr HAPs - included above at #2, no HAPs listed in MSDS for Diesel

10. Space Heaters

TAPCR 1200-3-9-.04(5)(f)14

These space heaters are used during cold weather at the shipping warehouse. There are twenty-four 75,000 Btu/hr heaters and fourteen 400,000 Btu/hr natural gas heaters. The maximum annual usage of these heaters would be six months per year. The potential emissions are based upon the emission factors in the Fifth Edition of AP-42 with Supplement D, 1998 - 1.4 Natural Gas Combustion.

75,000 Btu/hr	heaters
---------------	---------

Annual Gas Usage:	24*0.075 MMBtu/hr /1020 Btu/scf gas * 4380 hr/yr	= 7.729 MMscf/yr
Nitrogen Oxides:	94 lb/MMscf x 7.729 MMscf/yr / 2000 lb/ton	= 0.3633 tons NOx/yr
Carbon Monoxide:	40 lb/MMscf x 7.729 MMscf/yr / 2000 lb/ton	= 0.1546 tons CO/yr
Particulate:	7.6 lb/MMscf x 7.729 MMscf/yr / 2000 lb/ton	= 0.0294 tons PM10/yr
Sulfur Dioxide:	0.6 lb/MMscf x 7.729 MMscf/yr / 2000 lb/ton	= 0.0023 tons SO2/yr
VOC*:	5.5 lb/MMscf x 7.729 MMscf/yr / 2000 lb/ton	= 0.0213 tons VOC/yr
*VOC - Volatile Orga	anic Compounds	

400,000 Btu/hr heaters

Annual Gas Usage:	14 * 0.4 MMBtu/hr	/ 1020 Btu/scf gas* 4380 hr/yr	= 24.047 MMscf/yr
-------------------	-------------------	--------------------------------	-------------------

Nitrogen Oxides:	100 lb/MMscf x 24.047 MMscf/yr /2000 lb/ton	= 1.2024 tons NOx/yr
Carbon Monoxide:	84 lb/MMscf x 24.047 MMscf/yr / 2000 lb/ton	= 1.0100 tons CO/yr
Particulate:	7.6 lb/MMscf x 24.047 MMscf/yr / 2000 lb/ton	= 0.0914 tons PM10/yr
Sulfur Dioxide:	0.6 lb/MMscf x 24.047 MMscf/yr / 2000 lb/ton	= 0.0072 tons SO2/yr
VOC*:	5.5 lb/MMscf x 24.047 MMscf/yr / 2000 lb/ton	= 0.0661 tons VOC/yr

*VOC - Volatile Organic Compounds

Total Emissions from heaters

Nitrogen Oxides:	= 1.5657 tons NOx/yr
Carbon Monoxide:	= 1.1646 tons CO/yr
Particulate:	= 0.1208 tons PM10/yr
Sulfur Dioxide:	= 0.0095 tons SO2/yr
VOC*:	= 0.0874 tons VOC/yr
*VOC - Volatile Org	
HAPs included in 2.	0, 1 for all natural gas usage

Public Version - Trade Secret Information Redacted

11. Water Cooling Towers

TAPCR 1200-3-9-.04(5)(f)15

The following water cooling towers are located at BFNT-Warren;		
Two Water Cooling Towers – 4000 GPM each	8000	44%
Water Cooling Tower – 2800 GPM	2800	15%
Two Power House Water Cooling Towers – 1600 GPM each	3200	17%
Hitachi Heater Water Cooling Tower – 9150 GPM (used ½ of year)	<u>4575</u>	<u>24%</u>
	18,575	100%

These five cooling towers operate independently from each other and are separate emission sources. The emissions are particulate from the dissolved solids in water vapor. The emission factors from The Fifth Edition of AP-42 13.4 Wet Cooling Towers and the total dissolved solid (TDS) concentrations in the cooling water are used to determine particulate emissions.

The emission from any HAPs in the biocides is reported as 100% emitted into the atmosphere.

A. Two Water Cooling Towers - 4000 GPM each

8000 gal/min. (60 min/hr)(1.7 lbs water vapor/1000 gallons water)(400 TDS ppm/1,000,000) (8760 hrs/yr)(tons/2000 lbs)= 1.43 tons Particulate/yr

250 gal MBC/yr. (8.59 lb/gal) (0.28) (0.10 naptha VOC)(tons/2000 lbs)= 0.0301 tons VOC/yr

8000 gpm x 60 min/hr x (1.7 lbs water drift/ per 1000 gallons) x (6 parts MECB/ per 1,000,000 parts) x 8760 hrs/yr = 42.9 lbs MECB

Total VOC = 0.0301 tons VOC + 42.9 lbs/2000 lb/ton= 0.0516 tons VOC/yr

B. Water Cooling Tower - 2800 GPM

2800 gal/min. (60 min/hr)(1.7 lbs water vapor/1000 gallons water)(400 TDS ppm/1,000,000) (8760 hrs/yr)(tons/2000 lbs)= 0.5004 tons Particulate/yr

250 gal MBC/yr. (8.59 lb/gal) (0.19)(0.10 naptha VOC)(tons/2000 lbs)= 0.0204 tons VOC/yr

2800 gpm x 60 min/hr x (1.7 lbs water drift/ per 1000 gallons) x (6 parts MECB/ per 1,000,000 parts) x 8760 hrs/yr

= 15.0 lbs MECB

Total VOC = 0.0204 tons VOC + 15.0 lbs(ton/2000 lbs)= 0.0279 tons VOC/yr

C. Power House Water Cooling Towers -Two 1600 GPM Water Cooling Towers

3200 gal/min. (60 min/hr)(1.7 lbs water vapor/1000 gallons water)(400 TDS ppm/1,000,000) (8760 hrs/yr)(tons/2000 lbs)= 0.5719 tons Particulate/yr

250 gal MBC/yr. (8.59 lb/gal) (0.22)(0.10 naptha VOC)(tons/2000 lbs)= 0.0236 tons VOC/yr

Public Version - Trade Secret Information Redacted

3200 gpm x 60 min/hr x (1.7 lbs water drift/ per 1000 gallons) x (6 parts MECB/ per 1,000,000 parts) x 8760 hrs/yr = 17.2 lbs MECB

Total VOC = 0.0236 tons VOC + 17.2 lbs(ton/2000 lbs)= 0.0322 tons VOC/yr

D. Hitachi Heater Water Cooling Tower - 9150 GPM

This water cooling tower is used during the cooling season only (6 months)

9150 gal/min. (60 min/hr)(1.7 lbs water vapor/1000 gallons water)(400 TDS ppm/1,000,000) (4380 hrs/yr)(tons/2000 lbs)= 0.8176 tons Particulate/yr

250 gal MBC/yr. (8.59 lb/gal) (0.31)(0.10 naptha VOC)(tons/2000 lbs)= 0.0333 tons VOC/yr

9150 gpm x 60 min/hr x (1.7 lbs water drift/ per 1000 gallons) x (6 parts MECB/ per 1,000,000 parts) x 4380 hrs/yr = 24.5 lbs MECB

Total VOC = 0.0333 tons VOC + 24.5 lbs HAP VOC(ton/2000 lbs)= 0.0456 tons VOC/yr

Total HAPs for each Tower – maximum potential. Biocides are only to be used if cooling tower is having problems with "iron" bacteria.

Current biocide usage does not include any HAP containing chemicals.

12. Parts Washers

TAPCR 1200-3-9-.04(5)(f)76

Parts washing solvent and parts washing machines are used at BFNT Warren. The VOC emissions from parts washing solvent are based upon the amount of solvent supplied minus the amount of solvent picked up by the parts washer service company. Some or most of this loss is from "carry off' on parts that have been washed. Because estimating the amount of "carry off' is not feasible, all of the loss is assumed to be VOC emission.

(804 gallons solvent to facility in 2004 - 678 gallons solvent picked up at facility in 2004)(6.7 lbs/gal) (ton/2000 lbs)= 0.42 tons VOC/yr

The numbers of solvent parts washing machines have been reduced from 10 to 2

machines. Maximum Potential (engineering judgement) = 0.2 tons VOC/yr

HAPs – no emissions

13. Personal Protective Equipment Vacuum Stations

In the Banbury Department, workers can vacuum off their personal protective equipment at 2 vacuum system stations. Based on 1 pound of collected material after 353 days of use, the total annual emissions;

1 pound/ 353 days of use x 365 days/year x /2000 lbs per ton= 0.0005 tons per year HAPs – no emissions

TAPCR 1200-3-9-.04(5)(f)94

D: Categorical Insignificant Activities

The following insignificant activities are not required to be listed in the Title V Permit Application:

- 1. Electric Driven Air Compressors
- 2. Boiler Water Treatment System
- 3. Steam Condensate Relief Valves
- 4. QA Laboratory
- 5. Maintenance Activities
- 6. Banbury Lab
- 7. Battery Charging Stations
- 8. Welding Operations
- 9. Sewer Vents
- 10. Natural Gas Pressure Regulator Vents

TAPCR 1200-3-9-.04(5)(g)18 HAPs - no emissions TAPCR 1200-3-9-.04(5)(g)45 HAPs - see 3.0 - 8. TAPCR 1200-3-9-.04(5)(g)50 HAPs - no emissions TAPCR 1200-3-9-.04(5)(g)36 HAPs - no emissions TAPCR 1200-3-9-.04(5)(g)13 Included in HAP log TAPCR 1200-3-9-.04(5)(g)19 HAPs - no emissions TAPCR 1200-3-9-.04(5)(g)19 HAPs - no emissions TAPCR 1200-3-9-.04(5)(g)13 Included in HAP log TAPCR 1200-3-9-.04(5)(g)13 Included in HAP log TAPCR 1200-3-9-.04(5)(g)26 HAPs - no emissions

Public Version - Trade Secret Information Redacted SAFETY DATA SHEET

Chem

Chem-Trend® ML-3114

Section 1. Identification

Product name

: Chem-Trend® ML-3114

Relevant identified uses of the substance or mixture and uses advised against Release Agent

Supplier's details	: Chem-Trend LP 1445 W McPherson Park Dr PO Box 860, Howell MI 48844-0860 517-546-4520
Emergency telephone number and Telephone number	: +1 517 546 4520

Section 2. Hazard	ds identification
OSHA/HCS status	: While this material is not considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200), this SDS contains valuable information critical to the safe handling and proper use of the product. This SDS should be retained and available for employees and other users of this product.
Classification of the substance or mixture	: Not classified.
GHS label elements	
Signal word	: No signal word.
Hazard statements	: No known significant effects or critical hazards.
Precautionary statements	
Prevention	: PACKAGE IN VENTED CONTAINERS. PRODUCT IS FORBIDDEN FOR TRANSPORT BY AIRCRAFT BECAUSE OF THE POSSIBILITY THAT HYDROGEN GAS MAY BE RELEASED.
Response	: Not applicable.
Storage	: Not applicable.
Disposal	: Not applicable.
Hazards not otherwise classified	: None known.

