
PENITENTIARY BRANCH

A Late Archaic Cumberland River Shell Midden in Middle Tennessee

Patricia A. Cridlebaugh

Edited by Aaron Deter-Wolf

Division of Archaeology Report of Investigations No. 4 Second edition, 2017

PENITENTIARY BRANCH

A Late Archaic Cumberland River Shell Midden in Middle Tennessee

Patricia A. Cridlebaugh

with contributions by Emanuel Breitburg and Deb Jones

Edited by Aaron Deter-Wolf

Tennessee Department of Environment and Conservation Division of Archaeology Report of Investigations No. 4 Second edition, 2017

Tennessee Division of Archaeology • 1216 Foster Ave. • Cole Bldg #3 • Nashville, TN 37243 Tel: 615–741–1588 • http://www.tennessee.gov/environment/section/arch-archaeology

Pursuant to the State of Tennessee's policy of non-discrimination, the Tennessee Department of Environment and Conservation does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, or in the admission or access to, or treatment or employment in, its programs, services, or activities. Equal Employment Opportunity/Affirmative Action inquiries or complaints should be directed to the Tennessee Department of Environment and Conservation, EEO/AA Coordinator, Office of General Counsel, 312 Rosa L. Parks Avenue, 2nd floor, William R. Snodgrass Tennessee Tower, Nashville, TN 37243, 1–888–867–7455. ADA inquiries or complaints should be directed to the ADA Coordinator, Human Resources Division, 312 Rosa L. Parks Avenue, 22nd floor, William R. Snodgrass Tennessee Tower, Nashville, TN 37243, 1–866–253–5827. Hearing impaired callers may use the Tennessee Relay Service (1–800–848–0298).

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
PREFACE TO THE SECOND EDITION	
ACKNOWLEDGEMENTS	xxv
I. INTRODUCTION	1
II. ENVIRONMENT OF THE PENITENTIARY BRANCH LOCALITY	
Environmental Setting	3
Geology	3
Soils	4
Recent Vegetation	5
Modern Climate	6
III. RESEARCH STRATEGY AND EXCAVATION PROCEDURES	7
Research Goals	8
Site Description	8
Excavation and Recovery Procedures	9
IV. STRATIGRAPHY	11
Gastropod and Mussel Bivalve Density	14
V. SUBSURFACE DISTURBANCES	15
Features	15
Fired Clay Deposits	16
Pits	19
Basins	21
Discussion	23
Postholes	24
VI. INHUMATIONS AND HUMAN SKELETAL REMAINS	25
Burial 1	
Burial 2	27
Burial 3	28
Burial 4	28
Burial 5	
Burial 6	30

Burial 8 31 Burial 10 32 Burial 11 34 Burial 12 34 Burial 13 35 Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 36 Burial 16 37 Burial 17 38 Interpretation 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA	Burial 7	31
Burial 10 33 Burial 11 34 Burial 12 34 Burial 13 35 Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Wood Charcoal. 44 Carbonized Nutshell. 46 Carbonized Seeds and Fruits. 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives. 48 Distribution of Faunal Remains. 49 Species Composition 50 Accounts of Species 51 Marmals 51 Birds 52 Reptiles. 52 Amphibians 52 Amphibians 52 Strele	Burial 8	31
Burial 11 34 Burial 12 34 Burial 13 35 Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Wood Charcoal. 44 Carbonized Nutshell. 46 Carbonized Nutshell. 46 Carbonized Seeds and Fruits. 46 Interpretation of Plant Exploitation. 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives 48 Distribution of Faunal Remains. 49 Species Composition 50 Accounts of Species 51 Mammals 51 Birds 52 Reptiles. 52 Amphibians 52 Fishes. 53 Bivalves 53 Biva	Burial 9	32
Burial 12 34 Burial 13 35 Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA	Burial 10	33
Burial 13 35 Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Results 44 Wood Charcoal. 44 Carbonized Nutshell. 46 Carbonized Seeds and Fruits 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives 48 Distribution of Faunal Remains. 50 Accounts of Species 51 Marmals 52 Reptiles 52 Amphibians 52 Fishes 53 Bivalves 53 Bivalves 53 Bivalves 53 Bivalves 53 Bivalves 53 Bivalves 53 <td>Burial 11</td> <td> 34</td>	Burial 11	34
Burial 14 35 Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Results 44 Wood Charcoal. 44 Carbonized Nutshell 46 Carbonized Seeds and Fruits 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA 48 Methods and Objectives 48 Distribution of Faunal Remains 50 Accounts of Species 51 Marmals 51 Birds 52 Reptiles 53 Bivalves 53	Burial 12	34
Burial 15 36 Burial 16 37 Burial 17 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA	Burial 13	35
Burial 16 37 Burial 17 38 Interpretation 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Results. 44 Wood Charcoal. 44 Carbonized Nutshell 46 Carbonized Seeds and Fruits 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives 48 Distribution of Faunal Remains. 49 Species Composition 50 Accounts of Species 51 Mammals 51 Birds 52 Reptiles. 52 Amphibians 52 Fishes 53 Bivalves 53 Butchering Strategies 53 Modified Deer Bone 57 Modified Deer Bone 57 Modified Deer Bone 57	Burial 14	35
Burial 17 38 Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Wood Charcoal. 44 Carbonized Nutshell. 46 Carbonized Seeds and Fruits. 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives 48 Distribution of Faunal Remains. 49 Species Composition 50 Accounts of Species 51 Mammals 51 Birds 52 Reptiles. 52 Amphibians 52 Fishes. 53 Bivalves 53 Butchering Strategies. 53 Modified Deer Bone 57 Modified Deer Bone 57 Modified Deer Bone 57 Modified Turkey Bones 72	Burial 15	36
Interpretation 38 VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Results 44 Wood Charcoal 44 Carbonized Nutshell 46 Carbonized Seeds and Fruits 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA 48 Methods and Objectives 48 Distribution of Faunal Remains 49 Species Composition 50 Accounts of Species 51 Mammals 51 Birds 52 Reptiles 53 Bivalves 53 Bivalves 53 Bivalves 53 Butchering Strategies 53 Modified Deer Bone 57 Indeterminate Modified Large Mammal Bone 67 Modified Turkey Bones 72	Burial 16	37
VII. CHRONOLOGY 41 VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA	Burial 17	38
VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA. 43 The Archaeobotanical Sample 43 Laboratory Analyses 44 Results 44 Wood Charcoal 44 Carbonized Nutshell 46 Carbonized Seeds and Fruits 46 Interpretation of Plant Exploitation 46 VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA. 48 Methods and Objectives 48 Distribution of Faunal Remains 49 Species Composition 50 Accounts of Species 51 Mammals 51 Birds 52 Reptiles 52 Amphibians 52 Fishes 53 Butchering Strategies 53 Modified Bone 57 Modified Deer Bone 57 Indeterminate Modified Large Mammal Bone 67 Modified Turkey Bones 72	Interpretation	38
The Archaeobotanical Sample43Laboratory Analyses44Results44Wood Charcoal44Carbonized Nutshell46Carbonized Seeds and Fruits46Interpretation of Plant Exploitation46Interpretation of Faunal Remains49Species Composition50Accounts of Species51Marmals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Large Marmal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone72	VII. CHRONOLOGY	41
Laboratory Analyses44Results44Wood Charcoal44Carbonized Nutshell46Carbonized Seeds and Fruits46Interpretation of Plant Exploitation46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA48Methods and Objectives48Distribution of Faunal Remains49Species Composition50Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA	43
Results44Wood Charcoal44Carbonized Nutshell46Carbonized Seeds and Fruits46Interpretation of Plant Exploitation46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA48Methods and Objectives48Distribution of Faunal Remains49Species Composition50Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Large Mammal Bone67Modified Turkey Bones72	The Archaeobotanical Sample	43
Wood Charcoal.44Carbonized Nutshell.46Carbonized Seeds and Fruits.46Interpretation of Plant Exploitation.46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA.48Methods and Objectives.48Distribution of Faunal Remains.49Species Composition.50Accounts of Species.51Marmals.51Birds52Reptiles.52Amphibians52Fishes.53Bivalves53Butchering Strategies.53Modified Bone57Modified Deer Bone.57Indeterminate Modified Large Marmal Bone67Modified Turkey Bones72	Laboratory Analyses	44
Carbonized Nutshell46Carbonized Seeds and Fruits46Interpretation of Plant Exploitation46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA48Methods and Objectives48Distribution of Faunal Remains49Species Composition50Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Butchering Strategies53Modified Bone57Modified Deer Bone57Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Results	44
Carbonized Seeds and Fruits.46Interpretation of Plant Exploitation.46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA.48Methods and Objectives.48Distribution of Faunal Remains.49Species Composition50Accounts of Species51Mammals51Birds52Reptiles.52Amphibians52Fishes.53Bivalves53Butchering Strategies.53Modified Bone57Modified Deer Bone.57Indeterminate Modified Large Mammal Bone.67Modified Turkey Bones.72	Wood Charcoal	44
Interpretation of Plant Exploitation46VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA48Methods and Objectives48Distribution of Faunal Remains49Species Composition50Accounts of Species51Mammals51Birds52Reptiles52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Turkey Bones72	Carbonized Nutshell	46
VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA	Carbonized Seeds and Fruits	46
Methods and Objectives48Distribution of Faunal Remains.49Species Composition50Accounts of Species51Mammals51Birds52Reptiles.52Amphibians52Fishes.53Bivalves53Butchering Strategies53Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone72	Interpretation of Plant Exploitation	46
Distribution of Faunal Remains.49Species Composition50Accounts of Species51Mammals51Birds52Reptiles.52Amphibians52Fishes.53Bivalves53Butchering Strategies53Modified Deer Bone57Modified Cray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	VIII. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA	48
Species Composition50Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Methods and Objectives	48
Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Distribution of Faunal Remains	49
Accounts of Species51Mammals51Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Species Composition	50
Birds52Reptiles52Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72		
Reptiles.52Amphibians52Fishes.53Bivalves53Butchering Strategies.53Modified Bone57Modified Deer Bone.57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Mammals	51
Amphibians52Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Birds	52
Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Reptiles	52
Fishes53Bivalves53Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Amphibians	52
Butchering Strategies53Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	•	
Modified Bone57Modified Deer Bone57Indeterminate Modified Large Mammal Bone67Modified Gray Wolf, Gray Fox, and Raccoon Bone67Modified Turkey Bones72	Bivalves	53
Modified Deer Bone	Butchering Strategies	53
Indeterminate Modified Large Mammal Bone	Modified Bone	57
Indeterminate Modified Large Mammal Bone		
Modified Gray Wolf, Gray Fox, and Raccoon Bone		
Modified Turkey Bones	-	
•		
Modified Indeterminate Bird Bones72	Modified Indeterminate Bird Bones	
Modified Turtle Bone		

Subsistence Variety and Econiche Breadth	
Conclusions	
IX. LITHIC RAW MATERIAL RESOURCES AND IMPLEMENTS	
Chert Resources	
Fort Payne Chert	
Possible Fort Payne Chert	80
Non-Local Cherts	80
Indeterminate Chert	80
Vein Quartz	80
Chalcedony	
Agate	
Other Lithic Materials	
Limestone	
Shale	
Sandstone	
Chipped Stone Implements and Debitage	
Cores	
Chipped Stone Blanks	
Chipped Stone Preforms	
Projectile Points/Knives	
Other Chipped Stone Implements	108
Ground Stone Implements	118
Grooved Axe	118
Hammerstones	118
Pitted Cobble	119
Abraded Cobble	120
Ground Stone Gorget	121
Ground Stone Bead	121
Boatstone	121
Tubular Pipe Blank	122
Gorget (?) Blanks	
Ground Stone Fragment	122
Summary and Interpretation	122
X. PREHISTORIC CERAMICS	125
XI. EURO-AMERICAN SETTLEMENT	
The Penitentiary Branch Site	
Discussion	
XII. LATE ARCHAIC SETTLEMENT AND SUBSISTENCE AT PENITENTIARY BRANCH	
Subsistence and Settlement: Interpretations	134

REFERENCES CITED	137
APPENDIX A: SUBSURFACE DISTURBANCES	
APPENDIX B: FEATURE DATA BY CATEGORY	150
APPENDIX C: METRIC ATTRIBUTES FOR HUMAN SKELETAL REMAINS	154
APPENDIX D: CARBONIZED WOOD BY COUNT, CATEGORIZED BY HABITAT	160
APPENDIX E: CARBONIZED NUTSHELL BY GRAM WEIGHT, CATEGORIZED BY HABITAT	164
APPENDIX F: CARBONIZED SEEDS AND FRUITS BY WHOLE AND FRAGMENTARY	
SPECIMENS, CATEGORIZED BY HABITAT	166
APPENDIX G: PROVENIENCE OF SELECTED CHIPPED AND GROUND STONE IMPLEMENTS	
AND FAUNAL ELEMENTS	169
APPENDIX H: VERTICAL DISTRIBUTION OF VERTEBRATE AND INVERTEBRATE REMAINS	292
APPENDIX I: MINIMUM NUMBER OF INDIVIDUALS OF IDENTIFIED SPECIES FOR	
VERTEBRATE AND INVERTEBRATE REMAINS	295
APPENDIX J: NUMBER OF PIECES, MNI, MEAT YIELDS, AND DIETARY RATIOS BY SPECIES	
AND LEVEL	298
APPENDIX K: METRIC ATTRIBUTES FOR LITHIC IMPLEMENTS BY CATEGORY	301
APPENDIX L: BLADE ATTRIBUTES	314
APPENDIX M: DEBITAGE CATEGORIES AND QUANTIFICATION	316

LIST OF FIGURES

Figure	<u>Page</u>
A. The Cumberland River Valley, divided by subbasin and showing the location of Penitentiary Branch and prehistoric shell-bearing sites in Tennessee	xii
B. Crew member Margaret McKean excavates the shell-bearing midden at Penitentiary Branch, September, 1976.	xv
1. The Penitentiary Branch site at the confluence of the Cumberland River and Penitentiary Branch, view to the northeast.	2
2. Location and contour map of the Penitentiary Branch site (40JK25), Jackson County, Tennessee.	4
3. Plan view of excavation units at the Penitentiary Branch site.	10
4. Stratigraphic profiles of midden accumulation.	11
5. View of stratigraphic layers, east profile, 136R230	12
6. Plan view of cultural features, north of State Route 53.	17
7. Plan view of cultural features, south of State Route 53	18
8. Intrusive or superimposed subsurface disturbances	19
9. Midden filled circular pits: Feature 25	20
10. Rock filled/lined pit: Feature 14.	20
11. Rock and shell filled pit, in profile: Feature 13.	22
12. Shell filled pit, in profile: Feature 3	22
13. Burial 1 within questionable burial pit.	26
14. Burial 5 within round burial pit	26
15. Percentages of carbonized wood, nutshell, seeds, fruits, and associated species habitats.	45
16. Locations of cut marks on deer bones	55

17.	White-tailed deer antler: a) Incised handle; b) Projectile point blank; c and d) Modified antler exhibiting butchering marks	59
18.	Drawing of incised white-tailed deer antler handle with incised pattern. Not to scale	62
19.	Long handled deer antler chert-working implements	60
20.	White-tailed deer: a-b. Antler tine chert-working implements, c. Modified beam sections (drifts)	61
21.	Awls: a. Modified scapula section awl, white-tailed deer; b. Splinter awl, mammal; c. Bird bone awl.	63
22.	White-tailed deer humeri: a-b. End scraper or flensing implement; c. Beveled end scraper fragment; d. Modified humeri– groove and snap	65
23.	Line drawing of white-tailed deer humeri end scraper	66
24.	Modified bone: a. Phalange with drilled hole; b-c. Modified rib sections; d. Raccoon frontal with deep score marks; e. Raccoon humerus, scored and snapped; f-h. Modified raccoon bone	66
25.	White-tailed deer awls: a. Metacarpal awls; b. Tibia awl; c. Scapula awl	68
26.	White-tailed deer metacarpi: a-b. Modified metapodial shafts, manufacturing stage; c- d. Manufacturing stage of bone pins; e. Metapodial and metacarpal bone pins	69
27.	White-tailed deer modified metacarpi: a-c. Modified metacarpal implements; d. Manufacturing debris.	70
28.	Bone implements: a. White-tailed deer metapodial bone pins; b. Large mammal bipointed needle; c. Fishhooks; d. Manufacturing process, bird bone; e. Turkey bone bead with long, deep score mark; f. Turkey bone beads, broken	71
29.	Box turtle, modified and manufacturing stages: a. Costal section with interior striations; b. Costal section, exterior scoring; c. Costal, smoothed interior; d. Costal worked rim and scoring marks; e-g. Costal, scored and snapped; h. Plastron, drilled hole; i–j. Manufacturing residue; k. Soft-shell turtle costal, incised.	73
30.	Line drawing of modified spiny soft-shell turtle, interior rocker incised.	74
31.	Chipped stone implements: a. Cores; b. Blank, Stage 1; c. Blank, Stage 2; d. Blank, Stage 3; e. Blank, Stage 4.	83
32.	Preforms: a. Preform, Stage 1; b. Preform, Stage 2; c. Preform, Stage 3	87

33.	Projectile points/knives: a. Category 1; b. Category 2; c. Category 3; d. Category 4; e. Category 5.	91
34.	Projectile points/knives: a. Category 6; b. Category 7: c. Category 8; d. Category 9; e. Category 10; f. Category 11; g. Category 12	94
35.	Projectile points/knives: a. Category 13; b. Category 14; c, Category 15; d. Category 16.	97
36.	Projectile points/knives: a. Category 17; b. Category 1810	00
37.	Projectile points/knives: a. Category 19; b. Category 20; c. Category 21; d. Category 22.	02
38.	Projectile points/knives: a. Category 23; b. Category 24; c. Category 25; d. Category 26; e. Category 27; f. Category 29; g. Category 30; h. Category 32	04
39.	Drills, perforators and notched flakes: a. Drill, Category 1; b. Drill, Category 2; c. Drill, Category 3; Drill, Category 4; E. Drill, Category 5; f. Drill, Category 6; g. Perforator, Category 1; h. Perforator, Category 2; i. Perforator/Graver; j. Notched Flake; k. Notched biface.	12
40.	Chipped stone implements: a. Chisels; b. Adze, Category 1; c. Adze, Category 2; d. Cobble chopper1	15
41.	Limestone digging implements1	17
42.	Fully grooved axes1	19
43.	Ground stone implements: a. Tubular pipe blank; b-c. Hammerstones	20
44.	Ground stone implements: a. Gorget; b. Bead; c. Boatstone; d. Shale gorget blank 12	21
45.	Historic ceramic and pipe remains: a. Underglaze blue painted pearlware; b. Blue shell-edge pearlware; c. Shell-edge creamware; d. Blue painted pearlware; e. Stub-stemmed pipes	28

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1. Radiocarbon dates from the Penitentiary Branch site	41
2. Historic artifacts recovered from the Penitentiary Branch site	127
3. Activity index for artifacts from Penitentiary Branch.	133

PREFACE TO THE SECOND EDITION

Aaron Deter-Wolf

Human occupation of the Cumberland River Valley in Tennessee extends back to the end of the Pleistocene, when it was initially settled by small, mobile groups of foragers drawn to the ample fresh water, lithic sources, and plant and animal resources of the region. Over the ensuing 12,000 years, Native Americans continued to orient their lives around the waterways of the Cumberland River Valley, which they relied on for food, transportation, raw materials, and fertile floodplain soils. This sustained occupation resulted in a rich archaeological record including more than 5,000 recorded prehistoric sites situated across 32 counties.