Section 3. Composition/information on ingredients

Substance/mixture : Mixture		
Ingredient name	%	CAS number
carbon black, respirable powder	≤1	1333-86-4

		Page 176 of 202	2			
Date of issue/Date of revision	; 6/14/2019	Date of previous issue	: 4/15/2019	Version	; 0.14	1/9

Section 4. First aid measures

Description of necessary first aid measures

Eye contact	: Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Get medical attention if irritation occurs.
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Get medical attention if symptoms occur.
Skin contact	 Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Get medical attention if symptoms occur.
Ingestion	: Wash out mouth with water. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Do not induce vomiting unless directed to do so by medical personnel. Get medical attention if symptoms occur.

Most important symptoms/effects, acute and delayed

<u>Potential acute health e</u>	ffects
Eye contact	: No known significant effects or critical hazards.
Inhalation	: No known significant effects or critical hazards.
Skin contact	: No known significant effects or critical hazards.
Ingestion	: No known significant effects or critical hazards.
<u>Over-exposure signs/sy</u>	mptoms
Eye contact	: No specific data.
Inhalation	: No specific data.
Skin contact	: No specific data.
Ingestion	: No specific data.
Indication of immediate r	nedical attention and special treatment needed, if necessary
Notes to physician	: Treat symptomatically. Contact poison treatment specialist immediately if large

		quantities have been ingested or inhaled.
Specific treatments	:	No specific treatment.
Protection of first-aiders	:	No action shall be taken involving any personal risk or without suitable training.

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media	
Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unsuitable extinguishing media	: None known.
Specific hazards arising from the chemical	: In a fire or if heated, a pressure increase will occur and the container may burst. PACKAGE IN VENTED CONTAINERS. PRODUCT IS FORBIDDEN FOR TRANSPORT BY AIRCRAFT BECAUSE OF THE POSSIBILITY THAT HYDROGEN GAS MAY BE RELEASED.
Hazardous thermal decomposition products	: Decomposition products may include the following materials:

Page 177 of 202

		0			
					·····
Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version : 0.14	2/9

Section 5. Fire-fighting measures

Special protective actions for fire-fighters	: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.
Remark	: Product may release hydrogen gas. Increased storage temperatures will accelerate this process. Evolves hydrogen on contact with water. Acid. Amines Alkali. Metals May form explosive mixtures with air.

Section 6. Accidental release measures

 Personal precautions, protective equipment and emergency procedures

 For non-emergency personnel
 : No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Put on appropriate personal protective equipment.

 For emergency responders
 : If specialized clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For nonemergency personnel".

 Environmental precautions
 : Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).

Methods and materials for containment and cleaning up

Stop leak if without risk. Move containers from spill area. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see Section 13). Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

Section 7. Handling and storage

Precautions for safe handling	Precautions for safe handling				
Protective measures	Put on appropriate personal protective equipment (see Section 8).				
Conditions for safe storage, including any incompatibilities	Store in accordance with local regulations. Store in original container protected fro direct sunlight in a dry, cool and well-ventilated area, away from incompatible mate (see Section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and k upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination. See Section 10 for incompatible materials before handling or use.	erials il kept			
Additional information	PRODUCT MAY RELEASE SMALL QUANTITIES OF FLAMMABLE HYDROGEN DURING STORAGE. Adequately ventilate containers to maintain the concentration hydrogen gas well below its flammability limits and its exposure guidelines. Ensure container vents do not become clogged to prevent pressure build-up.	n of			

Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version : 0.14	3/9

Page 178 of 202

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name	Exposure limits	Exposure limits		
carbon black, respirable pov	ACGIH TLV (United States, 3/2018). TWA: 3 mg/m ³ 8 hours. Form: Inhalable fr OSHA PEL (United States, 5/2018). TWA: 3.5 mg/m ³ 8 hours.	TWA: 3 mg/m ³ 8 hours. Form: Inhalable fraction OSHA PEL (United States, 5/2018).		
Appropriate engineering controls	Good general ventilation should be sufficient to control work contaminants.	er exposure to airborne		
Environmental exposure controls	Emissions from ventilation or work process equipment shout they comply with the requirements of environmental protect cases, fume scrubbers, filters or engineering modifications will be necessary to reduce emissions to acceptable levels.	on legislation. In some		
Individual protection meas				
Eye/face protection	Safety eyewear complying with an approved standard shoul assessment indicates this is necessary to avoid exposure to gases or dusts. If contact is possible, the following protection the assessment indicates a higher degree of protection: sa shields.	o liquid splashes, mists, on should be worn, unless		
Hand protection	Chemical-resistant, impervious gloves complying with an approved standard should worn at all times when handling chemical products if a risk assessment indicates this necessary.			
Body protection	Personal protective equipment for the body should be select performed and the risks involved and should be approved by handling this product.			
Other skin protection	Appropriate footwear and any additional skin protection measures should be selec based on the task being performed and the risks involved and should be approved specialist before handling this product.			
Respiratory protection	Based on the hazard and potential for exposure, select a re	spirator that meets the		

Respiratory protection : Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use.

Section 9. Physical and chemical properties

Physical state	Liquid.	Color	Black.		
Odor	Bland.	Odor threshold	Not available.		
pН	6.4 to 8.4	Melting point	Not available.		
Boiling point	100°C (212°F)	Flash point	Closed cup: Not applicable. [Water-based product]		
Burning time	Not applicable.	Burning rate	Not applicable.		
Evaporation rate	<1 (water = 1)	Flammability (solid, gas)	Not available.		
Lower and upper explosive (flammable)	Not available.	Vapor pressure	2.3 kPa (17.5 mm Hg) [room temperature]		
limits		Page 179 of 202			
Date of issue/Date of revision	: 6/14/2019 Date	of previous issue : 4/15/2019	Version : 0.14		

Section 9. Physical and chemical properties				
Vapor density	>1 [Air = 1]	Relative density	1.14	
Solubility	Not available.	Solubility in water	Not available.	
Partition coefficient: n- octanol/water	Not available.	Auto-ignition temperature	Not available.	
Decomposition temperature	Not available.	SADT	Not available.	
Viscosity	Kinematic (40°C (104°F)): Not applicable.	Volatility	65	

Lower and upper explosive (flammable) limits None identified.

Section 10. Stability and reactivity

Reactivity	: No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	: No specific data.
Incompatible materials	: Do not cut, weld or grind used containers unless they have been cleaned thoroughly internally. Flammable hydrogen gas may be produced on prolonged contact with metals such as aluminum, tin, lead and zinc. Reactive or incompatible with the following materials: strong acids strong alkalis oxidizing materials water
Hazardous decomposition products	: Formaldehyde and silicon dioxide may be evolved at elevated temperatures.

Section 11. Toxicological information

Information on toxicological effects

Product/ingredient name	Result		Species	Dose	Exposure	
carbon black, respirable powder	LD50 Oral		Rat	>15400 mg/kg	-	
Irritation/Corrosion	: No known s	ignificant effects or cri	tical hazards.			
Sensitization	: No known s	ignificant effects or cri	tical hazards.			
Mutagenicity	: No known s	ignificant effects or cri	tical hazards.			
Carcinogenicity	: No known s	ignificant effects or cri	tical hazards.			
Reproductive toxicity	: No known s	ignificant effects or cri	tical hazards.			
Teratogenicity	: No known significant effects or critical hazards.					
Specific target organ toxic	<u>ity (single expo</u>	<u>sure)</u>				
Not available.		Page 180 of 2	02			
Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Vers	sion :0.14	5/9

Section 11. Toxicological information

Specific target organ toxicity (repeated exposure) Not available.

Aspiration hazard

Not available.

Information on the likely routes of exposure	:	Carbon Black: This component does not impact the product's hazard classification. Due to the product's physical properties, particulate inhalation exposure is not possible as it is inextricably bound within the polymer matrix.
Potential acute health effects	5	
Eye contact	:	No known significant effects or critical hazards.
Inhalation		No known significant effects or critical hazards.
Skin contact	:	No known significant effects or critical hazards.
Ingestion	:	No known significant effects or critical hazards.

Symptoms related to the physical, chemical and toxicological characteristics

Eye contact	Skin contact
No specific data.	No specific data.
Inhalation	Ingestion
No specific data.	No specific data.

Delayed and immediate effects and also chronic effects from short and long term exposure

<u>Short term exposure</u>		
Potential immediate effects	:	Not available.
Potential delayed effects	;	Not available.
Long term exposure		
Potential immediate effects	:	Not available.
Potential delayed effects	:	Not available.

Numerical measures of toxicity

Acute toxicity estimates

Not available.

Section 12. Ecological information

No known significant effects or critical hazards.

		Page 181 of 202	2			
Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version	:0.14	6/9

Section 13. Disposal considerations

Disposal methods	: The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.
RCRA classification	: D003 Because of its reactivity.

Section 14. Transport information

	DOT Classification	Bulk	TDG Classification	ΙΑΤΑ	IMDG
UN number	Not regulated.	Not regulated.	Not regulated.	Not acceptable for transport by aircraft.	Not regulated.
UN proper shipping name		-	-	-	-
Transport hazard class(es)	-	-	-	-	-
Packing group	-	-	-	-	-
Environmental hazards	No.	No.	No.	No.	No.

Additional information		
DOT Classification	:	-
TDG Classification	;	-
IMDG	:	-
ΙΑΤΑ	:	Not acceptable for transport by aircraft.
Special precautions for user	:	Transport within user's premises: always tr

r : **Transport within user's premises:** always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Section 15. Regulatory information

Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version : 0.14	7/9
Japan	•	ntory (ENCS): All componentory (ISHL): All com		•	
Europe	: Contact loc	al supplier or distributor.			
China	: All compone	ents are listed or exempt	ed.		
Canada	•	ents are listed or exempt			
Australia	: All compone	ents are listed or exempt	ed.		
Inventory list					

Section 15. Reg	ulatory information
New Zealand	: All components are listed or exempted.
Philippines	: All components are listed or exempted.
Republic of Korea	: All components are listed or exempted.
Taiwan	: All components are listed or exempted.
United States	: All components are listed or exempted.
Clean Air Act Section 11	2(b) Hazardous Air Pollutants (HAPs)
Not applicable.	
SARA 302/304	
Composition/information	on on ingredients
No products were found	l.
SARA 304 RQ	: Not applicable.
SARA 311/312	
Classification	: Not applicable.
State regulations	
Massachusetts	: The following components are listed: MICA DUST; TALC; SOAPSTONE
New York	: None of the components are listed.
New Jersey	. The following components are listed: MICA; CARBON BLACK; SOAPSTONE
Pennsylvania	: The following components are listed: MICA-GROUP MINERALS; CARBON BLACK; TALC; SOAPSTONE DUST
<u>California Prop. 65</u>	
MARNING: This pro	duct can expose you to chemicals including Ethylene oxide, Benzene, which are known to the

WARNING: This product can expose you to chemicals including Ethylene oxide, Benzene, which are known to the State of California to cause cancer and birth defects or other reproductive harm. This product can expose you to chemicals including Silica, crystalline, Diethanolamine, Talc, not containing asbestiform fibres, Acetaldehyde, Ethylbenzene, Carbon black, which are known to the State of California to cause cancer, and Ethylene Glycol, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Section 16. Other information

Hazardous Material Inform	nation System (U.S.A.)			
Health: 0 / Fl	ammability: 0	Physical hazards :	1	Personal protection Code : B
National Fire Protection A	Secondation (IISA)			
			4	Quantata
Health : 1 FI	ammability : 0	Instability/Reactivity :	1	Special : -
History				
Date of issue/Date of revision	: 6/14/2019			
Date of previous issue	: 4/15/2019			
Version	: 0.14			
Prepared by	: Chem-Trend Reg	ulatory Affairs Department.		

		Page 183 of 202	2			
Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version	:0.14	8/9

Section 16. Other information

Key to abbreviations	: ATE = Acute Toxicity Estimate
	BCF = Bioconcentration Factor
	GHS = Globally Harmonized System of Classification and Labelling of Chemicals
	IATA = International Air Transport Association
	IBC = Intermediate Bulk Container
	IMDG = International Maritime Dangerous Goods
	LogPow = logarithm of the octanol/water partition coefficient
	MARPOL = International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978. ("Marpol" = marine pollution) UN = United Nations

✓ Indicates information that has changed from previously issued version.

Notice to reader

Information presented herein has been compiled from information provided to us by our suppliers and other sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief but is not guaranteed to be so. Nothing herein is to be construed as recommending any practice or the use of any product in violation of any patent or in violation of any law or regulation. It is the users' responsibility to determine the suitability of any material for a specific purpose and to adopt such safety precautions as may be necessary. We make no warranty as to the results to be obtained in using any material and, since conditions of use are not under our control, we must necessarily disclaim all liability with respect to the use of any material supplied by us.

		Page 184 of 20	2		
Date of issue/Date of revision	: 6/14/2019	Date of previous issue	: 4/15/2019	Version : 0.14	9/9

SAFETY DATA SHEET

Section 1 - Chemical Product and Company Information

Akron Paint and Varnish

(dba APV Engineered Coatings) 1390 Firestone Parkway Akron, Ohio 44301 USA

www.apvcoatings.com

Information Telephone: (800) 772-3452 Facsimile: (330) 773-1028 Emergency Telephone: (330) 773-8911 CHEMTREC: (703) 527-3887

Product Code: D-3125-02

Product Name: ORANGE CURABLE JET PRINTER INK Product Use: Ink Not recommended for: Consumer Use

Section 2 - Hazards Identification

GHS Ratings

Flammable liquid	2	Flash point < 23°C and initial boiling point > 35°C (95°F)
Skin corrosive	2	Reversible adverse effects in dermal tissue, Draize score: >= 2.3 < 4.0 or persistent inflammation
Respiratory sensitizer	1	Respiratory sensitizer
Skin sensitizer	1	Skin sensitizer
Mutagen	1B	Known to produce heritable mutations in human germ cellsSubcategory 1B, Positive results: In vivo heritable germ cell tests in mammals, Human germ cell tests, In vivo somatic mutagenicity tests, combined with some evidence of germ cell mutagenicity
Carcinogen	1B	Presumed Human Carcinogen, Based on demonstrated animal carcinogenicity
Reproductive toxin	1B	Presumed, Based on experimental animals
Aspiration hazard	1	Aspiration Toxicity Category 1: Known (regarded)- human evidence - hydrocarbons with kinematic viscosity ? 20.5 mm2/s at 40° C.
Aquatic toxicity	C3	Acute toxicity > 10.0 but <= 100.0 mg/l and lack of rapid degradability and log Kow >= 4 unless BCF < 500 and unless chronic toxicity > 1 mg/l
llele		

GHS Hazards

H225	Highly flammable liquid and vapour
H304	May be fatal if swallowed and enters airways.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H340	May cause genetic defects.
H350	May cause cancer.
H360	May damage fertility or the unborn child.
H412	Harmful to aquatic life with long lasting effects.
GHS Precautions	
P201	Obtain special instructions before use
P202	Do not handle until all safety precautions have been read and understood
P210	Keep away from heat/sparks/open flames/hot surfaces. No smoking
P233	Keep container tightly closed
P240	Ground/bond container and receiving equipment
P241	Use explosion-proof electrical/ventilating/light/manufacturer/equipment

P242 Pub	lic Versignton Trade Secret Information Redacted
P243	Take precautionary measures against static discharge
P261	Avoid breathing dust/fume/gas/mist/vapours/spray
P264	Wash contact area thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace
P273	Avoid release to the environment
P280	Wear protective gloves/protective clothing/eye protection/face protection
P281	Use personal protective equipment as required
P285	In case of inadequate ventilation wear respiratory protection
P321	Specific treatment (see supplemental first aid instruction on this label)
P331	Do NOT induce vomiting
P362	Take off contaminated clothing and wash before reuse
P363	Wash contaminated clothing before reuse
P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/
P302+P352	IF ON SKIN: wash with plenty of water.
P303+P361+P353	IF ON SKIN (or hair): Take off Immediately all contaminated clothing. Rinse SKIN with water [or shower].
P304+P341	IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.
P308+P313	IF exposed or concerned: Get medical advice/attention.
P332+P313	If skin irritation occurs: Get medical advice/attention.
P333+P313	IF SKIN irritation or rash occurs: Get medical advice/attention.
P342+P311	IF experiencing respiratory symptoms: Call a POISON CENTER/doctor/
P370+P378	In case of fire: Use to extinguish.
P405	Store locked up
P403+P235	Store in a well-ventilated place. Keep cool.
P501	Dispose of contents/container in accordance with
	local/regional/national/international regulations.

Signal Word: Danger

Acute Toxicity N/A Conditions Aggravated N/A Chronic Effects

N/A

Section 3 - Composition / Information on Ingredients				
Chemical Name	CAS number	Weight Concentration %		
Distillates, petroleum, light distillate hydrotreating process, low-boiling	68410-97-9	37.00%		
Stoddard solvent	8052-41-3	30.00%		
Naphtha, petroleum, hydrotreated light	64742-49-0	26.00%		
1,3-Butadiene, 2-methyl-, homopolymer	9003-31-0	2.00%		
Trimethylbenzene	25551-13-7	1.00% - 5.00%		
Titanium (IV) dioxide	13463-67-7	1.00% - 5.00%		
Ethylbenzene	100-41-4	0.10% - 1.00%		

Section 4 - First Aid Measures

INHALATION - Move affected person to fresh air, rest in a half upright position, and loosen clothing. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Seek medical advice after significant exposure.

EYE CONTACT - Flush with large amounts of water for at least 15 minutes. Lift eyelids occasionally. Get prompt medical attention.

SKIN - Wash thoroughly with soap and water immediately. Remove all contaminated clothing immediately. Seek medical advice if irritation persists.

INGESTION - Seek medical advice. The decision to induce vomiting or not must be made by a physician after careful consideration of all matterials ingested. Risk of aspiration into lungs.

Section 5 - Fire Fighting Measures

Suitable Extinguishing Media

Carbon Dioxide---Dry Chemical---Foam---Water Fog Use water for cooling material stored in vicinity of fire.

Explosion Hazards

Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode. Application to hot surfaces requires special precautions. During emergency conditions, overexposure to decomposition products may cause a health hazard. Symptoms may not be immediately apparent. Obtain Medical Attention.

Hazardous Combustion Products

N/A

Recommended Fire Equipment

Use self-contained breathing apparatus with a full-face piece operated in a pressure-demand or other positive pressure mode. Wear protective clothing.

Section 6 - Accidental Release Measures

Non-emergency personnel: Evacuate and isolate the area and prevent access. Remove ignition sources. No flares, smoking or flames in hazard area. Notify management. Avoid breathing vapor or mist and put on protective equipment. Control source of the leak. Ventilate.

<u>Emergency responders</u>: See section 8 for any specialized clothing recommendations. Also reference the information for non-emergency personnel

<u>Environmental precautions:</u> Prevent further leakage or spillage if possible. Do not allow the material to spread to drains, sewers, water supplies, or soil. Contact APV (**330-773-8911**) for assistance and advice.