One of the many archaeological site types that formed along the Cumberland and its tributaries over the course of prehistory consisted of dense accumulations of freshwater shellfish, including both gastropod and bivalve species. These deposits are typically found on remnant natural levees or lower terraces overlooking river and stream confluences, although they have also been identified at caves and rockshelters (e.g., Peres et al. 2016). Sites which exhibit intensive mollusc deposition have been historically labeled as either "shell mounds" or "shell middens," although more recent discussions from the interior Southeast employ the functionally-neutral descriptor of "shell-bearing" (Claassen 2010; Peres and Deter-Wolf 2016). A review of site file information housed at the Tennessee Division of Archaeology reveals that 51 of approximately 233 recorded prehistoric shell-bearing site locations in Tennessee are situated within the Cumberland River Valley (Figure A). At least 31 of the Cumberland River Valley sites include shell deposits which formed during the Middle and Late Archaic periods (Peres and Deter-Wolf 2016).

Archaic Shell-Bearing Sites

Similarly dense concentrations of freshwater mollusks appear during the Archaic at sites along other interior waterways of the Southeast, including the Green River and its tributaries in Kentucky, the Tennessee River in Alabama and Tennessee, and the Duck River in Tennessee. Archaic shell-bearing sites in these areas have been intensively investigated by archaeological projects including work by antiquarian scholars (Moore 1915, 1916), pre-inundation survey and salvage through the Works Progress Administration and Tennessee Valley Authority (e.g., Crites 1987; Klippel and Morey 1986; Lewis and Kneberg 1947, 1959; Lewis and Lewis 1961; Webb 1938, 1939, 1974; Webb and DeJarnette 1942), the Shell Mound Archaeological Project along the Green River (e.g., Crothers 1999; Marquardt and Watson 1983, 2005; Moore 2011), and finally through more recent reanalysis and reconsideration of the accumulated data (e.g., Baerreis 2005; Bissett 2014; Claassen 1991, 1992, 1996, 2010; Sassaman 2010; Thompson 2010).

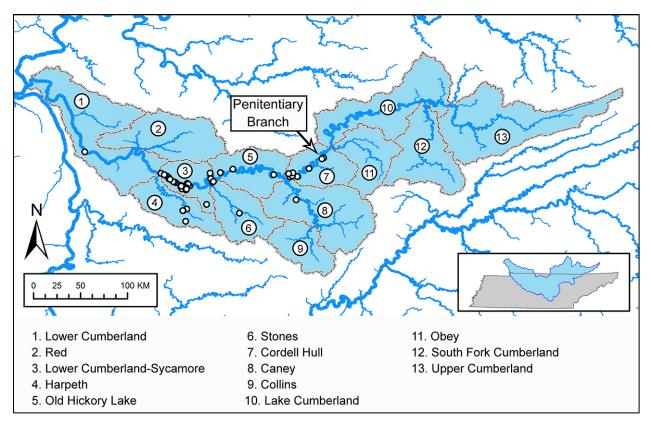


Figure A. The Cumberland River Valley, divided by subbasin and showing the location of Penitentiary Branch and prehistoric shell-bearing sites in Tennessee.

The terminology used to describe these sites —*shell middens* and *shell mounds* reflects the two predominate theories as to their formation processes and function. In discussing *shell middens*, proponents focus on the accumulation of shell-bearing deposits as a result of seasonal occupation over hundreds or thousands of years (Hofman 1984; Jenkins 1974). According to this hypothesis, the selection of shell-bearing site locations reflects targeting of shellfish beds as sources of plentiful food during periods of drought and extreme environmental pressure during the Hypsithermal Interval, ca. 6500– 3000 BC (Brookes and Twaroski 2015). One of the seminal studies contributing to the shell midden hypothesis was the work by Lewis and Lewis (1961) at the Eva site on the Tennessee River in Benton County, Tennessee. Lewis and Lewis proposed that extended droughts during the Archaic caused terrestrial game populations to crash, while lower river levels simultaneously allowed site inhabitants greater access to nearby shellfish beds. Thus, while species such as deer dominated earlier and later midden contexts at Eva, Lewis and Lewis believed that low amounts of terrestrial fauna within the shell-bearing midden reflected a period of environmentallydetermined reliance on molluscan species.

Conversely, the *shell mounds* model emphasizes the onset of sociopolitical complexity during the Archaic period. By this interpretation, Archaic populations deliberately harvested and re-deposited massive amounts of freshwater shell in order to construct above-ground monuments (e.g., Anderson 2004). The labor organization necessary for such an effort implies

existence of a directed labor pool, hierarchical social organization, and architectural intent, all traits that until recently were not considered synonymous with Archiac forager societies. Further, it has been suggested that the presence of large numbers of burials within shell mounds on the Green River at sites such as Indian Knoll and Carlston Annis, and the perceived use of these locations for feasting events, constitute complex symbolic behavior intended to associate shell-bearing sites and their surrounding territories with particular groups or lineages (e.g., Claassen 1996, 2010).

Regardless of the *shell midden* or *shell mound* debate, discussions of Archaic shellbearing sites in the interior Southeast have tended to focus on these locales as expressions of a pan-Southeastern cultural phase known as the "Shell Mound Archaic" (SMA), a term first employed by William Webb in reference to sites he excavated along the Green River in the 1930s and 1940s (Webb and DeJarnette 1942). While the SMA remains a useful reference point to discuss shell-bearing site formation, lumping of these various sites and regions within a single phase suggests a monolithic cultural expression that is not reflected in the archaeological data. As recently noted by Bissett (2014:6), there exist "appreciable differences in the age, scale, and composition of shell-bearing sites across the SMA's core regions."

Radiocarbon dates for Archaic shell-bearing sites in the interior Southeast span the period from approximately 6600 through 1000 cal BC (Bissett 2014; Claassen 2010; Peres and Deter-Wolf 2016). Specific site chronologies reveal that the beginning and duration of concentrated mollusc deposition vary both by river valley and by site. Additionally, while some shell-bearing sites have been determined to contain living surfaces, activity features, and/or extensive cemeteries, others do not. Theories regarding specific cultural and environmental forces which led to the formation of shell-bearing sites in the Southeast therefore remain the subject of ongoing debate (e.g., Anderson 2004, 2010; Claassen 1991, 1992, 1996, 2010; Marquardt 2010a, 2010b; Moore and Thompson 2012; Peacock 2002; Sassaman 2006). One recent re-interpretation of SMA sites along the Green River proposes that over centuries these habitation, resource, and cemetery locations became greater than the sum of their depositional history, transitioning into persistent places on the landscape (Moore and Thompson 2012). Meanwhile, Peres and Deter-Wolf (2013) have suggested that predominantly gastropod middens along the Cumberland River west of Nashville constitute possible evidence for mid-Holocene aquaculture or human management of gastropod beds. As compared to Green River SMA sites, Cumberland River sites such as 40DV7 may lack internal features or living surfaces, contain proportionally fewer graves, and contain a very light density of lithic tools or debitage.

Few formal archaeological studies have taken place at Archaic shell-bearing sites in the Cumberland River Valley prior to the past decade. The presence of prehistoric shell deposits along the Cumberland in Cheatham, Sumner, and Wilson Counties was noted in the 1940s and 1950s during pre-inundation survey of the Center Hill, Cheatham, and Old Hickory Reservoirs by the Smithsonian Institution River Basin Survey (Solecki 1954; Willey 1947). Unfortunately, those reports contain little useful information regarding the character, cultural affiliations, or in many instances even the specific locations of identified sites. Subsequent pre-inundation surveys of the Cordell Hull and J. Percy Priest Reservoirs by Dan Morse and colleagues from the University

of Tennessee-Knoxville (Morse and Morse 1964; Morse and Polhemus 1963, 1964) investigated shell-bearing deposits at sites in Jackson and Smith Counties, including 40SM1, 40SM8, 40SM10, 40JK2, 40JK10, and culminated with Morse's dissertation on Robinson Shell Mound (40SM4) (Morse 1967).

While there have been numerous archaeological surveys and site-specific excavation projects throughout the Cumberland River Valley, few of those have specifically addressed Archaic shell-bearing sites beyond a cursory level. The Tennessee Division of Archaeology (TDOA) conducted informal examinations of nine Archaic shell-bearing sites in Davidson and Cheatham County in 1976 and 1977 as part of a statewide prehistoric site survey effort (Jolley 1978). Those efforts produced few written site descriptions or field notes, recovered little in the way of diagnostic artifacts, and did not include any formal analysis of faunal remains. More recently, Section 106 compliance work at sites 40CH50 and 40CH73 (Dicks 1999), 40CH171 (Barker 2010a, 2010b), 40CH191 (Barker 2002), and 40DV160 (Bentz 2012), burial removal at 40DV551 (Allen 2006), and salvage efforts at 40RD299 (Peres et al. 2016), have all contributed considerably more data regarding shell-bearing site distribution and associated artifact classes.

Since 2010 concerted efforts combining site survey and monitoring, salvage, targeted excavations, and examinations of radiocarbon chronologies at sites in Davidson and Cheatham Counties (Anderson et al. 2011; Deter-Wolf and Peres 2012; Deter-Wolf et al. 2010, 2011; Miller et al. 2012; Peres et al. 2011, 2012; Peres and Deter-Wolf 2013, 2014) have revealed significant new information about the SMA within the Cumberland River Valley. In a preliminary effort at synthesizing the associated chronological data, Peres and Deter-Wolf (2016) assembled 44 radiocarbon dates from a total of 11 shell-bearing Archaic sites on the Cumberland and Harpeth Rivers in the Middle Cumberland River Valley (that portion of the Cumberland and its tributaries in Tennessee between the Obey and Harpeth river confluences). That data reveals the formation and occupation of Archaic shell-bearing sites in the region took place between approximately 6000 and 1000 cal BC. The specific onset and duration of Archaic shellfish exploitation varies by site, with the earliest deposits occurring at the Anderson site on the Harpeth River (40WM9) (Dowd 1989). Along the Cumberland between its confluences with the Stones and Harpeth Rivers, Archaic shell deposition tapers off and in most cases ends by approximately 3400 cal BC. To the east of the Caney Fork confluence, shellfish deposition does not appear to commence until ca. 2000 cal BC, after which it continues for approximately 1,000 years (Peres and Deter-Wolf 2016:Table 3).

Penitentiary Branch: A Fresh Look

During the fall and winter of 1976, a TDOA field crew under the direction of Patricia Cridlebaugh conducted salvage excavations at site 40JK25, an Archaic shell-bearing deposit overlooking the confluence of the Cumberland River and Penitentiary Branch in Jackson County, Tennessee (Figure B). An initial artifact analysis was conducted over three months following the excavation, after which time Cridlebaugh went on to complete her MA degree at the University of Tennessee, Knoxville (Cridlebaugh 1977). Additional Federal Highway Administration funds were subsequently authorized to re-contract with Cridlebaugh from September 1980 through September 1981 in order to complete the analysis. Due to the volume of artifacts recovered from the site, along with bureaucratic and financial issues, the laboratory effort was not completed as scheduled. In November of 1981 the Tennessee Department of Conservation authorized further monies to fund a final year of analysis, including both specialized zooarchaeological and ethnobotanical studies.

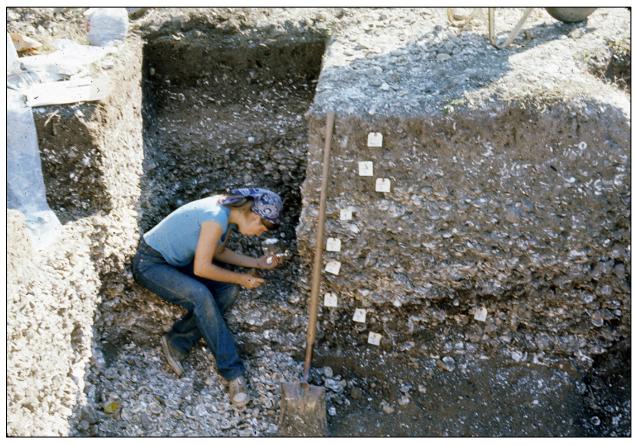


Figure B. Crew member Margaret McKean excavates the shell-bearing midden at Penitentiary Branch, September, 1976.

The camera-ready copy of the Penitentiary Branch report was delivered to the TDOA in March 1983, along with a 122-page appendix detailing the provenience of selected lithic and faunal materials. The report was published in 1986 as Volume 4 of the Tennessee Department of Conservation, Division of Archaeology's Report of Investigations series. The appendix was not included in that printing.

Although the Penitentiary Branch report appears frequently as a citation in the regional archaeological literature, actual copies of the work are difficult to locate due to a limited print run. Even with a copy in hand, meaningful interpretation of the original report is severely hampered by a combination of issues related to both printing and analysis. The original edition was produced in low-quality black and white, resulting in many photographs and elements of the site map being rendered virtually illegible. The omission of the appendix in the original

printing made it impossible to determine the specific provenience of lithic tools or zooarchaeological remains.

From an analytical perspective, the discussion of lithic tool types relies on morphological traits to over-segregate the assemblage into numerous, cumbersome sub-categories that are for the most part likely unrelated to artifact use or function. Faunal materials are only recorded by species to vertical site level, and absent the original appendix there is no accounting of zooarchaeological element data. The full range of feature content, and the relationship of features to one another, is at best opaque. Despite possibly comprising a majority of the shell-bearing deposits in certain site levels and features, gastropod remains from Penitentiary Branch were never analyzed or tabulated. Finally, the treatment of skeletal elements and pathologies was unclear in several instances.

These critiques aside, the Penitentiary Branch report remains significant to the regional literature for its role as only the second effort to interpret an Archaic shell-bearing site in the Cumberland River Valley. With this in mind, a new edition of the Penitentiary Branch site report was produced from 2015–2017 as part of ongoing initiatives by the TDOA under State Archaeologist Mike Moore to facilitate online access to the "gray literature" of older TDOA publications and create a permanent digital archive of site data. The process began in 2015 with the complete transcription of the original report by TDOA Administrative Secretary Glendon Swann. The transcribed file was subsequently corrected and formatted to best accommodate digital text flow.

Editing of the second edition was conducted with intent towards providing clarity without altering the conclusions of the original work. Biological species names were corrected and/or updated, and general references to *mussel* were replaced with the more appropriate *bivalve*. Typographic errors were corrected in both text and tables, sentence structure was imposed onto paragraph-long analyses previously broken up by semi-colons, and both figure and table captions were clarified or updated as necessary. All data tables were relocated to appendices, and calculated values and totals were cross-checked and corrected as necessary. The original appendix prepared by Cridlebaugh is included in the edited report as Appendix G. Shannon Hodge of Middle Tennessee State University provided an essential review of the human skeletal analysis, which for the second edition has been separated from the general feature discussion as Chapter VI. Information on burial orientation and position was added from the original burial data sheets. Finally, footnotes were added throughout to provide additional clarity or highlight contemporary citations.

In 1998 the TDOA offices (then on Edmonson Pike in Nashville) suffered from a flash flood which impacted many archival records. While some documents were rescued during the flood or recovered in the following weeks, others were damaged beyond repair. Unfortunately, the original camera-ready illustrations, photo enlargements, black and white negatives, and some field data used to produce the original Penitentiary Branch report were not salvageable. Unit and feature forms completed in pencil, correspondences, artifact analysis sheets, and color 35mm slide film survived in better, albeit somewhat wrinkled condition.