Public Version - Trade Secret Information Redacted

Small Spill: Stop leak if possible and move containers from the spill area. Water soluble: dilute with water and mop up. Water Insoluble: Cover spill area with a suitable absorbent inert material (Kitty Litter, Oil-Dri, etc.) and dispose of in an appropriate metal waste container. Dispose of material through a licensed waste disposal contractor.

Large Spill: Stop leak if possible and move containers from the spill area. Approach release from upwind. Contain spillage and with non-combustible absorbent material and place in appropriate disposal container according to local regulations. Dispose of material through a licensed waste disposal contractor. Report spill to appropriate governing agencies if applicable.

APV requires that CHEMTREC be immediately notified (**800-424-9300**) when this product is unintentionally released from its container during its course of distribution, regardless of the amount released. Distribution includes transportation, storage incidental to transportation, loading and unloading. Such notification must be immediate and made by the person have knowledge of the release.

Section 7 - Handling and Storage

Precautions for Safe Handling

Keep away from food, drink and heat. Keep away from sources of ignition. No smoking. Do not breathe vapor. Avoid contact with skin and eyes. Never use pressure to empty. Take precautionary measures against static discharges.

Storage temperature-

Minimum:	do not freeze
Maximum:	40°C (104°F)

Storage Period- See technical data sheet.

Section 8 - Exposure Controls / Personal Protection					
Chemical Name / CAS No.	OSHA Exposure Limits	ACGIH Exposure Limits	Other Exposure Limits		
Distillates, petroleum, light distillate hydrotreating process, low-boiling 68410-97-9	Not Established	Not Established	Not Established		
Stoddard solvent500 ppm TWA; 2900 mg8052-41-3TWA		100 ppm TWA NIOSH: 350 mg/ 1800 mg/m3 Cei min)			
Naphtha, petroleum, hydrotreated light 64742-49-0	Not Established	Not Established	Not Established		
1,3-Butadiene, 2-methyl-,Not Establishedhomopolymer9003-31-0		Not Established	Not Established		
Trimethylbenzene 25551-13-7	N/A	25 ppm TWA	N/A		
Titanium (IV) dioxide 13463-67-7	15 mg/m3 TWA (total dust)	10 mg/m3 TWA	N/A		
Ethylbenzene 100-41-4	100 ppm TWA; 435 mg/m3 TWA	20 ppm TWA	NIOSH: 100 ppm TWA; 435 mg/m3 TWA 125 ppm STEL; 545 mg/m3 STEL		

Dululia	Manajara Trada Osara	- Independent of the Independent	
PUDIC	iversion - Trade Secre	i information Redact	ea
Isopropylbenzene	50 ppm TWA; 245 mg/m3	50 ppm TWA	NIOSH: 50 ppm TWA;
98-82-8	TWA		245 mg/m3 TWA

Engineering Controls: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation, or other controls to keep air containment concentration below current applicable OSHA permissible exposure limit or ACGIH TLV limit, and volatiles below lower explosive limit. Heavy solvent vapors should be removed from the lower levels of area, and all ignition sources (non-explosion proof equipment) should be eliminated if flammable mixtures will be encountered. Remove decomposition products formed during welding or flame cutting of surfaces coated with this product. For baking finishes - vent vapors emitted on heating.

Environmental Controls: Emissions should comply with environmental protection legislation.

Individual Protection Measures:

<u>Hygiene measures</u>- Wash hands, forearms, etc. after handling chemical products, before eating, smoking, and using the lavatory, and the end of the work period. Use appropriate techniques when removing potentially contaminated clothing and wash before reusing. Know the locations of eyewash and safety showers.

<u>Respiratory Protection</u>- Provide adequate ventilation to keep exposure below permissible limits. If a risk assessment deems necessary, operator is to use a properly fitted, air purifying or supplied air respirator. Respirator selection must be based on known/ anticipated exposure levels, the hazards of the product, and the safe working limits of the respirator.

<u>Skin and Body Protection</u>- Wear chemical resistant gloves (nitrile) and paint suits when necessary, based on risk assessment. The most suitable glove must be chosen in consultation with the gloves supplier who can inform about the breakthrough time of the glove material. PPE for the body should be selected based on the risks of the task being performed and approved by a specialist. Appropriate footwear should also be approved.

<u>Eye/Face Protection</u>- Wear approved chemical safety goggles where exposure to vapor or contact with eyes is possible. Eye wash stations should also be made available. If inhalation hazard exists, a risk assessment will determine if a full face respirator may be required

Section 9 - Physical and Chemical Properties

Information on basic physical and chemical properties:

Viscosity: Not determined	pH: N/A
% Weight Solids 4.11	% Volume Solids 2.41
VOC Wt/Gal (wet) 6.12	U.S. VOC Wt/Gal (wet) 6.12
Specific Gravity (SG) 0.765	Odor: N/A
Odor Threshold: Not determined	Color: Orange
Boiling Point: 150°C	Flash Point: 32°F,0°C
LEL/UEL: N/A	Autoignition Temperature: 226°C
Evaporation Rate (nBuAc=1): Not determined	Vapor Pressure: N/A
Vapor Density: N/A	Freezing Point: Not determined
Partition coefficient: Not determined	

Public Version - Trade Secret Information Redacted Section 10 - Stability and Reactivity

Stability and reactivity profile

This material is considered stable

Hazardous polymerization will not occur.

The following materials should be avoided in contact with the mixture

Strong acids

Oxidizing agents

Hazardous decomposition products

Titanium/titanium oxides

Section 11 - Toxicological Information

Mixture Toxicity

Oral Toxicity LD50: 4,631mg/kg Dermal Toxicity LD50: 3,162mg/kg

Component Toxicity

Inponent Toxicity	
68410-97-9	Distillates, petroleum, light distillate hydrotreating process, low-boiling
	Oral LD50: 5,000 mg/kg (Rat) Dermal LD50: 2,000 mg/kg (Rabbit) Inhalation LC50: 3,367 ppm (R
64742-49-0	Naphtha, petroleum, hydrotreated light
	Oral LD50: 2,000 mg/kg (Rat) Dermal LD50: 2,000 mg/kg (Rabbit)
100-41-4	Ethylbenzene
	Oral LD50: 3,500 mg/kg (Rat) Inhalation LC50: 17 mg/L (Rat)

LC₅₀ and LD₅₀ toxicity for this product are merely estimates and have yet to be determined. For individual component ecotoxicity, please refer to Section 11.

Possible Routes of Entry

Inhalatio	on	Skin Contact	Eye Contact	Ingestion	
Potential Ta	rget Org	ans			
Blood	Eyes	Kidneys	Central Nervous System	Skin	Respiratory System
Effects of O	verexpo	sure			

Not Available

The following components are possible carcinogens

*Materials labeled a carcinogen in dust form are supplied in solution, thus eliminating the hazard.

<u>CAS Number</u> 13463-67-7	<u>Description</u> Titanium (IV) dioxide	<u>% Weight</u> 1 to 5%	<u>Carcinogen Rating</u> Titanium (IV) dioxide: (*dust) NIOSH: potential occupational carcinogen IARC: Possible human carcinogen OSHA: listed
68410-97-9	Distillates, petroleum, light distillate hydrotreating process, low-boiling	37	Distillates, petroleum, light distillate hydrotreating process, low- boiling: EU REACH: Present (P)
64742-49-0	Naphtha, petroleum, hydrotreated light	26	Naphtha, petroleum, hydrotreated light: EU REACH: Present (P)
100-41-4	Ethylbenzene	0.1 to 1.0%	Ethylbenzene: IARC: Possible human carcinogen OSHA: listed

98-82-8	Rublic Version - Trade Secret Inform		Reclacted Isopropyiberizene: IARC: Possible human carcinogen OSHA: listed
8052-41-3	Stoddard solvent		Stoddard solvent: EU REACH: Present (P)
	Section 12 - Ec	ological Information	n
Mixture Ecotoxicity Toxicity- Do not releas Persistence and degr Bioaccumulative pote Mobility in Soil- N/A Component Ecotoxid	ntial- N/A	n adverse effects.	
Trimethylbenzene 96 Hr LC50 Pimephales promelas: 7.72 mg/L [flow-through]			[flow-through]
Ethylbenzene	thylbenzene96 Hr LC50 Oncorhynchus mykiss: 11.0 - 18.0 mg/L [static]; 96 Hr LC50 Oncorhynchus mykiss: 4.2 mg/L [semi-static]; 96 Hr LC50 Pimephales promelas: 7.55 - 11 mg/L [flow-through]; 96 Hr LC50 Lepomis macrochirus: 32 mg/L [static]; 96 Hr LC50 Pimephales promelas: 9.1 - 15.6 mg/L [static]; 96 Hr LC50 Poecilia reticulata: 9.6 mg/L [static] 48 Hr EC50 Daphnia magna: 1.8 - 2.4 mg/L 72 Hr EC50 Pseudokirchneriella subcapitata: 4.6 mg/L; 96 Hr EC50 Pseudokirchneriella subcapitata: >438 mg/L; 72 Hr EC50 Pseudokirchneriella subcapitata: 2.6 - 11.3 mg/L [static]; 96 Hr EC50 Pseudokirchneriella subcapitata: 1.7 - 7.6 mg/L [static]		
Isopropylbenzene 96 Hr LC50 Pimephales promelas: 6.04 - 6.61 mg/L [flow-through]; 9 Oncorhynchus mykiss: 4.8 mg/L [flow-through]; 96 Hr LC50 Oncorhy mykiss: 2.7 mg/L [semi-static]; 96 Hr LC50 Poecilia reticulata: 5.1 mg static] 48 Hr EC50 Daphnia magna: 0.6 mg/L; 48 Hr EC50 Daphnia magna: mg/L [Static] 72 Hr EC50 Pseudokirchneriella subcapitata: 2.6 mg/L]; 96 Hr LC50 Oncorhynchus ecilia reticulata: 5.1 mg/L [semi- EC50 Daphnia magna: 7.9 - 14.1

Section 13 - Disposal Considerations

Dispose of in accordance with federal, state and local regulations. Controlled incineration is recommended for disposal of unused product. Prevent contamination of soil, drains and surface waters. Dispose of large containers to a licensed reconditioner. Dispose of small containers in compliance with local regulations.