Illustrations for the electronic edition were generated wherever possible by digitizing original photographic negatives or 35mm slides and hand-drafted images. Illustrations for which the originals did not survive the 1998 flood were updated using suitable replacements, and in some cases omitted if deemed unnecessary. Maps and drawings were recreated as native digital files, depending on the quality of the original archival materials. In some instances report figures were replaced with new versions in order to capitalize on the full-color capability of the electronic report format, or to correct typos and errors in the originals. Feature position and orientation on the site plan map (Figures 6 and 7) was verified using original field data wherever possible, and corrected if found to be in error. Finally, the digital report file was saved as a PDF file and optimized for online viewing, including the creation of tags for in-document navigation.

The 2017 edition of the Penitentiary Branch report is hosted on the TDOA web page along with other electronic report files for free download:

http://www.tennessee.gov/environment/article/arch-archaeology-publications

Suggested Citation (American Antiquity 2017):

Cridlebaugh, Patricia A.

2017 Penitentiary Branch: A Late Archaic Cumberland River Shell Midden in Middle Tennessee. 2nd ed. edited by Aaron Deter-Wolf. Report of Investigations No. 4. Tennessee Department of Environment and Conservation, Division of Archaeology, Nashville.

Works Cited in the Preface and Footnotes

Allen, Dan S.

2006 Applied Archaeology at the Hermitage Springs Site (40DV55): A Middle Archaic through Early Woodland Aggregation Site in the Cumberland River Valley. Paper presented at the 18th Annual Meeting of Current Research in Tennessee Archaeology, Nashville.

Anderson, David G.

- 2004 Archaic Mounds and the Archaeology of Southeastern Tribal Societies. In *Signs of Power: The Development of Complexity in the Southeast,* edited by Jon L. Gibson and Philip J. Carr, pp. 270–299. The University of Alabama Press, Tuscaloosa.
- 2010 The End of the Southeastern Archaic: Regional Interaction and Archaeological Interpretation. In *Trend, Tradition, and Turmoil: What Happened to the Southeastern Archaic?*, edited by David Hurst Thomas and Matthew C. Sanger, pp. 273–302. Anthropological Papers Vol. 93. American Museum of Natural History, New York.

Anderson, David G., D. Shane Miller, Tom Pertierra, Derek Anderson, Thad Bissett, Stephen B. Carmody, Tracy Hadlett, Erik N. Johanson, Ashley M. Smallwood, and Sarah Walters

2011 The 2010 Cumberland River/Midsouth Paleoindian Survey Project: Exploring Human Occupation and Climate Change in the Late Pleistocene and Holocene Eras. Paper presented at the 23rd Annual Current Research in Tennessee Archaeology meeting, Nashville.

Baerreis, David A.

2005 Terrestrial Gastropods at the Carlston Annis Site, 15BT5: Their Habitat and Climatic Implications. In *Archaeology of the Middle Green River Region, Kentucky*, edited by William H. Marquardt and Patty Jo Watson, pp. 243–256. Institute of Archaeology and Paleoenvironmental Studies, Monograph 5. Florida Museum of Natural History, University of Florida, Gainesville.

Barker, Gary

- 2002 An Archaeological Assessment: Proposed Residential Development Tract Along Cumberland River, (River Mile 160.7–161.0) and 30' Wide U.S. Army Corps of Engineers Easement from the Property of Mr. Gary Woods to Cumberland River. Copies available from Tennessee Division of Archaeology, Nashville.
- 2010a An Archaeological Assessment of Riverbank and Shoreline Adjacent to Tennessee Gas Pipelines 1-4, West Bank Cumberland River at River Mile 160, Cheatham County, Tennessee. Submitted to Mr. Steve Hockett, Tennessee Gas Pipeline an El Paso Company, Inc. and United States Department of the Army, Nashville District Corps of Engineers. Copies available from Tennessee Division of Archaeology, Nashville.

2010b Summary of Archaeological Monitoring: Pipe Line 2 (through 40CH171) and Pipe Line 4 (west of 40CH55) Stabilization Areas, West Bank Cumberland River, River Mile ca. 160, Cheatham County, Tennessee. Submitted to the U.S. Army Corps of Engineers, Nashville District. Copies available from Tennessee Division of Archaeology, Nashville.

Bentz, Charles, Jr.

2012 Archaeological Monitoring and Investigations during Riverbank Stabilization in Waterford Subdivision, Old Hickory, Davidson County, Tennessee. Weaver & Associates, Memphis. Submitted to Choctaw Transportation Company, Inc., Dyersburg. Copies available from Tennessee Division of Archaeology, Nashville.

Bissett, Thaddeus G.

2014 The Western Tennessee Shell Mound Archaic: Prehistoric Occupation in the Lower Tennessee River Valley Between 9000 and 2500 Cal Yr BP. PhD dissertation, Department of Anthropology, University of Tennessee, Knoxville.

Brookes, Samuel O, and Melissa H. Twaroski

2015 Early Holocene Climate in the Eastern United States: A View from Mississippi. In *Exploring Southeastern Archaeology*, edited by P. Galloway and E. Peacock, pp. 58–69. University of Mississippi Press, Jackson.

Claassen, Cheryl P.

- 1991 New Hypotheses for the Demise of the Shell Mound Archaic. In *The Archaic Period in the Mid-South*, edited by Charles M. McNutt, pp. 66–71. Archaeological Report 24. Mississippi Department of Archives and History, Jackson.
- 1992 Shell Mounds as Burial Mounds: A Revision of the Shell Mound Archaic. In *Current Archaeological Research in Kentucky: Volume Two,* edited by David Pollack and A. Gwynn Henderson, pp. 1–11. Kentucky Heritage Council, Frankfort.
- 1996 A Consideration of the Social Organization of the Shell Mound Archaic. In *Archaeology of the Mid-Holocene Southeast*, edited by Kenneth E. Sassaman and David G. Anderson, pp. 235–258. University Press of Florida, Gainesville.
- 2010 *Feasting with Shellfish in the Southern Ohio Valley: Archaic Sacred Sites and Rituals.* University of Tennessee Press, Knoxville.

Cridlebaugh, Patricia A.

1977 An Analysis of the Morrow Mountain Component at the Icehouse Bottom Site and a Reassessment of the Morrow Mountain Complex. MA thesis, Department of Anthropology, University of Tennessee, Knoxville.

Crites, Gary D.

1987 Middle and Late Holocene Ethnobotany of the Hayes Site (40ML139): Evidence from Unit 990n918e. *Midcontinental Journal of Archaeology* 12(1):3–32.

1991 Investigations into Early Plant Domesticates and Food Production in Middle Tennessee: A Status Report. *Tennessee Anthropologist* 16:69–87.

Crothers, George M.

1999 Prehistoric Hunters and Gatherers and the Archaic Period Green River Shell Middens of Western Kentucky. PhD Dissertation. Department of Anthropology, Washington University, St. Louis.

Deter-Wolf, Aaron

2004 The Ensworth School Site (40DV184): A Middle Archaic Benton Occupation Along the Harpeth River Drainage in Middle Tennessee. *Tennessee Archaeology* 1(1):18–35.

Deter-Wolf, Aaron and Michael C. Moore

2015 The Riverbend Prison Site (40DV83): A Late Archaic and Early Woodland Camp along the Cumberland River in Davidson County, Tennessee. Report of Investigations No. 19. Tennessee Department of Environment and Conservation, Division of Archaeology, Nashville.

Deter-Wolf, Aaron, Sean Norris, Marc Wampler, and Josh Tuschl

2004 The Ensworth School Project: Archaeological Investigations at Site 40DV184, Davidson County, Tennessee. TRC, Inc. Report submitted to D.F. Chase, Inc. and Ensworth High School. Copies available from Tennessee Division of Archaeology, Nashville.

Deter-Wolf, Aaron and Tanya M. Peres

2012 Recent Research in the Middle Cumberland River Valley: Introduction to the Special Volume. *Tennessee Archaeology* 6(1–2):5–17.

Deter-Wolf, Aaron, Tanya M. Peres, and Shannon C. Hodge

- 2010 Modern Floods, Ancient Feasts: The Cumberland River Emergency Archaeology Survey. Paper presented at the 67th annual meeting of the Southeastern Archaeological Conference, Lexington, KY.
- 2011 Emergency Shoreline Assessment and Sampling of Archaeological Sites along the Cumberland River in Middle Tennessee. Survey report submitted to the US Army Corps of Engineers, Nashville District. ARPA Permit DACW62-4-10-0437. . Copies available from Tennessee Division of Archaeology, Nashville.

Dicks, Merrill A.

1999 Archaeological Investigations on State Route 49 Bridge over the Cumberland River, Log Mile 4.99 near Ashland City, Tennessee: Phase I Survey, Phase II Testing and Phase III Data Recovery of Sites 40CH50 and 40CH73. DuVall & Associates, Inc. Copies available from Tennessee Division of Archaeology, Nashville.

Dowd, John T.

1989 *The Anderson Site: Middle Archaic Adaptation in Tennessee's Central Basin.* Miscellaneous Paper No. 13. Tennessee Anthropological Association, Knoxville.

Fleming, Lacey S.

2006 The Role of the Domesticated Dog in Prehistoric Middle Tennessee. Manuscript on file, Tennessee Division of Archaeology, Nashville.

Hodge, Shannon C. and C. Brady Davis

2013 Bioarchaeological Analysis. In *Fernvale (40WM51): A Late Archaic Occupation Along The South Harpeth River In Williamson County, Tennessee*, edited by Aaron Deter-Wolf, pp. 121–158. Research Series No. 19. Tennessee Department of Environment and Conservation, Division of Archaeology, Nashville.

Hofman, Jack L.

1984 Hunter-Gatherers in the Nashville Basin of Tennessee, 8000–5000 B.P. *Tennessee Anthropologist* 9:129–192.

Jenkins, Ned J.

1974 Subsistence and Settlement Patterns in the Western Tennessee Valley during the Transitional Archaic-Woodland Period. *Journal of Alabama Archaeology* 20(2):283–193.

Jolley, Robert L.

1978 Archaeological Reconnaissance along the Cumberland River in the Outer Nashville Basin and the Western Highland Rim. *Tennessee Anthropologist* 3(2):129–144.

Klippel, Walter E. and Darcy F. Morey

1986 Contextual and Nutritional Analysis of Freshwater Gastropods from Middle Archaic Deposits at the Hayes Site, Middle Tennessee. *American Antiquity* 51(4):799–813.

Lewis, Thomas M.N. and Madeline Kneberg

- 1947 *The Archaic Horizon in Western Tennessee*. Record Extension Series Vol. XXIII, No. 4. The University of Tennessee, Knoxville.
- 1959 The Archaic Culture in the Middle South. *American Antiquity* 25(2):161–183.

Lewis, Thomas M.N. and Madeline Kneberg Lewis

1961 *Eva: An Archaic Site.* University of Tennessee Press, Knoxville.

Marquardt, William H.

2010a Mounds, Middens, and Rapid Climate Change During the Archaic–Woodland Transition in the Southeastern United States. In *Trend, Tradition, and Turmoil: What Happened to the Southeastern Archaic?*, edited by David Hurst Thomas and Matthew C. Sanger, pp. 252–272. Anthropological Papers Vol. 93. American Museum of Natural History, New York. 2010b Shell Mounds in the Southeast: Middens, Monuments, Temple Mounds, Rings, or Works? *American Antiquity* 75(3):551–571.

Marquardt, William H. and Patty Jo Watson

- 1983 The Shell Mound Archaic of Western Kentucky. In *Archaic Hunters and Gatherers in the American Midwest,* edited by James L. Phillips and James A. Brown, pp. 323–340. Academic Press, New York.
- 2005 Archaeology of the Middle Green River Region, Kentucky. Institute of Archaeology and Paleoenvironmental Studies, Monograph 5. Florida Museum of Natural History, University of Florida, Gainesville.
- Miller, D. Shane, David G. Anderson, Thaddeus G. Bissett, and Stephen B. Carmody
- 2012 Radiocarbon Dates from Three Sites along the Middle Cumberland River near Nashville. *Tennessee Archaeology* 6(1–2):53–72.

Moore, Christopher R.

2011 Production, Exchange, and Social Interaction in the Green River Region of Western Kentucky: A Multiscalar Approach to the Analysis of Two Shell Midden Sites. PhD dissertation, Department of Anthropology, University of Kentucky, Lexington.

Moore, Christopher R., and Victor D. Thompson

2012 Animism and Green River Persistent Places: A Dwelling Perspective of the Shell Mound Archaic. *Journal of Social Archaeology* 12:264–284.

Moore, Clarence Bloomfield

- 1915 *Aboriginal Sites on the Tennessee River*. Academy of Natural Sciences of Philadelphia, Philadelphia.
- 1916 Some Aboriginal Sites on Green River, Kentucky. Certain Aboriginal Sites on Lower Ohio River. Additional Investigation on Mississippi River. Academy of Natural Sciences of Philadelphia, Philadelphia.

Morse, Dan

1967 The Robinson Site and Shell Mound Archaic Culture in the Middle South. PhD dissertation, Department of Anthropology, University of Michigan. University Microfilms, Ann Arbor.

Morse, Dan F. and Phyllis A. Morse

1964 Archaeological Survey of the J. Percy Priest Reservoir, Tennessee. *Journal of Alabama Archaeology* 10(1):1–12.

Morse, Dan F., and James H. Polhemus III

1963 Archaeological Investigations in the Cordell Hull Reservoir, Tennessee: 1963 Field Season. Report submitted to the National Parks Service. Copies available from Tennessee Division of Archaeology, Nashville.

1964 Archaeological Investigations in the Cordell Hull Reservoir, Tennessee: 1963 Field Season. Manuscript on file, Tennessee Division of Archaeology, Nashville.

Peacock, Evan

2002 Shellfish Use during the Woodland Period in the Middle South. In *The Woodland Southeast*, edited by David G. Anderson and Robert C. Mainfort, Jr., pp. 444–460. University of Alabama Press, Tuscaloosa.

Peres, Tanya M., Dave Baluha, Aaron Deter-Wolf, Joey L. Keasler, Niki Mills, Inna Moore, and Ryan Robinson

2012 Crossing Boundaries along the Cumberland. Poster presented at the 69th annual meeting of the Southeastern Archaeological Conference, Baton Rouge.

Peres, Tanya M. and Aaron Deter-Wolf.

- 2013 What We Should Know: An Occupational History of a Shell-Bearing Site Along the Cumberland River, Tennessee. Paper presented at the 70th annual meeting of the Southeastern Archaeological Conference, Tampa, FL.
- 2014 Shellfishing Does Not Equal Starvation: Debunking Modern Biases Against an Ancient Lifeway in Tennessee. Paper presented at the 79th Annual Meeting of the Society of American Archaeology, Austin.
- 2016 The Shell-Bearing Archaic in the Middle Cumberland River Valley. *Southeastern Archaeology* 35(3):237–250.

Peres, Tanya M., Aaron Deter-Wolf, Joey Keasler, and Shannon C. Hodge

2016 Faunal Remains from an Archaic Period Cave in the Southeastern United States. *Journal of Archaeological Science: Reports* 8: 187–199.

Peres, Tanya M., Teresa Ingalls, and Lacey S. Fleming

2013 Faunal Assemblage. In *Fernvale (40WM51): A Late Archaic Occupation Along The South Harpeth River In Williamson County, Tennessee*, edited by Aaron Deter-Wolf, pp. 99–114. Research Series No. 19. Tennessee Department of Environment and Conservation, Division of Archaeology Nashville.

Sassaman, Kenneth E.

- 2006 *People of the Shoals: Stallings Culture of the Savannah River Valley.* University Press of Florida, Gainesville.
- 2010 *The Eastern Archaic, Historicized*. Altamira Press, New York.

Smith, Samuel D. and Benjamin C. Nance

2000 An Archaeological Interpretation of the Site of Fort Blount, a 1790s Territorial Militia and Federal Military Post, Jackson County, Tennessee. Research Series No. 12. Tennessee Department of Environment and Conservation, Division of Archaeology Nashville. Solecki, Ralph S.

1954 Appraisal of the Archaeological Resources of the Cheatham and Old Hickory Reservoirs of the Cumberland River in Central Tennessee. River Basin Surveys, Smithsonian Institution. Manuscript on file, Tennessee Division of Archaeology, Nashville.

Thompson, Victor D.

2010 The Rhythms of Space-Time and the Making of Monuments and Places During the Archaic. In *Trend, Tradition, and Turmoil: What Happened to the Southeastern Archaic?*, edited by David H. Thomas and Matthew C. Sanger, pp. 217–228. Anthropological Papers of the American Museum of Natural History, New York.

Webb, William S.

- 1938 An Archaeological Survey of the Norris Basin in Eastern Tennessee. Bureau of American Ethnology Bulletin 118, Smithsonian Institution, Washington, D.C.
- 1939 An Archaeological Survey of Wheeler Basin on the Tennessee River in Northern Alabama. Bureau of American Ethnology Bulletin 122, Smithsonian Institution, Washington, D.C.
- 1950 *The Carlson Annis Mound, Site 5, Butler County, Kentucky*. Reports in Anthropology, Vol. VII, No. 4, University of Kentucky, Lexington.
- 1974 Indian Knoll. University of Tennessee Press, Knoxville.

Webb, William S. and David L. DeJarnette

1942 An Archaeological Survey of Pickwick Basin and the Adjacent Portions of Alabama, Mississippi, and Tennessee. Bureau of American Ethnology Bulletin 129. Smithsonian Institution, Washington, D.C.

Willey, Gordon

1947 Appraisal of the Archaeological Resources of the Center Hill Reservoir, Tennessee. River Basin Surveys, Smithsonian Institution. Manuscript on file, Tennessee Division of Archaeology, Nashville.

ACKNOWLEDGEMENTS

Numerous individuals made possible the conduct and completion of the Penitentiary Branch site investigations. The greatest acknowledgements and most sincere thanks, however, must be extended to the paid field crew. Alan L. Carver, Ann C. Cramer, Marion Drescher (Field Assistant), David C. High, Debbie Jones, Jamie McIntyre, Margaret B. McKean, Susan Prezzano, and Shaune M. Skinner worked long, hard hours, both in the field and field camp, under less than luxurious conditions. The crew members are to be commended for the caliber of work achieved under such adverse conditions as, for example, freezing morning temperatures and snow.

Special recognition is extended to Marion Drescher who worked longer and harder than any other person involved with this project; her field and laboratory work are the mark of a competent and conscientious archaeologist. I am also especially grateful to Debbie Jones who, without additional compensation, served as field physical anthropologist. Deb's expert and meticulous work with the inhumations excavated at Penitentiary Branch is of a highly professional caliber.

Enthusiastic thanks are extended to Bennet Graham, Tennessee Valley Authority Archaeologist, who arranged for the loan of a trash pump and appropriate hoses from the Tennessee Valley Authority. Had it not been for Mr. Graham's consideration and professionalism, waterscreening could not have been employed at Penitentiary Branch.

Several residents of the Gainesboro area contributed to the project. Therold Richardson permitted the project to store equipment in an outbuilding adjacent to the site. James Smith provided housing aid, and Harold Heddy of Gainesboro Repair Service contributed backhoe work to the project. Non-resident interested lay persons also contributed to the project. My parents and sister, Mr. and Mrs. J. C. Cridlebaugh and Mary C. Cridlebaugh, provided a large quantity of food for my field camp. The aid of all of these individuals was invaluable.

I appreciate the provision of laboratory and storage space by Dr. William Bass, Department of Anthropology, University of Tennessee, Knoxville. I also thank Mr. Joseph Benthall who, as State Archaeologist, Tennessee Division of Archaeology, and East Tennessee regional archaeologist, has continued to support and encourage this research since 1976.

Richard Polhemus and Dr. Charles H. Faulkner assisted in the identifications of historic period specimens. In addition, Dr. Faulkner provided invaluable information and advice regarding several aspects of the Penitentiary Branch research.

Emanuel Breitburg is responsible for the faunal and human skeletal analyses. His expert analyses and interpretations as well as his interest in the project since 1976 have resulted in many stimulating discussions regarding Late Archaic period subsistence. Other individuals responsible for specific aspects of this report of investigations are: Andrea Shea Bishop, wood charcoal analysis; Thomas Whyte, line drawing illustrations of bone artifacts; Miles Wright, artifact photography and print preparation; Marla Baden and William Baden, computer processing an programming; and Marilyn Caponetti, typist of the cameraready manuscript.

Finally, words do not adequately express my appreciation of the encouragement and contributions provided by friends and relatives.

I. INTRODUCTION

Proposed reconstruction of State Route 53 in northern Jackson County, Tennessee prompted a preliminary archaeological survey of the planned right-of-way in 1974. This survey, conducted by the Tennessee Division of Archaeology (TDOA), located three archaeological sites which would be adversely impacted by the highway construction. The Tennessee Department of Transportation (TDOT) mitigated impacts to two of these sites by altering construction plans; however, it was determined that the third, 40JK25, also known as the Penitentiary Branch site, would be destroyed by the proposed highway and bridge construction.

Site 40JK25 is located in northern Jackson County, Tennessee, on the left (descending) bank of the Cumberland River at its confluence with Penitentiary Branch (Figure 1). In March of 1976 the TDOA proposed to excavate the site which is situated on United State Army Corps of Engineers easement property, in order to mitigate its destruction. The proposal submitted to TDOT (Tennessee Division of Archaeology 1976) estimated the horizontal area of the site to be approximately 0.1329 ha, with a single homogeneous midden extending 20 to 40 cm below surface. The TDOA proposed 100 percent excavation of the site be conducted over an eight week period with a crew of eight laborers, a field assistant, and a field director. Laboratory analysis would not exceed 12 weeks. The proposed budget of \$19,050.00 covered salaries, vehicle mileage, field camp rental and utilities, and miscellaneous equipment and supplies. It was also proposed that a final publishable report of investigations would be submitted within one year of the starting excavation date. Since it was anticipated that an in-house Division archaeologist would conduct the investigations, no budget for the laboratory analyses and report preparation was included in the submitted proposal and budget.

In June of 1976, an agreement was signed between the Tennessee Department of Conservation and the TDOT for the excavation of 40JK25 on or before November 15, 1976 with a budget of \$19,048.54. As a temporary (five month) employee of the TDOA, I began excavations at the Penitentiary Branch site on September 21, 1976 with a crew of eight laborers and a field assistant. Over the initial eight week field season it quickly became obvious that due to time and labor contractual constraints and the actual size of the site, excavations would be salvage rather than total.

The vertical extent and complexity of the site had been grossly underestimated. Consequently, the site was only partially sampled and no additional funding was sought by the TDOA. Subsequent to the 1976 excavations, the site was completely destroyed by highway construction. The two agencies involved in this project are to be commended for scheduling archaeological excavations at Penitentiary Branch well ahead of the highway construction. It is unfortunate, however, that archaeological investigations could not be scheduled during a warmer season since the extreme cold during October and November created conditions which hampered field recovery. From November 19, 1976 until February 1, 1977, Field Assistant Marion Drescher and I processed archaeological material collected during the excavations. This included the cleaning, cataloging, and preliminary classification of lithic, faunal, and historic remains as well as water flotation of archaeobotanical samples.

In November 1980 TDOT transferred funds for the laboratory analysis and preparation of a camera-ready report to the TDOA. It was at this time that I again became involved with the project under the terms of a personal services contract. The \$9,405.00 budget included my salary (for report preparation and all analyses except faunal and human skeletal material) and funding for a zooarchaeological consultant, radiocarbon determinations, computer analyses, photography, professional typing, and miscellaneous supplies.

Figure 1. The Penitentiary Branch site at the confluence of the Cumberland River and Penitentiary Branch, view to the northeast.

II. ENVIRONMENT OF THE PENITENTIARY BRANCH LOCALITY

The Penitentiary Branch site, bisected by State Route 53, was located approximately 11 km northeast of Gainesboro in north central Jackson County, Tennessee. The site was situated at the confluence of Penitentiary Branch and the Cumberland River at River Mile 365 on the floodplain of the left (descending) bank (Figure 2), on the Burristown 7.5–minute Quadrangle within the Upper Cumberland River drainage.¹

Environmental Setting

<u>Geology</u>

The Penitentiary Branch site was situated within the northeastern perimeter of the Outer Nashville Basin of the Interior Low Plateau physiographic province of Tennessee (Fenneman1938), immediately adjacent to the western escarpment of the Eastern Highland Rim (see Figure 2). The bedrock geology in the immediate vicinity of the site consists of a finger of folded and faulted units of Ordovician limestone (Bassler 1932; Hardeman et al. 1966) comprised of nodular, shaly, and thin bedded fine- to coarse-grained limestone (Hardeman et al. 1966). These deposits are surrounded by Devonian Chattanooga Shale, a black carbonaceous shale, and Mississippian Fort Payne Formation calcareous and dolomitic silicastone comprised of bedded chert, cherty limestone, shale, and scattered crinoidal limestone lenses (Hardeman et al. 1966). Two small deposits of dolomitic and cherty St. Louis and Warshaw Limestone outcrop approximately 4.5 km southeast of the site area. Quaternary alluvial sands, silts, clays, and gravels characterize the narrow Cumberland River floodplain.

The Cumberland River forms a series of meanders and oxbows where the river channel has incised against steep bluffs. The south side of the river in the site vicinity is characterized by steep bluffs which abruptly slope into a narrow floodplain. The narrow T0, T1 and dissected bluffs and hills are cut by Penitentiary Branch. This topographic pattern is repeated throughout the area due to the interface of the western escarpment of the Eastern Highland Rim with the Nashville Basin. Moreover, the regional topography is characterized by steeply dissected hills consisting of spur and hill outliers from the Highland Rim, which extend west into the Basin

¹ The United States Geologic Survey divides the Cumberland River watershed into Upper and Lower segments at its confluence with the Caney Fork in Smith County. However, Penitentiary Branch and 31 other Archaic shell-bearing sites located downstream have recently been identified as falling within the SMA tradition of the Middle Cumberland River Valley (Peres and Deter-Wolf 2016). That geographic culture area is oriented around the Cumberland River as it flows through Tennessee's Central Basin, from the confluence with the Obey River in Clay County downstream to the mouth of the Harpeth River in Cheatham County.

interior (Bassler 1932:16). Elevations within the immediate vicinity of the site area rise from 152.4 to 292.9 m (500 to 962 ft) above mean sea level (see Figure 2).

<u>Soils</u>

No soil survey has been compiled for Jackson County; however, a general soil map (Edwards et al. 1974) for the Nashville Basin shows floodplain and lower terrace soil associations in the study area are the Armour-Lynnville-Arrington series. This association is comprised of fine-silty, mixed, and thermic Hapludolls and Haplaudalfs which occur on level terrain to slopes of no greater than 12 percent. These soils, which typically have high available water capacity and P, may be productive, valuable crop land.

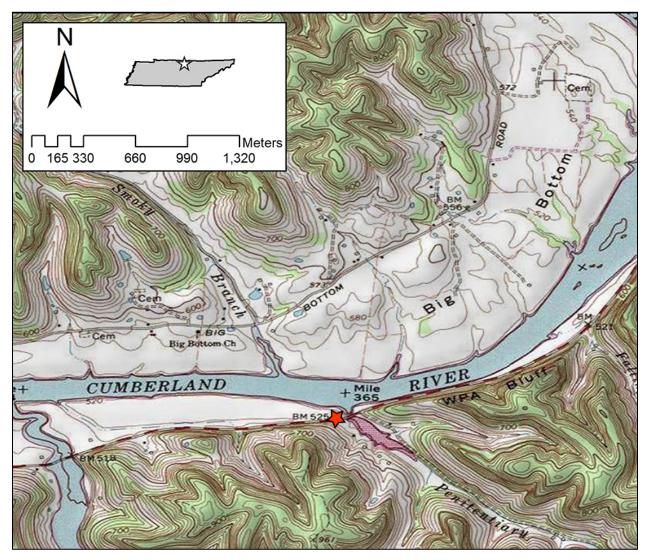


Figure 2. Location and contour map of the Penitentiary Branch site (40JK25), Jackson County, Tennessee.

The uplands south of the project area consist of the Dellrose-Bodine-Mimosa association (Edwards et al. 1974:11). These are fine-loamy, mixed, thermic; loamy-skeletal,

siliceous, thermic; and fine, mixed, and thermic (Edwards et al. 1974:25–26) Hapludults, Paleudults, and Hapludalfs. Dellrose soils, a product of colluviums, occupy slopes with gradients ranging from 15 to 45 percent (Edwards et al. 1974:17). Bodine soils occur on narrow crests with slopes of 4 to 12 percent and steep upper slopes (12 to 40 percent gradients) of high ridges (Edwards et al. 1974:17) Although this loamy-skeletal and siliceous soil is permeable and deep to bedrock, the concentration of chert and low P indicate a poor soil unsuited for cultivation. The third soil, Mimosa, overlies limestone bedrock on slopes of 4 to 30 percent (Edwards et al. 1974:17). This fine, mixed, and thermic soil is characterized by a plastic subsoil and reaches depths of only 1.0 to 1.3 m; moreover, numerous limestone outcrops render this soil unsuitable for cultivation. This association, typically dissected by gullies 0.61 to 1.2 m deep, and shallow, cherty, and poor soils on steep slopes with limestone outcrops, is unsuitable for cultivation or residential sites.

Recent Vegetation

The topography and soil associations of the floodplain and lower terraces at the Penitentiary Branch site provide the most suitable areas for settlement and land use. However, the floodplain soil associations as well as the uplands and dissected hills with the Dellrose-Bodine-Mimosa associations and the humid mesothermal climate (Thornthwaite 1931) supported a vast array of plant taxa.

Using modern analogues and historical documents, it can be assumed that at the time of EuroAmerican settlement the deciduous hardwood forest consisted of taxa such as oak, maple, hickory, basswood, and beech. Arboreal taxa typically associated with Armour and Dellrose soils of the Nashville Basin include white oak (*Quercus alba*), red oak (*Quercus falcata*, *Q.rubra*), black oak (*Q. velutina*), shagbark hickory (*Carya ovata*), red maple (*Acer rubrum*), sugar maple (A. saccharum), tulip poplar (*Liriodendron tulipifera*), basswood (*Tilia heterophylla*), American chestnut (*Castanea dentata*), American beech (*Fagus grandifolia*), hackberry (*Celtis occidentalis*), black walnut (*Juglans nigra*), American elm (*Ulmus* americana), and dogwood (Cornus florida) (Edwards et al. 1974:9). The rather plastic, shallow Mimosa soils support less luxuriant stands of many of these species; black locust (*Robinia pseudoacacia*) and redbud (*Cercis canadensis*) are more common on Mimosa soils. Several oak species such as postoak (*Q. stellata*) and blackjack oak (*Q. marilandica*) grow on the Bodine soils of steep upper slopes.

Taxa most suited to bottomland Arrington and Lynnville soils are oaks, hickories, elm, and beech as well as less productive green ash (*Fraxinus pennsylvanica*), river birch (*Betula nigra*), cherry (*Prunus sp.*), tupelo gum (*Nyssa aquatic*), sweet gum (*liquidambar styraciflua*), and sycamore (*Platanus occidentalis*) (Edwards et al. 1974:9). Disturbance indicators such as pine (*Pinus spp.*) would have dotted the lower terrace and upland landscape.

Braun (1950), mapping the recent forest, placed the Mixed Mesophytic/Western Mesophytic forest transition at the interface of the eastern Highland Rim escarpment with the Nashville Basin. Shelford (1963:35) encompasses this concept of a Mixed Mesophytic/Western Mesophytic forest in the recent tulip-deer-oak faciation for this region. Most dominant tulip-

oak forest (mixed mesic) climax species include tulip poplar, white and red oaks, beech, basswood, sugar maple, American chestnut, and yellow buckeye (*Aesculus octandra*). Despite Braun's transition classification and the physiographic location of Penitentiary Branch, the site was not within an ecotone (cf. King and Graham 1981); moreover, and form of transitional gradient is doubtful.

Modern Climate

The mean annual temperature within the region is 14 degrees C; mean annual precipitation is 132 cm. Average date of the first freeze is October 25 and the last freeze is April 10 (Springer and Elder 1980:6–7).

III. RESEARCH STRATEGY AND EXCAVATION PROCEDURES

The Penitentiary Branch site was situated within the Cordell Hull Reservoir, where it was inundated by floodwaters approximately once every ten years. Although the reservoir impacted land in Smith, Jackson, and Clay Counties, Tennessee, a 1963 archaeological survey and testing program conducted by the University of Tennessee (Morse 1963a; Polhemus 1963) apparently did not extend upstream beyond Cumberland River Mile 348. Twelve sites in Smith County were identified and four were tested, while of the 14 Jackson County sites, one was tested. Eight of the Jackson County sites and nine of the Smith County sites were assigned Early to Late Archaic period cultural affiliations.

Testing results (Polhemus 1963:84–154) of the Cumberland River sites indicated most to be multicomponent. The West site (40SM1) was comprised of Paleoindian, Early Archaic, and Late Archaic period diagnostic artifacts. The multicomponent site 40SM8 yielded Early Archaic and Early Woodland period projectile points and ceramics. Apparently 40SM13, which produced diagnostic Early Archaic artifacts, was primarily a Late Archaic period occupation with Gary and Motley type projectiles. Artifacts derived from the Chambers site (40SM15) were poor diagnostic indicators but a Late Archaic period occupation was inferred (Polhemus 1963). Finally, the Sanders site (40JK10) yielded projectile points diagnostic of Early and Middle Archaic occupation. The most extensive occupation at Sanders was probably during the Late Archaic period. Artifacts recovered during the excavations included Gary, Cotaco Creek, and Motley type projectile points, knives, scrapers, limestone digging implements, ground stone axe fragments, and bone awls.

The primary excavation conducted in conjunction with the Cordell Hull Reservoir was at the Robinson Shell Mound (40SM4) (Morse 1963a:3–83; Morse 1967). This Late Archaic period site was located along the Cumberland River at River Mile 319.3 on an erosional remnant of a bluff near the river bottomland; nearby shoals and rapids (Morse 1967:8) would have provided optimal areas for the exploitation of riverine food resources. Over 6,000 mussel shells (taxa unidentified) were collected from the midden which reached a depth of no greater than 65 cm over a horizontal area of approximately 0.2024 ha.