Section 14 - Transport Information				
<u>Agency</u> DOT	<u>Proper Shipping Name</u> PAINT IATA Pkg Instr: Y341/353/364; IMDG EmS: F-E, S-D	<u>UN Number</u> UN1263	<u>Packing Group</u> II	Hazard Class 3
	Section 15 - Regulate	ory Informatio	n	
100-4 98-82 25551	ing chemicals are listed in Californa Title 8 CCR Sections as 1-4 Ethylbenzene -8 Isopropylbenzene I-13-7 Trimethylbenzene 41-3 Stoddard solvent	s Hazardous Subst	ances	

The following chemicals are listed in Section 64 of the Canadian Environmental Protection Act, 1999 (CEPA) - None

SDS for: D-3125-02

Public Version - Trade Secret Information Redacted

The following chemicals are classified by China - Environmental Quality Standards for Surface Water - None

The following chemicals have been listed by the EU-End of Life Vehicles (2000/53/EC) (ELV): - None

The following chemicals are listed in the EU-Substances of Very High Concern (2008/67/ED) (SVHC): - None

The following chemcials are listed in the EU-Restriction of the use of certain Hazardous Substances (2011/65/EU) (RoHS):

- None

The following chemicals are listed under the European Union- Waste Electrical and Electronic Equipment (2012/19/EU) (WEEE)

- None

The following chemicals are included in the Global Automotive Declarable Substance List (GADSL) - None

The following substances are required for notification by the Japanese Enforcement Order of the Industrial Safety and Health Law (ISHL):

100-41-4 Ethylbenzene 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 64742-49-0 Naphtha, petroleum, hydrotreated light 8052-41-3 Stoddard solvent

The following chemicals are listed on the Massachusetts Right-to-Know Hazardous Substances List. 100-41-4 Ethylbenzene 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed on the New Jersey Right-to-Know Hazardous Substances List. 100-41-4 Ethylbenzene 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed on the Pennsylvania Right-to-Know Hazardous Substances List. 100-41-4 Ethylbenzene 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed by the State of California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

100-41-4 Ethylbenzene 0.1 to 1.0 % Carcinogen 98-82-8 Isopropylbenzene 0.1 to 1.0 % Carcinogen 13463-67-7 Titanium (IV) dioxide 1 to 5 % Carcinogen Section 313 of the Emergencie Planning and Community Right Grand Market Market Market Community Right Grand Strength Community Right Grand Strength Community Right Community Right Community Register Comm

100-41-4 Ethylbenzene 0.1 to 1.0 %

98-82-8 Isopropylbenzene 0.1 to 1.0 %

Under Section 12(b) of the Toxic Substances Control Act (TSCA), exporters may need to notify the U.S. Environmental Protection Agency if they export or intend to export a product containing a chemical substance that is present on this list. The following substances are containted within this material:

- None

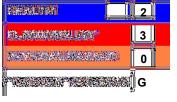
The following chemicals are listed as a *Hazardous Air Pollutant* under listed under the U.S. CAA (Clean Air Act) 100-41-4 Ethylbenzene

98-82-8 Isopropylbenzene

Country	Regulation	All Components Listed
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Canadian Domestic Substances List (DSL)	Yes
Canada	Canadian Non-Domestic Substances List (NSDL)	No
China	Inventory of Existing Chemical Substances Produced or Imported in China (IECSC	;) Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Europe	REACH Registered or Pre-Registered Substances and Intermediates	Yes
Japan	Japanese Inventory of Existing and New Chemical Substances (ENCS)	No
Japan	Japan Inventory of Industrial Saftey and Health Law Substances (ISHL)	No
Korea	Korean Existing Chemical Inventory (KECI)	Yes
New Zealand	New Zealand Inventory of Chemicals (NZIoC)	Yes
Philippines	Philippines Inventory of Chemicals and Chemical Substances (PICCS)	Yes
USA	Toxic Substances and Control Act (TSCA)	Yes

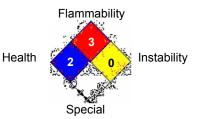
EU Risk Phrases

Not Available


Safety Phrase

Not Available

Section 16 - Other Information


NFPA and HMIS use a numbering scale ranging from 0 to 4 to indicate the degree of hazard. A value of zero means that the substance possesses essentially no hazard; a rating of four indicates extreme danger. Although similar, the two rating systems are intended for different purposes, and use different criteria. The NFPA system was developed to provide an on-the-spot alert to the hazards of a material, and their severity, to emergency responders. The HMIS system was designed to communicate workplace hazard information to employees who handle hazardous chemicals.

Hazardous Material Information System (HMIS)

HMIS & NFPA Hazard Rating Legend * = Chronic Health Hazard 0 = INSIGNIFICANT 1 = SLIGHT 2 = MODERATE 3 = HIGH

National Fire Protection Association (NFPA)

The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

Date revised: 2019-01-10 Date Prepared: 1/10/2019 Revision No: Reviewer ID: KVosecky

Page 9 of 9 Printed: 1/10/2019 at 8:54:27AM

Y DATA SHEET SAFET

Section 1 - Chemical Product and Company Information

Akron Paint and Varnish

(dba APV Engineered Coatings) 1390 Firestone Parkway Akron, Ohio 44301 USA

www.apvcoatings.com

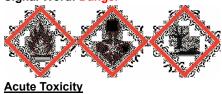
Information Telephone: (800) 772-3452 Facsimile: (330) 773-1028 Emergency Telephone: (330) 773-8911 CHEMTREC: (703) 527-3887

Product Code: D-4936-01

Product Name: YELLOW CURABLE JET PRINTER INK Product Use: Ink Not recommended for: Contact with food

Section 2 - Hazards Identification

GHS R


Ratings		
Flammable liquid	2	Flash point < 23°C and initial boiling point > 35°C (95°F)
Skin corrosive	2	Reversible adverse effects in dermal tissue, Draize score: >= 2.3 < 4.0 or persistent inflammation
Respiratory sensitizer	1	Respiratory sensitizer
Skin sensitizer	1	Skin sensitizer
Mutagen	1B	Known to produce heritable mutations in human germ cellsSubcategory 1B, Positive results: In vivo heritable germ cell tests in mammals, Human germ cell tests, In vivo somatic mutagenicity tests, combined with some evidence of germ cell mutagenicity
Carcinogen	1B	Presumed Human Carcinogen, Based on demonstrated animal carcinogenicity
Aspiration hazard	1	Aspiration Toxicity Category 1: Known (regarded)- human evidence - hydrocarbons with kinematic viscosity ? 20.5 mm2/s at 40° C.
Aquatic toxicity	C2	Acute toxicity > 1.00 but <= 10.0 mg/l and lack of rapid degradability and log Kow >= 4 unless BCF < 500 and unless chronic toxicity > 1 mg/l

GHS Hazards

H225 H304 H315 H317	Highly flammable liquid and vapour May be fatal if swallowed and enters airways. Causes skin irritation. May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H340 H350	May cause genetic defects. May cause cancer.
H411	Toxic to aquatic life with long lasting effects.
GHS Precautions	
P201	Obtain special instructions before use
P202	Do not handle until all safety precautions have been read and understood
P210	Keep away from heat/sparks/open flames/hot surfaces. No smoking
P233	Keep container tightly closed
P240	Ground/bond container and receiving equipment
P241	Use explosion-proof electrical/ventilating/light/manufacturer/equipment
P242	Use only non-sparking tools
P243	Take precautionary measures against static discharge

P261 F	Public Versionathing admuses the loss of the second s
P264	Wash contact area thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace
P273	Avoid release to the environment
P280	Wear protective gloves/protective clothing/eye protection/face protection
P281	Use personal protective equipment as required
P285	In case of inadequate ventilation wear respiratory protection
P321	Specific treatment (see supplemental first aid instruction on this label)
P331	Do NOT induce vomiting
P362	Take off contaminated clothing and wash before reuse
P363	Wash contaminated clothing before reuse
P391	Collect spillage
P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/
P302+P352	IF ON SKIN: wash with plenty of water.
P303+P361+P3	IF ON SKIN (or hair): Take off Immediately all contaminated clothing. Rinse SKIN
	with water [or shower].
P304+P341	IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.
P308+P313	IF exposed or concerned: Get medical advice/attention.
P332+P313	If skin irritation occurs: Get medical advice/attention.
P333+P313	IF SKIN irritation or rash occurs: Get medical advice/attention.
P342+P311	IF experiencing respiratory symptoms: Call a POISON CENTER/doctor/
P370+P378	In case of fire: Use to extinguish.
P405	Store locked up
P403+P235	Store in a well-ventilated place. Keep cool.
P501	Dispose of contents/container in accordance with
	local/regional/national/international regulations.

Signal Word: Danger

N/A <u>Conditions Aggravated</u> N/A <u>Chronic Effects</u> N/A

Section 3 - Composition / Information on Ingredients						
Chemical Name CAS number Weight Concentration %						
Distillates, petroleum, light distillate hydrotreating process, low-boiling	68410-97-9	36.00%				
Stoddard solvent	8052-41-3	31.00%				
Naphtha, petroleum, hydrotreated light	64742-49-0	27.00%				
1,3-Butadiene, 2-methyl-, homopolymer	9003-31-0	2.00%				
Trimethylbenzene	25551-13-7	1.00% - 5.00%				
Titanium (IV) dioxide	13463-67-7	1.00% - 5.00%				
Isopropylbenzene	98-82-8	0.10% - 1.00%				

ublic Version - Trade Secret Information Redacted Section 4 - First Aid Measures

INHALATION - Move affected person to fresh air, rest in a half upright position, and loosen clothing. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Seek medical advice after significant exposure.

EYE CONTACT - Flush with large amounts of water for at least 15 minutes. Lift eyelids occasionally. Get prompt medical attention.

SKIN - Wash thoroughly with soap and water immediately. Remove all contaminated clothing immediately. Seek medical advice if irritation persists.