Radiocarbon dates from the Robinson site span the period of approximately 1920–3 cal BC (Morse 1976:143).² The archaeological evidence, comprised of lithic and faunal remains, features, postholes, and burials, as well as Morse's (1967:247–250, 296) ecological deer yarding hypothesis resulted in interpretation of the Robinson site as a Late Archaic semi-permanent winter village.

² For recalibrated radiocarbon ages from Robinson using IntCal13, see Peres and Deter-Wolf (2016).

Morse (1967:143) proposes that the radiocarbon dates from Robinson cluster into three possible groups, given as 1265 BC, 973 BC, and 555 BC, and that these clusters represent separate occupations, each of which terminated after 40 to 50 winters (Morse 1967:298). Subsistence was based primarily on white-tailed deer and shellfish, with mussels acting as a supplemental resource when deer were not adequately available. Activities at the site included lithic and bone implement manufacture, hunting, fishing, gathering, and (possibly) trading. The 62 burials at Robinson suggest probable ceremonial activities surrounding those inhumations.

The archaeological survey, testing, and excavation efforts discussed above were the only extensive investigations conducted in the Upper Cumberland drainage of Tennessee prior to the identification of and decision to mitigate the impending loss of 40JS25. As relatively few archaeological investigations involving any cultural period have been conducted in this region, and with the subsistence-settlement questions raised by the Robinson site excavations, it was anticipated that work at 40JK25 would provide significant data on Late Archaic period subsistence and settlement patterns for the Cumberland River Valley and Middle Tennessee.

Research Goals

While archaeological surveys indicate prehistoric occupation of the Upper Cumberland River Valley beginning at least by 10,000 cal BC, the extent and patterns of prehistoric settlement are unknown. The 1963 and 1974 Smith-Jackson County surveys were biased riverine studies and little is known of upland or inter-riverine settlement patterns. Since few archaeological investigations have been conducted in the Upper Cumberland, the encompassing research goal was to obtain as much cultural data as possible from the Penitentiary Branch site excavations. More specific aims were to determine the cultural affiliation of the site, to derive subsistence and settlement data from all components, to define exploitation strategies, and to determine the relationship of the Penitentiary Branch site to Robinson Shell Mound. Accomplishment of these goals would require the collection of quantities of radiocarbon samples, the recovery of diagnostic lithic and bone artifacts in context, the recovery of extensive faunal material, the collection of numerous archaeobotanical samples for paleobotanical analysis, and the collection of subsurface disturbance data.

Site Description

The Penitentiary Branch site was situated on a narrow T0-terrace and the eroded colluvium of a 292.9 m-high bluff which rises immediately adjacent to the western edge of the occupation surface. The colluvial deposits, which formed a slight mound on a portion of the T0, probably overlay the Pleistocene floodplain and were a product of early Holocene erosion. The site, situated on this colluvial deposition, ranged from approximately 159.7–163.1 m above sea level. Prior to inundation a rocky shoal was presumably situated immediately to the northeast of the site at the confluence of Penitentiary Branch and the Cumberland River. The shell

midden deposit consisted of a roughly circular 0.1764 ha accumulation with varying depths of plowzone underlain by layers of stratified shell-bearing deposits which extended from 5–145 cm in depth.

Excavation and Recovery Procedures

Deep backhoe testing was initiated to determine the horizontal perimeters of the Penitentiary Branch site and the vertical extent of the depositional material. Profiles cut by the original construction of State Route 53 through the site area were cleaned and examined for assessment of the internal midden stratigraphy. A Chicago type grid system (Cole and Deuel 1937:25), tied into geological survey BM 525 ft or 160 m (grid 100R200), was employed to establish 3x3 m excavation units. Forty-three units were fully excavated and six partially test-excavated (Figure 3), and named according to their southeast grid stakes.

Due to intermittent flooding of the lower elevations of the site, the upper deposition of units R194 through R203 was comprised of sterile alluvium. This material, mechanically removed down to the underlying zone of mixed alluvial and midden deposits, was discarded. The remainder of the site, previously utilized as a garden, was in pasture. The plowzone of units R218 through R233 was intensively mixed with the midden material; consequently, the ground cover was skim shoveled, examined for cultural remains, and discarded. Units were then skim shoveled in stratigraphic or in arbitrary 10-cm cuts. Despite the stratigraphic evidence provided by profiles in units 127R227, 136R227, 133R230, 136R230, and 139R230, the nature of the depositional layers made it difficult to detect the termination of one zone and the beginning of another during excavation. These units were comprised of numerous layers of dense concentrations of mussel shell and gastropods mixed with an unchanging soil matrix.

The concentration of dense mussel shell and fire-cracked limestone throughout the midden created additional recovery problems. A backhoe trench was excavated near the edge of the T0 to function as a settling basin for waterscreened sediments. A three-inch centrifugal pump provided water from the Cumberland River for the purpose of waterscreening all midden through graduated 6-mm and 12-mm mesh screens placed in the narrow end of each of three sluice box-design troughs. The accumulation of bivalves, gastropods, limestone, chert, and faunal material created a barrier and obstructed the screens. In addition, rootlets entwined in the mesh further prevented the evacuation of sediments and water. These factors resulted in an investment of at least 45 minutes to screen and pick each wheelbarrow load of midden. Alterations in the system such as use of 24-mm mesh did not appreciably alleviate the problem. Consequently, time and labor limitations resulted in the decision to randomly select one-half of the excavated levels for waterscreening through 12-mm and 24-mm mesh; the remaining levels were carefully shovel sorted. All subsurface disturbance fill not reserved for archaeobotanical samples was waterscreened through 6-mm and 12-mm mesh.

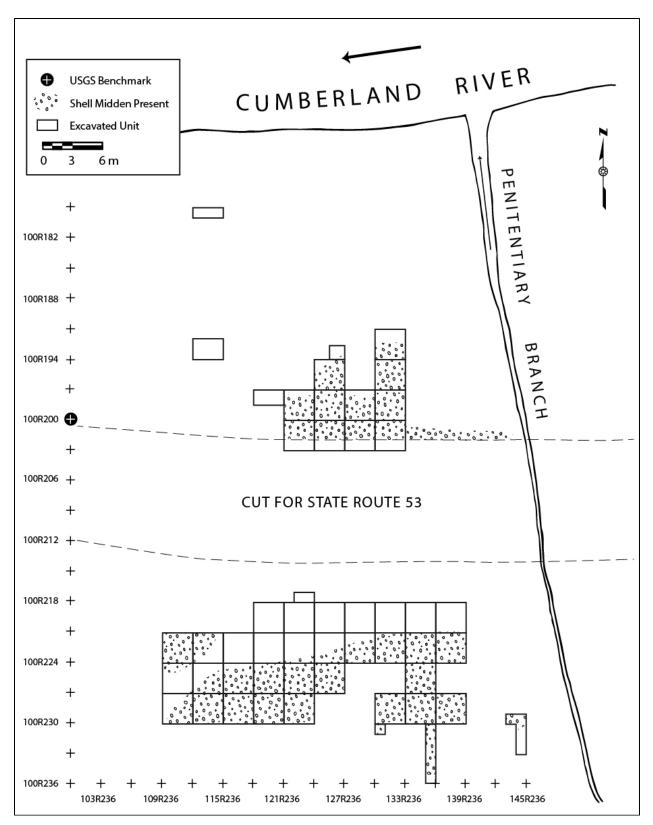


Figure 3. Plan view of excavation units at the Penitentiary Branch site.

IV. STRATIGRAPHY

The processes of shell midden formation are traditionally difficult to interpret (Marquardt and Watson 1976). Interpretation of the Penitentiary Branch site deposition and stratigraphy first requires an understanding of the natural topography of the site. As indicated in Chapter III, the midden accumulation was situated on a slight mound of colluvium derived from a bluff adjacent to the west and southwest of the Late Archaic period deposits. In the southern portion of the site, deposits between the bluff base and the channel of Penitentiary Branch which formed part of this landform had been dissected by an erosional gully. This gully had apparently been intentionally filled with shell and other midden debris during the prehistoric occupation of the site, and was comprised of at least 11 strata (Figures 4 and 5).

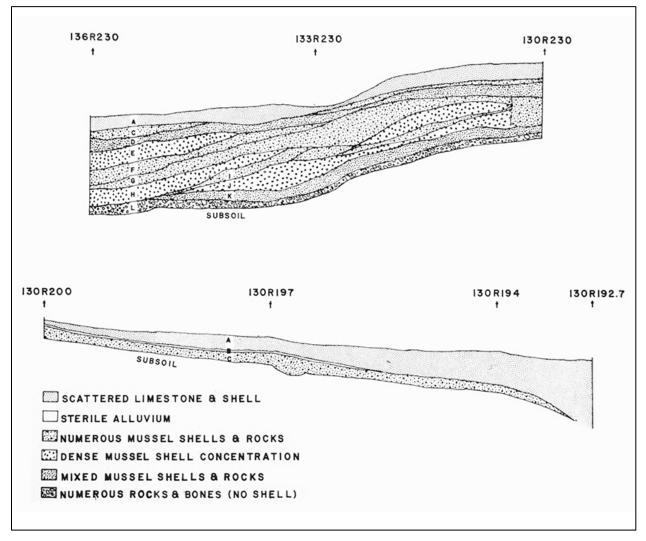


Figure 4. Stratigraphic profiles of midden accumulation.

Figure 5. View of stratigraphic layers, east profile, 136R230.

Along with the plowzone, levels identified in the erosional gully were designated Strata A through L, and are described below. These levels were not continuous over the Penitentiary Branch site (see Figure 4). With the exception of Strata D–L (Levels 3–11) in the gully area, however, I believe those zones forming Strata A and C were primarily contiguous.

- Stratum A: Level 1, plowzone: Units R194 to R203, dark grayish brown (10YR4/2, moist) fine sandy loam with scattered fire-cracked limestone and mussel bivalves (1 percent); units R215 to R236, very dark brown (10YR2/2, moist) fine clayey silt loam with fire-cracked limestone and scattered gastropod and bivalve (5+ percent) fragments.
- Stratum B: Level 2: Units R194 to R218, 3–15-cm band of brown (10YR5/3, moist) silty sand.
- Stratum C: Levels 3 and 4: Units R194 to R203 and Level 2, units R215 to R236; dark grayish brown (10YR3/2, moist) clayey silt loam mixed with fire-cracked limestone, chert, bone, and numerous (20–30 percent) broken and unbroken gastropods and bivalves.

The following strata occurred in the gully area within excavated units 130R224, 133R224, 136R224, 139R224, 127R227, 136R227, 124R230, 133R230, 136R230, 139R230, 145R230, and 133–136R136:

- Stratum D: Level 3: Dark grayish brown (10YR3/2, moist) clayey silt loam mixed with scattered fire-cracked limestone, gastropods and bivalves (20 percent)
- Stratum E: Level 4: Dense concentration (60+ percent) of bivalves (primarily unbroken) and gastropods; very little dark grayish brown (10YR3/2, moist) clayey silt loam.
- Stratum F: Level 5: Approximately one half of the deposit was comprised of broken and unbroken bivalves, gastropods, bone, fire-cracked limestone, chert, and shale fragments; the remainder was very dark gray (10YR3/1, moist) silt loam.
- Stratum G: Level 6: Soil and components identical to Stratum F except the bivalve accumulation was more dense (25 percent) and appeared layered rather than scattered throughout matrix.
- Stratum H: Level 7: Dense concentration (60+ percent) of primarily unbroken bivalves and numerous gastropods; very compact with little dark grayish brown (10YR3/2, moist) clayey silt loam.
- Stratum I: Level 8: Dark grayish brown (10YR3/2, moist) clayey loam mixed with fragments of limestone, a thin band of fire-cracked rocks, numerous shale fragments, and scattered (20 percent) gastropods and bivalves.
- Stratum J: Level 9: Dense, compact concentration (60+ percent) of bivalves and bone, chert, and fire-cracked rocks; some large fragments of shale; minor amount of dark grayish brown (10YR3/2) clayey silt loam.
- Stratum K: Level 10: Dark grayish brown (10YR3/2, moist) clayey silt loam mixed with extensive layer of fire-cracked rock and bivalves (20 percent) and a large percentage of bone.
- Stratum L: Level 11: Dark yellow brown sandy clayey loam with scattered fire-cracked rocks, chert and bone; no bivalve.

Strata D through L were not continuous throughout the gully. The depositional pattern of the site, along with radiocarbon dates collected from Stratum K (Level 10), Stratum H (Level 7), and Stratum C (Levels 3/4 and 2) (see Chapter VII) indicate the gully began to be in-filled during the earliest occupation of the site, ca. 3600±195 BP.³ Radiocarbon assays obtained from Stratum H (3375±345 BP), and Stratum C (3185±165 BP, 3050±140 BP, and 2975±145 BP; mean=3070±150 BP) indicate this pattern of in-filling continued throughout the occupation of the site.

³ Unless noted otherwise, all radiocarbon dates in this report are given as originally presented by Cridlebaugh, using uncalibrated radiocarbon years BP.

Gastropod and Mussel Bivalve Density

A 1-m² stratigraphic column was excavated from the south profile of 139R230. Ten-liter samples from each stratum were collected from laboratory determination of the percentages of each component of the midden. Failure to conduct this analysis in the field proved to be a serious error in the salvage excavation methodology, as the percentage data from these samples were subsequently lost when the samples were inadvertently confused with archaeobotanical samples and screened through 6-mm mesh without recording the volume of chert, rock, shell, and bone greater than 6-mm in diameter. However, an indication of percentage of shell fragments to soil was determined from various midden samples (Stratum C) which were screened through 6-mm mesh. All material 6-mm or less was screened through 2-mm and 1-mm U.S. Standard screens. Bivalve and gastropod remains ranging from 6-mm to 1-mm in diameter comprised approximately 30 percent of the volume, compared to 70 percent soil.

As a consequence, the percentages of molluscan remains indicated in the above stratigraphic descriptions are based on field estimates of volume from the 1-m² stratigraphic column, field estimates of percentage of shell to all other midden material from each strata, the 30 percent shell fragments from the screened samples, and Meighan's (1970) definition of shell middens which range from:

...archaeological deposits containing 1 percent or less of molluscan remains (by weight) as well as deposits composed almost entirely of shell. A midden containing more than about 30 percent shell (by weight) appears visually to be almost pure shell since the other main components (rock and soil) have a greater density and occupy a smaller volume. (Meighan 1970:415)

V. SUBSURFACE DISTURBANCES

Subsurface disturbances are comprised of features, postholes, and burial pits which were intrusive into the midden or subsoil and exhibited distinct horizontal and vertical limits. Subsurface disturbances which occurred within the midden comprised of scattered bivalve shell and/or subsoil were easily identified by the dark grayish brown shell-filled sediments in contrast to the surrounding midden or light yellow-brown sandy subsoil matrix. Disturbances occurring within zones of concentrated mussel shell midden, however, were difficult to discern from the surrounding matrix. Nevertheless, a total of 134 features, 17 burials, and four possible postholes were identified and excavated at the Penitentiary Branch site.

This midden/disturbance matrix similarity created interpretative problems. For example, the point of origin of numerous subsurface disturbances detected at the midden-subsoil interface may well have been 0.2 to 0.4-m higher than the recorded elevation. The majority of recorded features were concentrated within the sloping south and southwest portions of the site (Figures 6 and 7) where the shallow depth of the dark shell-filled midden ranged from 0.2 to 0.5-m. Three hypotheses may be offered as explanation of prehistoric site development and use.

- **Hypothesis 1:** Prehistoric occupation primarily occurred directly on the highly eroded subsoil surface upon which occupational debris accumulated through time.
 - **Implication:** Most subsurface disturbances originated below accumulated midden.
- **Hypothesis 2:** Prehistoric occupation primarily occurred directly upon accumulated occupational debris.
 - **Implication:** Most subsurface disturbances were excavated through midden accumulation into subsoil.
- **Hypothesis 3.** Prehistoric occupation occurred variously upon the erosional surface and midden accumulation.
 - **Implication:** Subsurface disturbances originated variously upon erosional surfaces and midden accumulation.

Features

Features were assigned consecutive numbers as each was identified and excavated. Several intrusive features were assigned additional A- and B- designations. The desired excavation procedure for identified features consisted of dividing the feature along an eastwest axis, followed by removal of half the fill in order to inspect the remaining profile for stratigraphic evidence. Unfortunately, this procedure was successfully achieved during the excavation of a small percentage of features. In respect to both salvage time and financial considerations it proved impractical to excavate large blocky limestone and chert, fire-cracked rock, and shell-filled features in this manner. Consequently, a large percentage of features were shovel and trowel excavated without initial profiling. Archaeobotanical samples for flotation were recovered from all features and radiocarbon samples were discovered when possible. All fill was waterscreened through 12-mm or 6-mm hardware mesh. While screening feature sediment through 12-mm mesh was not a preferred recovery method, the quantity and quality of some fill necessitated this mesh size in several instances. Excavated features were photographed and their depth, diameter, and plan views recorded.

Of the 134 excavated features, 84 were intruded upon (or intruded onto) other features or burials (Figure 8). The actual undisturbed horizontal perimeters of only 37.3 percent (n=50) of the features could be conclusively determined. Dimensions of most features, therefore, are the greatest length and width observable at the time of excavation rather than a reflection of prehistoric dimensions. The consistent intrusion of subsurface disturbances at the site is indicative of intensive seasonal reoccupation through time.

Gross feature categories consist of Fired Clay Deposits/Hearth, Surface Rock Concentrations with Fire Pit/Hearth, Pits, Basins, Depressions, and Linear Disturbances. These categories are identified in Appendix A, and further subcategorized below. Specific measurement data for all feature categories is presented in Appendix B. Feature function of most categories is primarily speculative.

Fired Clay Deposits (n=3)

Fired Clay Deposits consist of fire-oxidized clay deposits and/or ground surface areas. Degree of oxidation ranges from red-orange to yellow soil discolorations. Both charcoal flecks and scattered rocks are commonly associated with these areas. Fired clay may be directly on the living surface or associated with a subsurface disturbance such as a pit.

Feature 10 consisted of a fired clay deposit surrounded by scattered limestone rock and shale slabs. Underlying the fired clay and contained within a basin were stratified layers of dark ash and charcoal, a lighter ash, and finally, a mixture of charred hickory nutshell, charcoal, and soil. Feature 21 was comprised of a red-orange fired clay deposit which had been overlain by a concentration of rocks and charcoal. Surrounding the fired clay was an irregular area of yellow-orange oxidized ground surface and scattered rocks, charcoal, and mussel shell. Feature 41 consisted of an irregularly fired ground surface with a mixture of charcoal, limestone fragments, and mussel shell. All fired areas exhibited fire-cracked rocks covering or enclosing the clay, and may have functioned as hearths.

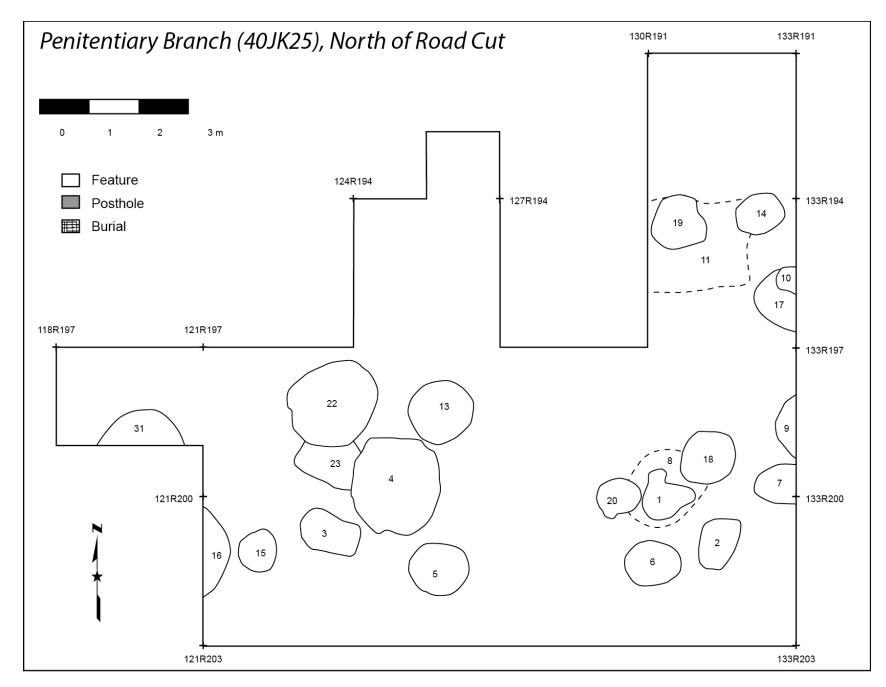


Figure 6. Plan view of cultural features, north of State Route 53.

17

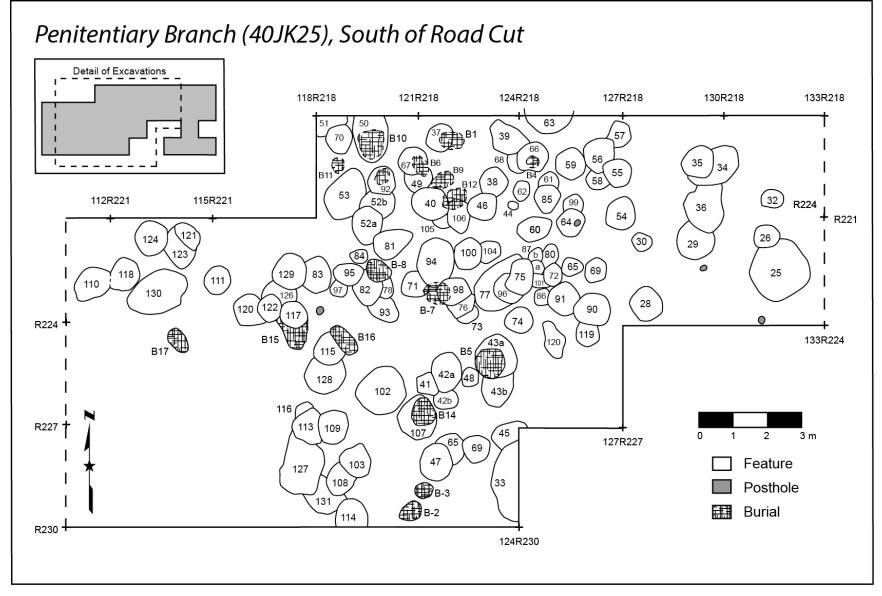


Figure 7. Plan view of cultural features, south of State Route 53.

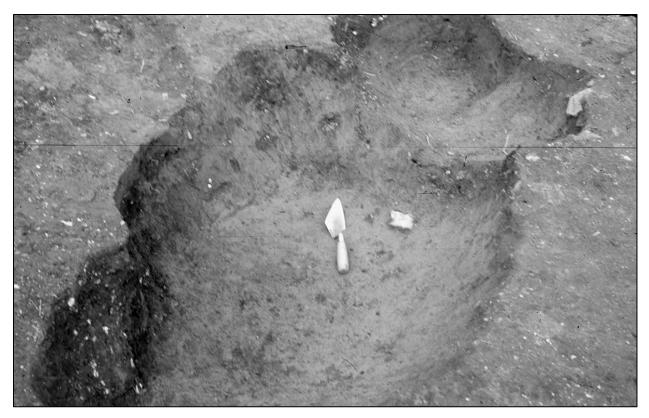


Figure 8. Intrusive or superimposed subsurface disturbances.

<u>Pits</u> (*n*=73)

Pits are generally deep depressions exhibiting straight-sided to slightly sloping walls with flat or concave bases, and are oval or circular in plan view. Depositional material removed from pits consisted primarily of sediments mixed with limestone rocks, chert debitage, blocky chert, fire-cracked rock, and mussel and gastropod shells. Subcategories of pits are: Midden-filled; rock-filled/lined; Limestone and Shell-filled; and Mussel Shell-filled.

Midden-Filled Pits (n=32)

These pits contained a mixture of chert debitage, limestone, fire-cracked rock, charcoal, mussel shell, bone, and dark grayish brown clayey silt loam (Figure 9).

Rock Filled/Lined Pits (n=25)

These pits were characterized by large quantities of limestone, chert, and fire-cracked rocks concentrated near the pit base or mixed throughout the pit with lesser amounts of midden sediments than the Midden-filled pit category (Figure 10). The walls and bases of three of these pits (F-36, F-50, and F-103) were fire-oxidized displaying patches of red-orange clay. Contents were composed of rock and charcoal concentrations in the lower portion of the pits and mussel shell was dominant in the sediments of the upper fill.

Figure 9. Midden filled circular pits: Feature 25.

Figure 10. Rock filled/lined pit: Feature 14.

Rock and Shell Filled Pits (n=12)

This pit category contained fewer large rock concentrations than the Rock Filled/Lined Pits, and the fill was comprised of quantities of fire-cracked rocks, limestone, chert and whole bivalve shells (Figure 11).

Shell-Filled Pits (n=4)

These pits contained relatively no midden matrix or fire-racked rocks. Fill consisted of dense concentrations of bivalve shell, including both closed shells and single valves. These features are interpreted as possible shell caches (Figure 12).

Basins (n=52)

Basins are distinguished from pits in that they exhibit shallow sloping walls and rounded or flattened bases, and are oval to circular in plan view. In general, their depth is somewhat shallower than that of pits. Basin categories are similar to pit categories.

Midden-Filled Basins (n=21)

While practically all of the 52 basins contained some degree of midden matrix, this subcategory was predominantly filled with midden material comprised of a mixture of dark grayish brown clayey silt, bivalve shell fragments, bone, charcoal, chert, limestone and fire-cracked rocks. The most atypical of these features was Feature 88, composed of a concentration of limestone in the upper levels of the feature and a mixture of midden matrix underlying the limestone.

Rock Filled/Lined Basins (n=16)

This subcategory is characterized by fill comprised of large quantities of limestone, chert, and fire-cracked rocks concentrated at the base or throughout the feature. Features 45 and 58 showed greater evidence of serving as fire basins than the other features of this category. These two features were very shallow but filled with limestone rocks, charcoal, and ash; Feature 58 contained no bivalve shell.

Shell and Limestone Filled Basins (n=5)

This basin category may grade into the Rock Filled/Lined category, but the proportion of fire-cracked rock is less and there is a greater quantity of mussel shell.

Shell Filled Basins (n=9)

These basins contained dense concentrations of unopened and single bivalves. Like the Shell-Filled Pits, these features suggest shell caches.

Figure 11. Rock and shell filled pit, in profile: Feature 13.

Figure 12. Shell filled pit, in profile: Feature 3.

Depressions (n=5)

Depressions are shallow irregularly shaped features which fail to fall in either the pit or basin category due to their irregular shape. Depression fill was comprised of sediments similar to that of the midden: fire-cracked rocks, limestone, chert, broken bivalve shell, bone, and charcoal.

Linear Disturbance (*n*=1)

Feature 23, a deep linear disturbance, intruded to the north by Feature 22 and to the southeast by Feature 4. Fill consisted of fire-cracked rocks, limestone, chert nodules, chert debitage, bone, bivalve shell, and dark grayish brown clayey silt. It could not be determined if this feature presented a natural or cultural disturbance.

Tree Fall/Slump (n=1)

This midden-filled disturbance was highly irregular in shape and was determined to be associated with a tree stump or fall.

Discussion

The concentration of superimposed features at the Penitentiary Branch site is indicative of extensive occupational activities and seasonal reoccupation. Feature function was not readily revealed by shape or by artifact, sediment, or fire-cracked rock content. Varying concentrations of these items within the features suggest the majority of subsurface disturbances contained an undetermined percentage of primary or secondary midden material. No diagnostic feature patterning is identifiable in the lithic and faunal content.

The compacted concentration of bivalve shell within features classified as shell-filled pits and basins suggests these features were caches. Two similar clusters of disarticulated bivalves were excavated at the Robinson site (Morse 1967). At the Indian Knoll site on the Green River in Kentucky, concentrations of gastropod shell were associated with fire hearths and thought to have been deposited into piles subsequent to cooking (Webb 1946:243). However, no evidence of fire-oxidized soil was present within the shell-filled pits and basins at Penitentiary Branch. Of the 13 features in these categories, only two displayed characteristics which might be indicative of cooking. Feature 20, contained appreciable charcoal flecks and fired clay fragments, while Feature 110 was rock-lined in a manner suggestive of a cooking pit or earth oven. Instead, the majority of shell-filled pits and basins at Penitentiary Branch may have been created during food preparation, or as refuse pits employed subsequent to food processing/consumption. However, the presence of paired and unopened shells within these features casts a degree of doubt upon this latter interpretation.

Features classified as rock filled/lined pits and basins probably functioned as earth ovens. These features contained varying amounts of midden materials, but are uniformly

characterized by extensive concentrations of fire-cracked rock, limestone, and charcoal fragments. The interior walls and bases of five of these features displayed fire-oxidized soil. That all 41 of these features functioned as earth ovens is likely an overly liberal interpretation. None of the Penitentiary Branch features exhibited evidence of clay lining as described for earth ovens identified at the Robinson site (Morse 1967:15).

The three fired clay deposits at excavated at Penitentiary Branch consisted of surface concentrations of fire-oxidized soil, charcoal, and fire-cracked rocks as well as small subsurface fire-oxidized pits which contained charcoal and ash. Based on their overall character these deposits are believed to represent hearths. Additional material recovered from Feature 10 consisted of one projectile point and one biface fragment. Fourteen faunal fragments were recovered from Feature 21, and one projectile point from Feature 41. Additional surface hearths may have been destroyed by later occupations or obscured by midden concentrations.

Postholes

Four postholes were identified at the Penitentiary Branch site (see Figure 7). Metric attributes for those features are provided in Appendix B. The points of origin within midden could not be distinguished for these features; consequently, measurements account only for the portion which extended into subsoil. Posthole 3 intruded into the base of Feature 64, a midden-filled pit. The few postholes at the site provide no indication of Late Archaic structure patterning. At the Robinson site, an arc of 10 postholes adjacent to a burned floor formed the basis for interpretation of a permanent round or oval house 9 to 12-m in diameter (Morse 1967:14). Burned areas and/or small numbers of aligned postholes arranged in an arc or single line have been reported from several other Late Archaic sites in the Mid-South, including at the Frazier, Cherry, and McDaniel sites in the western Tennessee River Valley. At Frazier a 24.2 m line of postholes was interpreted by Lewis and Kneberg (1947:2–6) as a windbreak. Along the Green River, Webb (1946:242) hypothesized similar features represented shelters erected to protect an open fire, but doubted they were indicative of enclosed structures.

At the non-shell midden Late Archaic Banks site (40CF34), located in the Nashville Basin on the T1 of the Duck River, an arc of at least seven postholes was associated with a living floor comprised of scattered burned clay and charcoal flecks (Faulkner and McCollough 1974:201; Figure 18). A similar posthole and living floor arrangement was identified at the Terminal Archaic Higgs site in the eastern Tennessee River Valley (McCollough and Faulkner 1973:58–59), where an arc of six postholes encompassed a living floor defined by a concentration of fire clay and charcoal fragments. Faulkner and McCullough (1974:207–211) theorize that these "partial" posthole patterns at numerous Late Archaic period sites in the Mid-South actually represent complete archaeological remains of simple structures such as windbreaks and cabanas. In this interpretation, these features constituted temporary protective structures utilized during milder seasons. Chapman (1981:129) has further cautioned archaeologists that the archaeological absence of postholes need not be interpreted as evidence for an absence of structures. For example, he postulates the use of existing trees as major supports in the construction of simple structures would have rendered additional support posts unnecessary.

VI. INHUMATIONS AND HUMAN SKELETAL REMAINS

Patricia A. Cridlebaugh, Emanuel Breitburg, and Deb Jones

Seventeen subsurface features excavated at the Penitentiary Branch site included human skeletal remains. Of those, 64.7 percent (*n*=11) were situated within nebulous burial pits. An additional three burials were within amorphous or partially defined formally prepared basins which extended into subsoil 0.1 to 0.2-m and were roughly rectangular in plan (Figure 13). The inhumations were located from approximately 0.15 to 0.6+ m below ground surface, and consequently several had been disturbed by historic cultivation. Four of the burials were primarily within the shell midden, while seven appeared to have been placed on unprepared subsoil. Whether these graves were actually placed on subsoil and subsequently covered with midden, or if the outlines of burial pits were obscured by the homogeneous midden matrix could not be determined.

Three burials were placed within well defined, formal features (Figure 14). Burials 5, 13, and 14 were interred within shallow oval (n=2) and circular (n=1) flat-bottomed basins which extended 0.45 m, 0.3 m, and 0.39 m into subsoil, respectively. These basins measured 0.55 x 0.42 m, 0.3 x 0.54 m, and 0.9 x 0.9 m in diameter, and were all situated at the base of larger pits (measuring 0.78 x 0.75 m, 1.3 x 1.25 m and 1.2 x 1.17 m in diameter at definition) which extended through the shell midden. One possible chain of feature formation process for these burials was as follows: A pit was excavated through the midden and/or into subsoil; a smaller burial feature was then excavated in the base of the pit; the body was placed within the smaller basin which was then infilled with a matrix of subsoil and midden; rocks were placed in the base of the larger pit atop the burial feature; and the larger feature was utilized as an earth oven.

The inhumations at Penitentiary Branch were situated within the southwest portion of the site on a slight rise immediately west of the intensive shell midden concentration. Within that area, seven burials were clustered within a radius of less than 3 m. The most isolated interment, Burial 17, was approximately 7 m west of this cluster. Approximately 3 m south of that cluster were seven additional burials in an area measuring 9 x 6 m (See Figure 7).

Remains of 17 individuals and three fetuses ranging from well preserved to fragmentary were excavated under the supervision of Cridlebaugh and Deb Jones. Final laboratory analyses and evaluation of the skeletal remains was conducted by TDOA skeletal biologist Emanuel Breitburg. Each burial is described below. Metric attributes for recovered skeletal elements are presented in Appendix C.

Figure 13. Burial 1 within questionable burial pit.

Figure 14. Burial 5 within round burial pit.

Burial 1

Unit: 124R2221, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 39–44 years
Position: Tightly flexed	Sex: Male

Description:

- <u>Interment</u>: No discernible burial pit (see Figure 13); interment was 55 cm below ground surface within the dark brown shell-filled Level 2 midden; inhumation partially intruded into F-37, a feature which was not discerned until removal of Burial 1.
- <u>Preservation</u>: Well preserved but fragmented; nearly complete.
- <u>Position</u>: Interred on right side and oriented to 94° with the head pointed southeast; left arm tightly flexed (0°) with left hand terminating at shoulder; right arm partially flexed (100°) and extending beneath legs; legs drawn to chest; left leg tightly flexed (20°); right leg tightly flexed (0°).
- <u>Pathology</u>: *Dental*: Occlusal carie of right maxillary M1; moderate development of hypercementosis of dental roots. *Vertebral*: Degeneration of vertebra bodies most advanced on L-I, L-IV, and L-V of lumbar region; L-I angulated along anterior inferior margin and anterior superior margin; L-IV exhibits anterior inferior lipping; L-V exhibits pronounced lipping of inferior and superior borders of anterior aspect.