INGESTION - Seek medical advice. The decision to induce vomiting or not must be made by a physician after careful consideration of all matterials ingested. Risk of aspiration into lungs.

Section 5 - Fire Fighting Measures

Suitable Extinguishing Media

Carbon Dioxide---Dry Chemical---Foam---Water Fog Use water for cooling material stored in vicinity of fire.

Explosion Hazards

Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode. Application to hot surfaces requires special precautions. During emergency conditions, overexposure to decomposition products may cause a health hazard. Symptoms may not be immediately apparent. Obtain Medical Attention.

Hazardous Combustion Products

N/A

Recommended Fire Equipment

Use self-contained breathing apparatus with a full-face piece operated in a pressure-demand or other positive pressure mode. Wear protective clothing.

Section 6 - Accidental Release Measures

Non-emergency personnel: Evacuate and isolate the area and prevent access. Remove ignition sources. No flares, smoking or flames in hazard area. Notify management. Avoid breathing vapor or mist and put on protective equipment. Control source of the leak. Ventilate.

<u>Emergency responders</u>: See section 8 for any specialized clothing recommendations. Also reference the information for non-emergency personnel

<u>Environmental precautions:</u> Prevent further leakage or spillage if possible. Do not allow the material to spread to drains, sewers, water supplies, or soil. Contact APV (**330-773-8911**) for assistance and advice.

Small Spill: Stop leak if possible and move containers from the spill area. Water soluble: dilute with water and

SDS for: D-4936-01

mop up. Water Insoluble: Cuber Spill area with a suitable desonant international Rest in the suitable of the s

Large Spill: Stop leak if possible and move containers from the spill area. Approach release from upwind. Contain spillage and with non-combustible absorbent material and place in appropriate disposal container according to local regulations. Dispose of material through a licensed waste disposal contractor. Report spill to appropriate governing agencies if applicable.

APV requires that CHEMTREC be immediately notified (**800-424-9300**) when this product is unintentionally released from its container during its course of distribution, regardless of the amount released. Distribution includes transportation, storage incidental to transportation, loading and unloading. Such notification must be immediate and made by the person have knowledge of the release.

Section 7 - Handling and Storage

Precautions for Safe Handling

Keep away from food, drink and heat. Keep away from sources of ignition. No smoking. Do not breathe vapor. Avoid contact with skin and eyes. Never use pressure to empty. Take precautionary measures against static discharges.

Storage temperature-

Minimum:	do not freeze
Maximum:	40°C (104°F)

Storage Period- See technical data sheet.

Section 8 - Exposure Controls / Personal Protection					
Chemical Name / CAS No.	OSHA Exposure Limits	ACGIH Exposure Limits	Other Exposure Limits		
Distillates, petroleum, light distillate hydrotreating process, low-boiling 68410-97-9	Not Established	Not Established	Not Established		
Stoddard solvent 8052-41-3	500 ppm TWA; 2900 mg/m3 TWA	100 ppm TWA	NIOSH: 350 mg/m3 TWA 1800 mg/m3 Ceiling (15 min)		
Naphtha, petroleum,Not Establishedhydrotreated light64742-49-0		Not Established	Not Established		
1,3-Butadiene, 2-methyl-, Not Established homopolymer 9003-31-0		Not Established	Not Established		
Trimethylbenzene N/A 25551-13-7		25 ppm TWA	N/A		
Titanium (IV) dioxide 13463-67-7	15 mg/m3 TWA (total dust)	10 mg/m3 TWA	N/A		
lsopropylbenzene 98-82-8	50 ppm TWA; 245 mg/m3 TWA	50 ppm TWA	NIOSH: 50 ppm TWA; 245 mg/m3 TWA		

Engineering Controls: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation, or other controls to keep air containment concentration below current applicable OSHA permissible exposure limit or ACGIH TLV limit, and volatiles below lower explosive limit. Heavy solvent vapors should be removed from the lower

SDS for: D-4936-01

levels of area, and all ignition surces chosical products formed during welding or flame cutting of surfaces coated with this product. For baking finishes - vent vapors emitted on heating.

Environmental Controls: Emissions should comply with environmental protection legislation.

Individual Protection Measures:

<u>Hygiene measures</u>- Wash hands, forearms, etc. after handling chemical products, before eating, smoking, and using the lavatory, and the end of the work period. Use appropriate techniques when removing potentially contaminated clothing and wash before reusing. Know the locations of eyewash and safety showers.

<u>Respiratory Protection</u>- Provide adequate ventilation to keep exposure below permissible limits. If a risk assessment deems necessary, operator is to use a properly fitted, air purifying or supplied air respirator. Respirator selection must be based on known/ anticipated exposure levels, the hazards of the product, and the safe working limits of the respirator.

<u>Skin and Body Protection</u>- Wear chemical resistant gloves (nitrile) and paint suits when necessary, based on risk assessment. The most suitable glove must be chosen in consultation with the gloves supplier who can inform about the breakthrough time of the glove material. PPE for the body should be selected based on the risks of the task being performed and approved by a specialist. Appropriate footwear should also be approved.

<u>Eye/Face Protection</u>- Wear approved chemical safety goggles where exposure to vapor or contact with eyes is possible. Eye wash stations should also be made available. If inhalation hazard exists, a risk assessment will determine if a full face respirator may be required

Section 9 - Physical and Chemical Properties

Information on basic physical and chemical properties:

Evaporation Rate (nBuAc=1): Not determined Vapor Density: 3.9 Partition coefficient: Not determined pH: N/a % Volume Solids 2.43 U.S. VOC Wt/Gal (wet) 6.12 Odor: Hydrocarbon Color: Yellow Flash Point: 32°F,0°C Autoignition Temperature: 226°C Vapor Pressure: 2.7 mmHg Freezing Point: Not determined Viscosity: Not determined % Weight Solids 4.08 VOC Wt/Gal (wet) 6.12 Specific Gravity (SG) 0.765 Odor Threshold: Not determined Boiling Point: 150°C LEL/UEL: N/A

Section 10 - Stability and Reactivity

Stability and reactivity profile

This material is unstable

Hazardous polymerization will not occur.

The following materials should be avoided in contact with the mixture

Oxidizing agents Public Version - Trade Secret Information Redacted

Strong acids

Hazardous decomposition products

Titanium/titanium oxides

Section 11 - Toxicological Information

Mixture Toxicity

Oral Toxicity LD50: 4,557mg/kg Dermal Toxicity LD50: 3,166mg/kg

Component Toxicity

68410-97-9	Distillates, petroleum, light distillate hydrotreating process, low-boiling		
	Oral LD50: 5,000 mg/kg (Rat) Dermal LD50: 2,000 mg/kg (Rabbit) Inhalation LC50: 3,367 ppm (R		
64742-49-0	Naphtha, petroleum, hydrotreated light		
	Oral LD50: 2,000 mg/kg (Rat) Dermal LD50: 2,000 mg/kg (Rabbit)		

LC₅₀ and LD₅₀ toxicity for this product are merely estimates and have yet to be determined. For individual component ecotoxicity, please refer to Section 11.

Possible Routes of Entry					
Inhalation	Skin C	Contact	Eye Contact	Inge	stion
Potential Target Organs					
Eyes	Kidneys	Central I	Vervous System	Skin	Respiratory System
Effects of Ove	rexposure				

Not Available

The following components are possible carcinogens

*Materials labeled a carcinogen in dust form are supplied in solution, thus eliminating the hazard.

<u>CAS Number</u> 64742-49-0	<u>Description</u> Naphtha, petroleum, hydrotreated light	<u>% Weight</u> 27	<u>Carcinogen Rating</u> Naphtha, petroleum, hydrotreated light: EU REACH: Present (P)
98-82-8	lsopropylbenzene	0.1 to 1.0%	Isopropylbenzene: IARC: Possible human carcinogen OSHA: listed
8052-41-3	Stoddard solvent	31	Stoddard solvent: EU REACH: Present (P)
13463-67-7	Titanium (IV) dioxide	1 to 5%	Titanium (IV) dioxide: (*dust) NIOSH: potential occupational carcinogen IARC: Possible human carcinogen OSHA: listed
68410-97-9	Distillates, petroleum, light distillate hydrotreating process, low-boiling	36	Distillates, petroleum, light distillate hydrotreating process, low- boiling: EU REACH: Present (P)

Section 12 - Ecological Information

Mixture Ecotoxicity

Toxicity- Do not release into environment. May cause long term adverse effects. Persistence and degradability- N/A

<u>Component Ecotoxicity</u>	
Trimethylbenzene 96 Hr LC50 Pimephales promelas: 7.72 mg/L [flow-through]	
Isopropylbenzene 96 Hr LC50 Pimephales promelas: 6.04 - 6.61 mg/L [flow-through]; 9 Oncorhynchus mykiss: 4.8 mg/L [flow-through]; 96 Hr LC50 Oncorhy mykiss: 2.7 mg/L [semi-static]; 96 Hr LC50 Poecilia reticulata: 5.1 mg static] 48 Hr EC50 Daphnia magna: 0.6 mg/L; 48 Hr EC50 Daphnia magna: mg/L [Static] 72 Hr EC50 Pseudokirchneriella subcapitata: 2.6 mg/L	nchus g/L [semi-

Section 13 - Disposal Considerations

Dispose of in accordance with federal, state and local regulations. Controlled incineration is recommended for disposal of unused product. Prevent contamination of soil, drains and surface waters. Dispose of large containers to a licensed reconditioner. Dispose of small containers in compliance with local regulations.