Anomalies: Lambdoid ossicle; Allen's fossa on right femur.

Discussion: The age assessment for Burial 1 is based on the smooth and inactive symphyseal surface of the pubis with a clearly visible oval outline and absent rim formation. These traits fit the criteria for Phase III of Todd's (1920) phases of pubic symphysis age. Factors indicative of a male include stature of 1.65 m, a flattened sacro-iliac surface, narrow sciatic notch, absence of a preauricular sulcus, V-shaped subpubic angle of the innominate, large mastoid processes, well-developed inion, and well developed supra-orbital ridges.

Unit: 121/124R230, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 25–28 years
Position: Tightly flexed	Sex: Female

Burial 2

Description:

<u>Interment</u>: No burial pit discernible. Interment appears to be directly within Level 2 shell midden.

<u>Preservation</u>: Fair to fragmented. Skull and mandible absent and destroyed by historic cultivation. Recovered elements include: (Cranial) one mandibular molar; one maxillary incisor (Post-Cranial) vertebrae; sternum; right clavicle; right humerus; left and right ulnae; tarsals; metatarsals; phalanges of left hand; rib cage; right innominate; right limb elements; right foot tarsals, metatarsals, and phalanges.

<u>Position</u>: Interred on right side and oriented to 245° with the head pointed southwest; right arm tightly flexed (15°) right leg tightly flexed (0°).⁴
 <u>Pathology</u>: None on recovered elements.
 <u>Anomalies</u>: None.

Discussion: Intact skeletal elements of Burial 2 indicate the skull was deposited directly above Burial 3. Plow disturbance and lack of burial pit outlines render determination of the exact relationship of the two inhumations impossible. Age assessment of Burial 2 is derived from the sternal aspect of the clavicle which is not glazed over. Metrics of the femur head and the small gracile aspect of the bones suggest the individual was female.

Burial 3

Unit: 124R230, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: Subadult
Position: Tightly flexed	Sex: Indeterminate

Description:

- <u>Interment</u>: No burial pit discernible. Inhumation resting directly on subsoil and partially associated with/adjacent to Burial 2.
- <u>Preservation:</u> Fair. Lower limb elements destroyed by possible intrusion. Recovered elements: (Cranial) frontal bone; right temporal bone; right maxilla with dentition; left mandibular portion with dentition; 39 cranial fragments (Post-cranial) 17 vertebrae portions; rib cage; right scapula; left and right humeri, ulnae, and radii.
- <u>Position</u>: Interred on right side and oriented to approximately 220° with the head pointed southwest; left arm tightly flexed (0°); right arm flexed (45°).
- Pathology: None.

Anomalies: Septal aperture of left humerus.

Discussion: Complete crown development of the maxillary and mandibular central incisors and the length of the humerus diaphysis indicate the child's age was between 3.5 and 5.9 years. The septal aperture of the humerus may indicate a female.

Burial	4
---------------	---

Unit: 130R221, Level 2 Number of Individuals: 1 Position: Semi-flexed Burial Type: Primary Age: 35–50 years Sex: Male

Description:

⁴ No information on the positioning of Burial 2 was included in the original report.

- <u>Interment</u>: Burial pit is an irregularly shaped amorphous pit with sloping walls and a slanted but relatively flat base which extends into the subsoil.
- <u>Preservation</u>: Fragmentary and plow disturbed. Recovered elements: (Cranial) fragmentary occipital, parietal, right temporal, and malar portions (Post-cranial) all cervical vertebrae; thoracic vertebrae I-XII; lumbar vertebrae L-I and L-II; right arm and hand bones; partial left arm; highly fragmentary rib cage; left and right foot elements; ramus portion of left innominate.
- <u>Position</u>: Interred on back right side and oriented to 160° with the head pointed southeast; left arm partially flexed (80°) with lower arm extending across abdomen; right arm tightly flexed (0°) with hand at shoulder; lower legs tightly flexed (0°) and drawn to chest.
- <u>Pathology</u>: The atlas exhibits osteoarthritic conditions. C-III shows pronounced osteophytosis on the anterior inferior margin. C-IV shows arthritic involvement of superior and inferior anterior margins and lateral aspects and inferior and superior angulation of the body. C-V exhibits angulated superior aspect and pronounced osteophytic outgrowths of inferior and superior anterior margins. C-VI shows moderate deterioration and angulation of body. C-VII exhibits deterioration of lateral and anterior margins of superior aspect. Articular aspects of ribs exhibit osteophytic involvement. Moderate arthritic conditions of T-XI and T-XII.

Anomalies: Bipartite right cervical foramen of C-VI.

Discussion: Well-developed and robust mastoid processes, well-developed inion, a wide sciatic notch and presence of a preauricular sulcus, and the femoral head diameter are indicative of a male. Absence of critical skull and mandible elements creates age assessment difficulties; however, a dense diploë, osteoarthritis of cervical and thoracic vertebrae, and the deteriorated and flattened sacro-iliac articular surface of the innominate suggest an age range of 35–50 years.

Unit: 124R227, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 50 years
Position: Tightly flexed	Sex: Male

Description:

<u>Interment</u>: Placed within a circular pit, F-43A (see Figure 14). Inhumation lay on subsoil at base of stratified pit including fire-cracked rock layer and dark soil with shell-filled matrix.

<u>Preservation</u>: Well preserved, nearly complete skeleton.

<u>Position</u>: Interred on right side and oriented to 137° with the head pointed southeast; left arm tightly flexed (0°); right arm semi-flexed beneath chest at 50°; both legs tightly flexed (0°) and drawn to chest.

<u>Pathology</u>: *Cranial*: Posterior aspect of maxillary dental arcade severely abscessed; mandibular dentition nearly complete with apical abscesses at right P3 and M2; exostosis of left mandibular fossa. *Post-cranial*: Pronounced osteoarthritic vertebral involvement; *C-II*: osseous build up on the dens of the epistropheus; *C-IV*: severely distorted by arthritic involvement with degeneration of left and right lateral aspects of body; *C-V*: pronounced lipping on inferior margin; lateral articular surface distorted. *C-VI*: lateral aspect of body involved. *T-I*: marginal lipping of superior margin. *T-II*: osseous development of lateral articular surfaces. *L-I*: marginal lipping of inferior and superior aspects. *L-II*: pronounced lipping of anterior margin extending 16.5 mm from body; anterior angulation of vertebra body. *L-III and L-IV*: osteophytosis of anterior margin of vertebral bodies. *L-V*: body angulated in a posterior direction with pronounced lipping of right lateral inferior margin. *Innominata*: sacro-iliac articular surfaces exhibit nodular outgrowths and a deterioration of articular surface.

Anomalies: Incomplete supra-orbital foramen; left parietal foramen.

Discussion: This inhumation was interred at the base of a straight-walled circular pit 1.2 x 1.17 m in diameter and 0.3 m deep. Pit matrix consisted of dark charcoal-filled soil, random chert nodules, and mussel shell. Underlying this matrix was a layer of fire-cracked rocks indicative of a hearth. Removal of the rocks from the base of the hearth revealed a mixture of midden and mottled burial fill and the inhumation. The inhumation lay within a shallow circular subbasin 0.9 x 0.9 m in diameter; depth from base of F-43 to base of burial pit was 15 cm.

Male sexing of Burial 5 was based on pronounced supraorbital ridges, large mastoid processes, well-developed inion, and robust square-chinned mandible, long bones, and femoral head diameter. Factors indicative of an individual 50 years of age included severe and uneven wear of the maxillary and mandibular arcades; maxillary wear extended to or below the cervical neck of the right 11, 12, C1 and P3 with extensive abscessing, tooth loss, and alveolar resorption. In addition, deterioration of the symphyseal rim and rarefaction of the deeply pitted face conform to Phase X (Todd 1920) indicative of an individual in the fifth decade of life.

Burial 6

Unit: 121/124R221, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 35–50+ years
Position: Semi-flexed	Sex: Female

Description:

<u>Interment</u>: No burial pit discernible; skeletal remains deposited in subsoil. Features 49 and 67 were intrusive over the burial, post-date the inhumation.

<u>Preservation</u>: Well preserved and nearly complete.

<u>Position</u>: Interred on back left side and oriented to 125° with the head pointed southeast; right arm semi-flexed (59°) with lower arm extending across abdomen; left arm semi-

flexed (105°) with hand at left knee; right leg tightly flexed (25°); and left leg tightly flexed (20°).

<u>Pathology</u>: *Cranial*: Dentition worn to dentin; maxillary dentition exhibits loss of left M1 and M2; occlusal caries of M2 root; right P3, P4, M1, M2, and M3 lost and alveolus healed; all mandible dental elements retained; apical abscessing of left I2, right I1, and healed apical abscess of right M2. *Post-cranial*: Osteoarthritic involvement of cervical, thoracic, and lumbar vertebrae.

Anomalies: Small septal aperture of right humerus; supra-orbital foramina notched.

Discussion: Despite a well-developed inion and supra-orbital ridges, post-cranial elements suggest a female. These characteristics included the following: presence of the preauricular sulcus of the right innominate; maximum diameter of the femoral head (38.0 mm); a wide sciatic notch; and a short femur (423.0 mm). Fragmented, worn, or absent elements hamper age determination. Age degenerative characteristics include: extensive tooth loss, extreme alveolar resorption of the maxilla, apical abscessing, moderate Pacchionian granulation, the depth of depression of the meningeal arterial network, the density of diploë, and osteoarthritic involvement of vertebrae. Height is estimated at 1.57 m.

Burial 7

Unit: 124R224, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 35+ years?
Position: Tightly flexed	Sex: Female?

Description:

Interment: Amorphous rectangular (?) pit excavated into subsoil.

<u>Preservation</u>: Poor; numerous elements destroyed by plowing activity; recovered elements include: 11 vertebrae portions, left rib sections, left radius and phalanges; left and right innominate bones; fragmented left and right femora, fibulae, and tibiae.

<u>Position</u>: Interred on left side and oriented to approximately 18° with the head pointed northeast; left arm flexed tightly at 0°; left and right legs tightly flexed (0°).

Pathology: Osteoarthritic involvement of lumbar vertebrae.

Anomalies: Osseous development along articular rim of left distal radius.

Discussion: Fragmentary cranial and post-cranial elements require approximated ageing and sexing. Age assessment of 35+ years is based on osteoarthritic involvement. The individual is assumed to be female on the basis of small bones and stature estimate of 1.54 m.

Burial 8	
Unit: 121R224, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 35+ years (?)
Position: Indeterminate	Sex: Female

. . .

Description:

Interment: Indeterminate.

<u>Preservation</u>: Poor; severely disturbed by plowing; remains include: three portions of the left femur, portions of left and right tibiae; an innominate portion; a right calcaneum; one first metatarsal.

Position: Indeterminate.

<u>Pathology</u>: None observed on fragmentary remains.

Anomalies: Osseous development along iliac crest and sacro-iliac articular surface.

Discussion: Deep pitting of the preauricular sulcus of the left innominate is indicative of a female. An age assessment of greater than 35 years is based upon osseous development of the iliac crest and sacro-iliac articular surface.

Unit: 121/124R221, Level 2	Burial Type: Primary
Number of Individuals: 4 (1 Adult, 3 Prenatal)	Age: 30–35 years
Position: Semi-flexed	Sex: Female

Burial 9

Description:

<u>Interment</u>: No discernible burial pit; possible association with Burial 6, the skull of which overlays the left innominate and forearm of Burial 9; neither burial disturbed the other. Preservation: Well represented but fragmented.

Position: Adult interred on right side and oriented to approximately 239° with the head pointed southwest; left arm slightly flexed (149.5°) with hand at left hip; right arm slightly flexed (120°) with hand in abdominal region; left leg tightly flexed (25°) and right leg flexed (12°) and drawn to chest.⁵

Pathology: None.

<u>Anomalies</u>: Complete multiple supra-orbital foramina; wormian bone at lambda; bilateral bipartite foramina C-VI; additional cusp on buccal aspect of left mandibular M3; septal aperture of left humerus.

<u>Fetal remains</u>: Incomplete and fragmented remains of at least three prenatal individuals were located near but not within the abdominal region of Burial 9. Remains include fragmented cranial, vertebrae, rib and long bone portions. *Clavicles*: one left and three right (three individuals).⁶ *Humeri shafts*: two left; one right. *Ulnae shafts*: three. *Femora*: two matching pairs. *Tibia*: two matching pairs.

⁵ The position and orientation of the fetal remains is not noted in the original report or on skeletal analysis forms.

⁶ Examples of triplets are extremely rare in the archaeological record of prehistoric eastern North America, raising the possibility that one of the three right fetal clavicles from Burial 9 was sided incorrectly.

Discussion: The adult's dentition was complete but the pubic symphysis was absent. Calculation of the individual's age is based upon complete dentition which shows moderate dentin exposure of the occlusal surfaces and no degeneration of the alveolar portions of the maxilla and mandible. Although the third molars are worn flat, dentition and the absence of osseous development suggest an age of less than 35 years. Criteria for female sexing are undeveloped inion, mastoid processes, and supra-orbital ridges. In addition, a gracile skull and mandible, presence of preauricular sulcus, and the femoral head diameter are indicative of a female. Stature of this individual is approximately 1.54 m.

The location of at three prenatal individuals near the abdominal region of the adult female may indicate she died while gravid or as a result of spontaneous abortion of the fetuses which were at an early stage of development (see metrics). Two tibiae of eastern box turtle (*Terrapene carolina*) were associated with the fetal elements.

Unit: 121R221, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 35–39 years
Position: Tightly flexed	Sex: Male

Burial 10

Description:

<u>Interment</u>: Inhumation resting on subsoil, with no burial pit discernible; F-50 intrusive with skull at base of feature.

<u>Preservation</u>: Well preserved and nearly complete; cranium intact.

<u>Position</u>: Interred on right side and oriented to approximately 38° with the head pointed northeast; situated with chest and face down; left arm tightly flexed (0°); right arm flexed (90°) under the chest; left and right legs tightly flexed (0°) and drawn to chest.

<u>Pathology</u>: Osteophytic involvement of vertebral margins of T-I and L-I.

Anomalies: Septal aperture of left humerus slightly greater than 1.0 mm.

Discussion: Although the skull of Burial 10 was at the base of the intrusive F-50, it was undamaged and recovered intact. Support for age assessment of 35–39 years includes the following: a fragment of the pubic symphysis of the innominate conforms to Todd's (1920) Phase VII. The teeth exhibited moderate wear, while the skeleton showed marginal osteophytic involvement of the inferior and superior margins of the T-I and L-I vertebrae. This individual exhibited a robust and well developed cranium, mastoid processes, inion, protruding supra-orbital ridges, ruggedly everted gonial angles, and large long bones indicating a male individual. Stature is estimated at 1.63 m.

Burial	11
--------	----

Unit: 121R221 , Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 0.5 years
Position: Tightly flexed	Sex: Indeterminate

Description:

<u>Interment</u>: No discernible burial pit; inhumation was in Stratum C midden and immediately below plowzone; shovel excavation disturbed.

<u>Preservation</u>: Poor and fragmented, including 240 fragments and portions of left and right arms and hands, left and right innominate bones, and left and right femora and tibiae.

<u>Position</u>: Interred on right side and oriented to approximately 335° with the head pointed northwest; arms and legs tightly flexed at 0°.

Pathology: None observed

Anomalies: None

Discussion: Mandible, maxilla, and dental elements are absent. Age assessment is based on analogous long bone (femur, ulna, and radius) lengths of Arikara Indians ages 0.5 years (Merchant and Ubelaker 1977). The measurements of the Penitentiary Branch individual also correlate well with those of similar age assessment from Indian Knoll.

Burial 12

Unit: 124R221, Level 2	Burial Type: Primary?		
Number of Individuals: 1	Age: 40+ years		
Position: Tightly flexed	Sex: Female		

Description:

- <u>Interment</u>: No burial pit discernible; lower torso and legs of inhumation disturbed and commingled by intrusion of F-40.
- <u>Preservation</u>: Disturbed and fragmented; *Cranial*: 20 left and 18 right portions of frontal, parietal, and occipital bones: three fragments of left mandibular ramus; five fragments of right mandibular ramus with dentition. *Post-cranial*: 30 vertebrae and 72 rib fragments; left and right humerus, ulna, and radius; portions of femur; left and right tibiae and metatarsals.

<u>Position</u>: Interred on the back and oriented to approximately 63° with the head to the northeast⁷; arms tightly flexed (0°).

<u>Pathology</u>: Mandibular dentition heavily worn; dentin exposed to cervical necks of left P3, P4, M1, M2, M3 and right P4, M1, M2, and M3; pulp cavities exposed by attrition on buccal aspects of left M1, M2, and right M2⁸; massive resorption of alveolus; some

⁷ According to burial notes the head was turned at 180° to the axis of the body, facing south.