	Section 2	14 - Transport Informatior	1	
<u>Agency</u> DOT	Proper Shipping Name Printing Ink	<u>UN Number</u> UN1210	Packing Group	Hazard Class
IATA	Printing Ink Pkg Instr: Y341/353/364	UN1210	II	3
IMDG	Printing Ink EmS: F-E, S-D	UN1210	II	3

Section 15 - Regulatory Information

The following chemicals are listed in Californa Title 8 CCR Sections as Hazardous Substances 98-82-8 Isopropylbenzene 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed in Californa Title 8 CCR Sections 5200-5220 as Carcinogens . - None

The following chemicals are listed in Californa Title 8 CCR Section 5203 as Carcinogens - None

The following chemicals are listed in Californa Title 8 CCR Section 5209 as Carcinogens . - None

The following chemicals are listed in the EU-Substances of Very High Concern (2008/67/ED) (SVHC): - None

The following chemcials are listed in the EU-Restriction of the use of certain Hazardous Substances (2011/65/EU) (RoHS):

- None

The following chemicals are included in the Global Automotive Declarable Substance List (GADSL)

- None

The following substances are required for notification by the Japanese Enforcement Order of the Industrial Safety and Health Law (ISHL):

98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide

SDS for: D-4936-01

25551-13-7 Trimethybeigene Version - Trade Secret Information Redacted 64742-49-0 Naphtha, petroleum, hydrotreated light 8052-41-3 Stoddard solvent

The following chemicals are listed on the Massachusetts Right-to-Know Hazardous Substances List. 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed on the New Jersey Right-to-Know Hazardous Substances List. 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed on the Pennsylvania Right-to-Know Hazardous Substances List. 98-82-8 Isopropylbenzene 13463-67-7 Titanium (IV) dioxide 25551-13-7 Trimethylbenzene 8052-41-3 Stoddard solvent

The following chemicals are listed by the State of California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

98-82-8 Isopropylbenzene 0.1 to 1.0 % Carcinogen 13463-67-7 Titanium (IV) dioxide 1 to 5 % Carcinogen

Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. The following chemicals are listed:

98-82-8 Isopropylbenzene 0.1 to 1.0 %

The following chemicals are listed in EPCRA (SARA) Section 313: Persistent, Bioaccumulative, and Toxic Chemicals (PBT)

- None

The following chemicals are listed under EPCRA (SARA) Section 313: Toxic Release Inventory (TRI) - None

Under Section 12(b) of the Toxic Substances Control Act (TSCA), exporters may need to notify the U.S. Environmental Protection Agency if they export or intend to export a product containing a chemical substance that is present on this list. The following substances are containted within this material:

- None

The following chemicals are listed as a *Hazardous Air Pollutant* under listed under the U.S. CAA (Clean Air Act) 98-82-8 Isopropylbenzene

Country	Regulation	All Components Listed
Canada	Canadian Domestic Substances List (DSL)	Yes
Canada	Canadian Non-Domestic Substances List (NSDL)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Europe	REACH Registered or Pre-Registered Substances and Intermediates	Yes
Japan	Japanese Inventory of Existing and New Chemical Substances (ENCS)	No
Japan	Japan Inventory of Industrial Saftey and Health Law Substances (ISHL)	No
Korea	Korean Existing Chemical Inventory (KECI)	Yes
New Zealand	New Zealand Inventory of Chemicals (NZIoC)	Yes

SDS for: D-4936-01

Philippines USA

Toxic Substances and Control Act (TSCA)

EU Risk Phrases

Not Available

Safety Phrase

heatmi

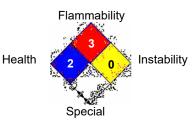
FR. ASHAARUUTY

MEYCHOLAN MADARTD

G

Not Available

Section 16 - Other Information


NFPA and HMIS use a numbering scale ranging from 0 to 4 to indicate the degree of hazard. A value of zero means that the substance possesses essentially no hazard; a rating of four indicates extreme danger. Although similar, the two rating systems are intended for different purposes, and use different criteria. The NFPA system was developed to provide an on-the-spot alert to the hazards of a material, and their severity, to emergency responders. The HMIS system was designed to communicate workplace hazard information to employees who handle hazardous chemicals.

Hazardous Material Information System (HMIS)

0

HMIS & NFPA Hazard Rating 2 Legend 3 * = Chronic Health Hazard 0 = INSIGNIFICANT 1 = SLIGHT 2 = MODERATE 3 = HIGH

National Fire Protection Association (NFPA)

The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

Date revised: 2015-06-12 Date Prepared: 6/4/2019

Revision No: 1 Reviewer ID: pbluman

REVISED BACT NARRATIVE FOR MIXING

From the Mixing Source 05 BACT Analysis. Step 2: Eliminate infeasible options. Beginning on page 8.

Because other tire plants have installed RTOs for mixing, BATO considered RTOs on each of the 4 new mixers with a proportional amount of silane usage for each mixer. A second scenario considered was installing 2 larger RTO's on 2 pairs of new mixers each using a proportional amount of silane per year. It's possible that particulate in the exhaust of the mixers would blind a concentrator wheel; however, BATO has considered the option to install a combined system in series that would accept all exhausts from the 4 new mixers in the concentrator wheel(s) and exhaust to a single RTO. Another configuration that was considered was a system exhausting 4 new mixers and 2 existing mixers to three concentrator wheels in series with a single RTO. Each of these configurations shows a BACT control cost >\$8,000/ton VOC Emissions avoided as shown in Appendix B. Any configuration over \$8,000 per ton of emissions avoided can be considered economically infeasible according to other BACT references for this industry. In addition, BATO considered the option to install an RTO on 2 of the new mixers and assumed that these 2 mixers would be selected to process all Silane for the facility. The BATO Warren permit does not currently limit how each of its mixers is used. Tread can be mixed in any mixer. Flexibility in operations is needed in the plant and critical to allow the capability to be able to mix any type of rubber compound in any mixer and to be able to use the tire "recipe" components necessary to produce the types of tires their customers demand. This flexibility is necessary to be able to reach the design capacity. The type and amount of silane used in BATO's tires has changed over time and BATO has experienced an increase in demand for tires that are manufactured using silane. Silane is added during the tread mixing process in order to impart certain characteristics to the rubber (tread) being mixed. Ethanol is emitted as the silane reacts with the rubber compound in the presence of high temperature and moisture. BATO has not evaluated the resultant cost that would also be incurred from redesigning the mixing process so that only certain mixers are used for mixing activities with higher VOC emissions potential using silane.

We do not believe that redesigning or constraining the process in that way is required as part of a BACT analysis, and it would limit the overall production capability of the plant. Continued operational flexibility and lack of restriction on product flow within the plant is vital to maintaining BATO's current production rates and product quality. As requested, BATO has reviewed the cost analysis that was submitted previously. It was found that an inconsistency existed in the length of the ductwork estimated for the configuration of a single 30,000 CFM RTO for a single Mixer and the length of ductwork estimated for the configuration of two RTOs serving two pairs of mixers. Each RTO in this scenario would control about 64,000 CFM of air exhausted to each of the two RTOs. In the case of the single RTO controlling a single Mixer, a low estimate of 30 feet of ductwork was previously used. A more accurate figure would be at least 1,000 feet of ductwork according to BATO's engineering team. The mixers are configured vertically within the production plant with material being added to day bins on the third floor. mixing occurs on the mezzanine between floors 2 and 3. An exhaust duct for VOC emissions from Mixing operations would need to be routed out and around day bins on the 3rd floor. Then, the roof does not have sufficient room for an RTO with the dust collectors, and high heat from the RTO would cause combustible dust hazards if located next to the mixing dust control equipment. Exhaust would need to be ducted a significant distance away from the mixing operations, and 1,000 feet is a low estimate. For consistency, we considered 1,000 feet of ductwork the same for the second configuration of the two larger RTOs controlling two pairs of mixers. Larger ductwork for this configuration would incur higher costs, but this small increase was not considered. Lastly, another update was made to include a lower, more

reasonable equipment cost estimate from an RTO equipment manufacturer for the RTOs sized for 64,000 CFM. The equipment cost for the RTO rated for 30,000 CFM is \$875,000, and the updated equipment cost for the RTO rated at 64,000 CFM is \$1,257,000. A review of the cost of each of these configurations mentioned above proved to be excessive (>\$8,000 per ton of VOC emissions avoided) as shown in the attached summary sheets.

Step 3 and 4: Rank remaining control technologies by control effectiveness and evaluate the most effective controls and document results.

Based on this analysis, mixing emissions would be most effectively controlled by an RTO; however, this add-on control technology is not economically feasible based on the cost to install and operate the equipment. All other add-on control technologies listed are considered not technically feasible. Best work practices have been chosen as the best alternative to add-on control technologies for VOC emissions from Mixing.

Warren County Expansion - BACT Info

Mixer - VOC Control of Baghouse Exhaust

Г			
R	RTO Size - CFM	30,000 CFM	64,000 CFM
Annual cost of RTO per 620 or 320 Mi	xers	\$821,617	\$1,235,675

Mixer	RTO Size - CFM (individual RTO on each Mixer)	(RTO on each	Production (tires	Total Rubber VOC from All Mixers (tpy)	Tires per day with Silane	Total EtOH from Silane from Mixers (tpy)	Rubber VOC and EtOH from Silane Mixers (tpy)	% Capture VOC to RTO	No. of RTOs		Annual Cost of RTO for Pairs of Mixer Exhausts	Control Eff of RTO	Mixers VOC After Control (tpy)	Avoided (tpy)	RTO's for each	RTO's installed each Pair of Mixers \$/ton avoided emissions
626	31,659	63,318					20.07	85%	1	\$821,617	\$1,235,675	98%	3.4	16.7	\$49,149	\$36,959
627	31,659	05,510	13.640	18.44	13.640	162.17	20.07	85%	1	\$821,617	\$1,233,073	98%	3.4	16.7	\$49,149	\$30,535
328	31,659	63,318	15,040	10.44	13,040	102.17	20.07	85%	1	\$821,617	\$1,235,675	98%	3.4	16.7	\$49,149	\$36,959
329	31,659	05,518					20.07	85%	1	\$821,617	\$1,233,073	98%	3.4	16.7	\$49,149	\$30,535

Total No. of Mixers

9

	RTO Size - CFM	Rubber VOC - 2 mixers	Tires per day with Silane	Silane from Mixers	Rubber VOC and EtOH from Silane Mixers (tpy)	% Capture VOC to RTO	No. of RTOs	Annual Cost of RTO for Pairs of Mixer Exhausts	Control Eff of RTO	Mixers VOC After Control (tpy)	Avoided (tpy)	Single RTO Installed on just two Mixers \$/ton avoided emissions
Two Mixers are selected to proccess all Silane for the facility	63,318	4.10	13,640	162.17	166.27	85%	1	\$1,235,675	98%	27.8	138.5	\$8,922

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

Air flow rate for baghouse (620 or 320 mixer) =	= 30,000 :	scfm	Vent one mixer to a single RTO
Direct Costs		Cost	Cost Factor/Comments
Purchased Equipment Costs			
Equipment Cost (EC)orig Equipment Cost (EC)updated ¹		\$612,100 \$875,000	Durr Estimate in 8.9.2019 Email Durr Estimate updated in 01.09.2023 Email
Freight Taxes Instrumentation	0.05*EC 0.03*EC 0.10*EC	\$43,750 \$26,250 \$87,500	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost) Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
Total Purchased E	Equipment Costs (PEC) =	\$1,032,500	Scaled this to a 2022 Basis using the Chemical Engineering plant cost inde
Direct Installation Costs Foundations and Supports	0.08*PEC	\$82,600	Table 2.8 of the OAQPS Control Cost manual
Handling and Erection Electrical Piping Insulation for Ductwork Painting	0.14*PEC 0.04*PEC 0.02*PEC 0.01*PEC 0.01*PEC	\$144,550 \$41,300 \$20,650 \$10,325 \$10,325	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor		\$0	Control Equipment Installed on new mixers
Total Direct	Installation Costs (DC) =	\$309,750	
Indirect Installation Costs Engineering Construction and Field Expenses Contractor Fees Start-up Performance test Contingencies Total indirect	0.10*PEC 0.05*PEC 0.02*PEC 0.02*PEC 0.01*PEC 0.03*PEC t Installation Costs (IC) =	\$103,250 \$51,625 \$103,250 \$20,650 \$10,325 \$30,975 \$320,075	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Total Installe	ed Cost (PEC + DC + IC) =	\$1,662,325 \$987,956	Based on new control device west of mixing building
Total Capital Cost (TCC)	TCC =	\$2,650,281	Reference 2, scaled
<u></u>		+-,	
Direct Americal consta			
Direct Annual costs		Cost	Cost Factor/Comments
Direct Annual costs Electricity Cost	39 kW for fan	<u>Cost</u> \$14,560	Cost Factor/Comments Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760
	39 kW for fan		Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022
Electricity Cost Fuel Cost Operating Labor		\$14,560 \$182,313	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 h/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost
Electricity Cost Fuel Cost Operating Labor Operator \$	39 kW for fan 1 hr/shift 33.31 /hr	\$14,560 \$182,313 \$36,474	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Electricity Cost Fuel Cost Operating Labor Operator	1 hr/shift	\$14,560 \$182,313	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance	1 hr/shift 33.31 /hr 1 hr/shift	\$14,560 \$182,313 \$36,474 \$5,471	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 T. Burnett email 12.28.2022
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$	1 hr/shift 33.31 /hr 1 hr/shift	\$14,560 \$182,313 \$36,474 \$5,471 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material Indirect Annual Costs	1 hr/shift 33.31 /hr 1 hr/shift	\$14,560 \$182,313 \$36,474 \$5,471 \$41,435 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor +
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material Indirect Annual Costs Overhead	1 hr/shift 33.31 /hr 1 hr/shift	\$14,560 \$182,313 \$36,474 \$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13 \$23,850 \$11,925	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material Indirect Annual Costs Overhead Administration Property Taxes Insurance	1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	\$14,560 \$182,313 \$36,474 \$5,471 \$41,435 \$41,435 \$74,889,13 \$23,850	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs
Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material Indirect Annual Costs Overhead Administration Property Taxes	1 hr/shift 33.31 /hr 1 hr/shift	\$14,560 \$182,313 \$36,474 \$5,471 \$41,435 \$41,435 \$74,889.13 \$74,889.13 \$23,850 \$11,925	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 33,974 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance costs

 Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 30,000 scfm based on controlling a single Mixer in August 2019.
 They additionally provided a second budgetary cost estimate for an individual RTO rated for 30,000 scfm to control a single Mixer in January 2023.
 Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)
 EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2. Basis:

REGENERATIVE THERMAL OXIDATION CONTROL COSTS FOR MIXING BRIDGESTONE WARREN CO

	2 = 64,00	0 scfm	Vent two mixers to a single RTO
rect Costs		Cost	Cost Factor/Comments
rchased Equipment Costs			
Equipment Cost (EC) from manufac	cturer ¹	\$1,257,000	Durr Estimate updated in 01.09.2023 Email
Freight	0.05*EC _b	\$62,850	Table 2.8 of the OAQPS Control Cost manual (0.05 * Equip cost)
Taxes	0.03*EC _b	\$37,710	Table 2.8 of the OAQPS Control Cost manual (0.03 * Equip cost)
Instrumentation	0.10*EC _b	\$125,700	Table 2.8 of the OAQPS Control Cost manual (0.1 * Equip cost)
Total F	Purchased Equipment Costs (PEC)	= \$1,483,260	
ect Installation Costs			
Foundations and Supports	0.08*PEC	\$118,660.80	Table 2.8 of the OAQPS Control Cost manual
Handling and Erection	0.14*PEC	\$207,656	Table 2.8 of the OAQPS Control Cost manual
Electrical	0.04*PEC	\$59,330.40	Table 2.8 of the OAQPS Control Cost manual
Piping	0.02*PEC	\$29,665	Table 2.8 of the OAQPS Control Cost manual
Insulation for Ductwork	0.01*PEC	\$14,833	Table 2.8 of the OAQPS Control Cost manual
Painting	0.01*PEC	\$14,833	Table 2.8 of the OAQPS Control Cost manual
Site Preparation		Unknown	(unknown at this time)
Retrofit Factor = 0%		\$0	Control Equipment Installed on new mixers
т	otal Direct Installation Costs (DC)	= \$444,978	factor of up to 50% is appropriate - so this is conservative to assume \$0
	. ,		
irect Installation Costs	0.10*PEC	64.40.22C	
Engineering Construction and Field Expenses	0.05*PEC	\$148,326 \$74,163	Table 2.8 of the OAQPS Control Cost manual Table 2.8 of the OAQPS Control Cost manual
Contractor Fees	0.10*PEC	\$148,326	Table 2.8 of the OAQPS Control Cost manual
Start-up	0.02*PEC	\$29,665	Table 2.8 of the OAQPS Control Cost manual
Performance test	0.01*PEC	\$14,833	Table 2.8 of the OAQPS Control Cost manual
Contingencies	0.03*PEC	\$44,498	Table 2.8 of the OAQPS Control Cost manual
To	otal indirect Installation Costs (IC)		
т	otal Installed Cost (PEC + DC + IC)	= \$2,388,049	
ctwork	1000 feet	\$987,956	Based on new control device west of mixing building Reference 2, scaled
tal Capital Cost (TCC)	TCC =	\$3,376,004	
	TCC =		
ect Annual costs		Cost	Cost Factor/Comments
	TCC = 83 kW for fan		Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost
ect Annual costs		Cost	
ect Annual costs		Cost	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
ect Annual costs		Cost	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022
<u>ect Annual costs</u> Electricity Cost		<u>Cost</u> \$31,061 \$389,203	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 Output 2022 Warren Co gas cost 2022 Warren Co gas cost
<mark>ect Annual costs</mark> Electricity Cost Fuel Cost	83 kW for fan 1 hr/shift	<u>Cost</u> \$31,061	Elec. Cost= \$0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
ect Annual costs Electricity Cost Fuel Cost Operating Labor	83 kW for fan	<u>Cost</u> \$31,061 \$389,203	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 Output 2022 Warren Co gas cost 2022 Warren Co gas cost
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor	83 kW for fan 1 hr/shift 33.31 /hr	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator S	83 kW for fan 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator S Supervisor Maintenance	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Supervial	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435	Elec. Cost= \$0.0425 0.0425 5/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Qperation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Supervial	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435	Elec. Cost= \$0.0425 %/Wh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor Material Irect Annual Costs Overhead	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material irect Annual Costs Overhead Administration	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift	<u>Cost</u> \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$41,435 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos 2% TCC
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material irect Annual Costs Overhead Administration Property Taxes Insurance	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	Cost \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$41,435 \$41,435 \$41,435 \$41,435 \$41,435	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos 2% TCC 1% TCC
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor S Material Irect Annual Costs Overhead Administration Property Taxes Insurance Interest Rate	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr	Cost \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889,13 \$67,520 \$33,760 \$33,760	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos 2% TCC 1% TCC
ect Annual costs Electricity Cost Fuel Cost Operating Labor Operator Supervisor Maintenance Labor \$ Material lirect Annual Costs Overhead Administration Property Taxes Insurance	83 kW for fan 1 hr/shift 33.31 /hr 1 hr/shift 37.84 /hr 7.009	Cost \$31,061 \$389,203 \$36,474 \$5,471 \$41,435 \$41,435 \$41,435 \$74,889,13 \$67,520 \$33,760 \$33,760	Elec. Cost= \$0.0425 0.0425 \$/kWh Warren Co 2022 cost T. Burnett email 12.28.2022 Operation= 8,760 hr/yr Fuel use 72,477 MMBtu/yr gas cost \$ 5.37 /MMBtu 2022 Warren Co gas cost T. Burnett email 12.28.2022 15% of operating labor, Reference 3 T. Burnett email 12.28.2022 100% of maintenance labor, Reference 3 Reference 3 Table 2.10 0.6 * C C = operating labor + maintenance cos 2% TCC 1% TCC

Basis: 1) Durr Systems Inc. provided a budgetary cost estimate for an individual RTO rated for 60,000 scfm based on controlling Mixing sources in January 2023.

2) Cost Estimate for 720 LF of 36" duct (pipe) and structural steel supports is \$711,328 per David Lynch, AECOM Principal Process Engineer, May 2016. (Includes Installation and Materials)

3) EPA OAQPS Air Pollution Control Cost Manual (6th edition), January 2002, Section 3.2, Chapter 2.