⁸ See Hodge and Davis (2013) for a discussion of potentially similar dental pathologies.

teeth held by apex of root; apical abscessing on buccal aspect of left M1 and right C1; advanced hypercementosis of dental roots. Osteoarthritis on phalanges. Anomalies: None

Discussion: Age assessment is based on the degenerative pathologies of dentition and osteoarthritis discussed above. Designation of the individual as female is derived from characteristics which include moderate development of the inion, supra-orbital ridges, and mastoid processes; and gracile bone development.

Burial 13

Unit: 121R221 , Level 2	Burial Type: Primary	
Number of Individuals: 1	Age: 5.5–6.0 years	
Position: Tightly flexed	Sex: Indeterminate	

Description:

<u>Interment</u>: Inhumation at base of oval shallow pit (F-92); underlying rock lined base; <u>Preservation</u>: Fragmentary but nearly complete.

<u>Position</u>: Interred on right side and oriented to approximately 54° with the head to the northeast; left arm flexed (69°) with hand terminating at left knee: right arm flexed (90°) with hand in abdominal region; left leg tightly flexed (22°); right leg tightly flexed (24°).
<u>Pathology</u>: None detectable

Anomalies: Bilateral Carabelli's cusps on left and right maxillary M1; cusp is distinct.

Discussion: Burial 13 was interred at the base of a shallow oval pit filled with shell-filled midden and lined with a layer of fire-cracked rocks; the inhumation underlay the rocks and rested within the subsoil. The pit diameter was 55 x 42 cm with a depth of 30 cm; depth from burial surface to base was 10 cm.

Both deciduous and permanent dental elements were recovered from Burial 13. The left mandibular M1's exhibit ¾ root development indicative of 5.5 years; 6.5 years is indicated by complete crown/cleft of the left and right mandibular M2's. An age assessment of 5.5–6.0 years was derived as a result of this combination of characteristics.

Burial 14

Unit: 121/124R227, Level 2	Burial Type: Primary
Number of Individuals: 1	Age: 50+ years
Position: Moderately flexed	Sex: Male

Description:

Interment: Interred in shallow, oval burial pit at the base of F-107.

Preservation: Well preserved and nearly complete.

- <u>Position</u>: Interred on left side and oriented to approximately 80° with the head to the south; right arm flexed (70°) with hand terminating at knees; left arm flexed and hand terminated at shoulder; both legs tightly flexed (30°); body in fetal position.
- <u>Pathology</u>: *Cranial*: Erratically worn dentition; maxillary dentition worn below cervical neck; pulp cavities of right maxillary M1 and M3 exposed by attrition; distal caries on occlusal surface of right maxillary M3; severe abscesses in apical regions of right mandibular M1, M2, and M3; massive resorption of alveolus; abscessing and alveolar resorption on buccal aspect of left M2. *Post-cranial*: T-VIII through T-XI and L-I through L-V exhibit distorted bodies and varying degrees of arthritic involvement; lipping on left lateral aspect of inferior margin of L-I; pronounced lipping on anterior superior margin and left lateral inferior margin of L-II; moderate superior margin lipping and pronounced lipping on inferior aspect of anterior margin of L-III; anterior superior aspect of vertebral body margin of L-V; osseous manifestations on radius, innominates, and phalanges.
 Anomalies: Multiple complete and incomplete supra-orbital foramina.

Discussion: The shallow, oval grave shaft of Burial 14 was excavated into the base and side of F-107, a rock and shell filled pit measuring 1.3 x 1.25 m in diameter and 0.29 m in depth. Burial fill was identical to the dark soil, rock, and shell-filled matrix of F-107. The depression containing the inhumation measured 30 x 54 cm in diameter.

Age determination of the individual is based on a dense diploë; persistent Pacchionian granulation along the sagittal suture (some large and deeply depressed); lightly depressed meningeal arterial network cranial sutures closed endocranially and ectocranially for the coronal, sagittal, and lambdoidal sutures; dental wear and deterioration; and osteoarthritic involvement (see pathology).

Characteristics which classify this individual as male are robust and well developed mastoid processes, supra-orbital ridges, and a slightly developed inion. The gonial angles are everted; the chin is square; and the mandible is rugged. The long bones are those of a robust individual whose stature was 163.5 ± 3.147 cm.

Duna	1.5
Unit: 118R227, Level 2	Burial Type: Primary
Number of Individuals: 1 Age: 5	
Position: Tightly flexed	Sex: Female

Burial 15

Description:

<u>Interment</u>: Inhumation within a depression of indeterminate shape or dimension which extends 0.1 m into subsoil; intruded by F-117.

- <u>Preservation</u>: Post-cranial elements well represented; cranial elements destroyed by F-117 intrusion.
- <u>Position</u>: Interred on right side and oriented to approximately 43° with the head to the northeast; left arm semiflexed (50°); right arm tightly flexed (0°) and drawn towards the chest; legs are tightly flexed approaching 0°.
- <u>Pathology</u>: Extensive arthritic involvement of distal aspect of left ulna or possibly traumatic fracture remodeling of bone; pronounced lipping of inferior and superior margins (extends 5–8 mm from original margin) of two vertebral body fragments; osteophytosis of anterior margins of superior and inferior aspects and compression and distortion of the body of two lumbar vertebra portions; osteophytic involvement of anterior margins of one thoracic vertebra.

Anomalies: Septal aperture of left humerus.

Discussion: A superior fragment of symphyseal face of the left innominate displays a deteriorated ventral border and a severely eroded face conforming to Phase X of pubic symphysis age changes (Todd 1920). In addition, extensive osteophytic involvement indicates an individual of 50+ years. Long bone measurements suggest height of 1.482 ± 0.38 m in height. The size of the femoral head; a small septal aperture on the humerus; and left and right innominate bones which display a deeply pitted preauricular sulcus and a deep wide sciatic notch are all indications of a female.

Burial 16

Unit: 121R227, Level 2	Burial Type: Primary		
Number of Individuals: 1	Age: 50+ years		
Position: Tightly flexed	Sex: Male		

Description:

- <u>Interment</u>: Somewhat indeterminate burial pit of indeterminate width but possibly rectangular shape 1.1 m in length and 0.2 m deep intruded by F-115.
- <u>Preservation</u>: Disturbed vertebra column by F-115 intrusion but good preservation; all elements recovered.
- <u>Position</u>: Interred on left side and oriented to approximately 337° with the head to the northwest; both arms tightly flexed (0°) and drawn to chest; both legs tightly flexed (0°) and drawn toward chest.
- <u>Pathology</u>: *Cranial*: Dentition of right maxillary C1 worn below cervical neck with pulp exposure from attrition; occlusal caries and mesio-distal wear of right P4; left maxillary P4 worn to and decayed within pulp cavity; apical abscess of M2; mandibular C1 pulp caries; P3 and P4 erratically worn; apical abscess of M2; right mandibular attrition of I1 and I2 below cervical neck; occlusal caries of C1; antemortem loss of P3, P4, and M1; severe hypercementosis of tooth roots. *Post-cranial*: Atlas, thoracic, and lumbar portions exhibit osteoarthritic involvement; osseous involvement of articular aspects of ribs; severe arthritic involvement of elbow and knee joints.

<u>Anomalies</u>: Left parietal foramen perforates vault; multiple complete and incomplete supraorbital foramina.

Discussion: Characteristics of an individual 50 years or older include: the coronal, sagittal, and lambdoid sutures are complete endocranially and ectocranially; dense diploë; Pacchionian granulation is moderate with occasional deep pitting; the meningeal arterial depressions are insignificant in depression; extensive toothwear and loss; bone remodeling; and pronounced post-cranial osteophytosis. A well-developed cranium, protruding supra-orbital ridges, large molars, a pronounced inion, large mastoids, a pelvis characteristic of a male, large long bones, and stature of 1.677 ± 0.28 m (based on tibia length) are indicative of a male.

Burial 17

Unit: 115R227, Level 2	Burial Type: Primary		
Number of Individuals: 1	Age: 6± years		
Position: Flexed	Sex: Indeterminate		

Description:

- <u>Interment</u>: No discernible burial pit; burial severely damaged by plowing; inhumation within Level 2 midden and subsoil. <u>Preservation</u>: Poor; fragmented and incomplete due to tilling disturbance.
- <u>Position</u>: Interred on left side and oriented to approximately 135° with the head to the southeast; left arm semi-flexed (90°); right arm flexed (50°); left leg flexed (40°); right leg flexed (45°).

<u>Pathology</u>: None observed on recovered fragmentary remains.

Anomalies: None observed

Discussion: The mandibular dm1 and dm2 are those of a 5.5 to 7.0 year old while the mandibular permanent molar development is that of a 6.0 to 6.5 year old.

Interpretation

The Penitentiary Branch site mortuary sample is relatively small (n=17), but provides valuable information pertaining to the behaviors of the site occupants. Moreover, it contributes additional comparative Late Archaic period mortuary data for the Southeast.

All of the Penitentiary Branch interments were articulated primary inhumations in a flexed position, resting primarily on the right or left side. Eleven individuals were tightly flexed, three were semi-flexed, two moderately flexed, and one indeterminate flexed. Body position showed no covariation in relationship to age, sex, or pathology. However, male (n=6) body orientation was northwest-southeast (n=5) or northeast-southwest (n=1); female (n=7)

orientation was northeast-southwest (n=4), northwest-southeast (n=1), and indeterminate (n=2) while children (n=4) were oriented in a variety of directions.

Criteria for age, sex, and stature estimates involved a variety of variables, however, those criteria established by Todd (1920), Hunt and Glesier (1955), Genovés (1966), and Trotter and Gleser (1952; 1958) were stressed. Age estimates indicate the average male life expectancy was approximately eight years greater than females. Age assessments for males range from 35-50+ years with a mean of 45+ years. Females range from 25–50+ years with a mean of 37+ years, while children range from 0.5-6+ years and a mean 4.2 years. In comparison, the mean ages of the Late Archaic population at the Late Archaic Robinson site were 29.4 years for males and 30.6 years for females (Morse 1967:135).⁹

Adult male stature ranged from 1.63 to 1.67 m with a mean 1.65 (n=6) (SD ± 1.63 cm); females ranged from 1.48 cm to 1.56 m with a 1.53 m (n=4) mean (SD ± 3.69 cm). On the basis of mean stature estimates, Penitentiary Branch males were 11.9 cm taller than females. Robinson site males and females were slightly taller with respective means of 1.67 and 1.54 m (Morse 1967:135).

Extensive tooth loss, wear, and caries were characteristic of the adult Penitentiary Branch population. This dental attrition may be partially attributed to a diet which included grit derived from such sources as bivalves. Morse (1967:135) noted similar dental attrition among the population at the Robinson site, which he attributed to this same cause. All of the Penitentiary Branch adult males and four of the older females exhibited various stages of osteoarthritic involvement. None of the skeletal remains exhibit evidence of trauma. Consequently, with the exception of Burial 9, the assumed primary causes of death were disease and age degenerative factors. The presence of at least three fetuses near the pelvic region of Burial 9 indicates cause of death may be related to pregnancy complications.

No grave goods were associated with any of the Penitentiary Branch site inhumations. Two eastern box turtle tibiae associated with fetal elements of Burial 9 were unmodified and are not believed to represent a cultural inclusion. The absence of grave furniture is unusual in comparison to the evidence of utilitarian, ceremonial, and exotic artifacts which accompanied burials from Late Archaic cemeteries at the nearby Robinson site, the Indian Knoll site in Kentucky, and the Eva and Cherry sites on the Lower Tennessee River. The percentage of burials accompanied by grave goods at these sites was less than 50 percent. For example, 37 percent of the Eva and 40 percent of the Cherry site (Magennis 1977) burials included grave offerings, while 21 percent of the Robinson site burials were accompanied by associated artifacts. An additional dissimilarity was the absence of dog burials at Penitentiary Branch. Those canid elements that were recovered are described in Chapter IX.¹⁰

Other than body orientation, no mortuary patterning was evident. With the exception of

⁹ See Deter-Wolf (2004); Deter-Wolf et al. (2004); and Hodge and Davis (2013) for additional data on Archaic skeletal populations from the Cumberland River Valley. ¹⁰ See Peres et al. 2013; and Fleming 2006 for additional discussion of Archaic dog burials in the Cumberland River Valley.

the slightly isolated Burial 17 (see Figure 7), males, females, and children were interred without differential treatment in an area measuring approximately 12 x 12 m that may perhaps represent an intentional cemetery grouping. While human skeletal remains provide skeletal, mortuary, and demographic data regarding the Penitentiary Branch site, the exact number of interments present at this location prior to historic agriculture and road construction cannot be positively ascertained.

VII. CHRONOLOGY

Material collected for radiocarbon dating from unit levels and features at Penitentiary Branch consisted of charred wood and nutshell. Six samples comprised primarily of carbonized wood fragments were submitted to the University of Georgia and Geochron Laboratories for radiocarbon assay. Each reported carbon date was corrected on the basis of dendrochronological calibrations established by Damon and colleagues (1974).¹¹

Sample	Feature	Unit	Level	C-14 Age BP	Corrected Age BP	Calibrated Age BC
GX-8584	91	127R224	2	2975±145	3211±277	1261
UGA-1628*	94	121R224	2	3185±165	3478±336	1528
UGA-1627*	10	133R197	3/4	3050±140	3307±293	1357
GX-8583		136R231	6	2370±205	2453±221	503
UGA-1626*		133R224	7	3375±345	3727±493	1777
GX-8582		136R230	11	3600±195	4021±464	2071

Table 1. Radiocarbon dates from the Penitentiary Branch site.

* Originally reported in Cridlebaugh 1981:4

Samples GX-8582, UGA-1626, and GX-8583 consisted of charred wood and nutshell fragments collected from stratified layers exposed in the profiles of units excavated within the midden-filled erosional gully. Each of the major stratified layers was comprised of varying concentrations of bivalves and midden sediments (Chapter IV).

Sample GX-8582 was collected from one of the lowermost cultural strata, Stratum L (Level 11) of Unit 136R230. This zone, which underlay a layer of bivalve shell and fire-cracked rock, was comprised of yellow-brown clayey soil mixed with large rocks, charcoal and shale fragments, bone, and lithic debris. An uncorrected radiocarbon determination (BP) of 3600±195 confirms this as the earliest depositional zone at the site.

Sample UGA-1626 returned a date of 3375±345 BP from Stratum H (Level 7) one of the earlier depositional layers within Unit 133R224/227. The matrix of this lens was comprised of a dense concentration of mussel shells and gastropods, dark grayish brown clayey silt loam, bone, chert, and charcoal fragments.

Sample GX-8583 presented an incongruous date of 2370±205 BP for Stratum G, Level 6, Unit 136R231. The two earlier dates discussed above, the depositional sequence of Stratum G, and dates from levels discussed below suggest this date is unreliable. Level 6 was comprised of dark gray silt loam with quantities of fire-cracked rock, mussel, shell, bone, lithic material, and small patches of buried clay.

¹¹ See Peres and Deter-Wolf (2016) for a re-examination and INTCAL-13 calibration of radiocarbon dates from Penitentiary Branch, Robinson Shell Mound, and other shell-bearing Archaic sites throughout the Cumberland River Valley.

Sample UGA-1627 returned a date of 3050±140 BP for carbonized wood and nutshell from Feature 10, Level 3 (Stratum C). This feature was a hearth or fire pit with a surface rock concentration. The fire pit, directly underlying the rock concentration, was filled with four layers of ash thus indicative of successive firing. The pit walls and base exhibited red-orange discoloration indicative of oxidation. A Category 3 (Big Sandy) projectile point was recovered from one of the ash lenses.

Sample UGA-1628 was recovered from Feature 94, a large circular pit which had been capped with a layer of fine sandy light brown soil with large pieces of charcoal. The fill above and below this layer was comprised of blocky limestone, chert, burned and unburned mussel shell, bone, lithic debitage, and charcoal. Charcoal, derived from the lower half of the pit, was dated at 3185±165 BP.

Sample GX-8584 was recovered from Feature 91, a circular pit which exhibited oxidation on the interior walls, and a base lined with large fire-cracked rocks and limestone. Fill consisted of dark brown clayey soil mixed with scattered fire-cracked rocks, mussel shell, bone, lithics, and charcoal. The radiocarbon assay of 2975±145 BP also provides a date for cucurbit remains identified in feature sediments.

A mean date of 3093 BP may be derived from the radiocarbon determinations. With the exception of the 2370 BP date, all remaining assays appear to complement the archaeologically interpreted sequence of deposition, and yield a mean date of 3237 BP. Radiocarbon analysis therefore suggests the site was utilized for approximately 625 years from 3600 to 2975 BP. These dates, which compare favorably to those from the Robinson site (Morse 1967:143), place Penitentiary Branch in the Late/Terminal Archaic period, with Penitentiary Branch settlement only about 400 years earlier than Robinson.

VIII. PALEOENVIRONMENTAL EXPLOITATION PATTERNS: PALEOBOTANICAL DATA

Time transgressive pollen diagrams have provided the evidence for paleoenvironmental reconstructions which document dramatic changes in the regional distribution of forest types in the Southeastern United States (Delcourt and Delcourt 1981). On the basis of palynological analyses (Delcourt 1979; Delcourt and Delcourt 1981) the Penintentiary Branch areal forest vegetation from 25,000 to 200 yr BP can be extrapolated. The study area was dominated by jack pine-spruce forests at 25,000 and 18,000 BP. By 14,000 BP, during the later glacial and the onset of the Laurentide retreat, vegetation was primarily spruce-jack pine.

The increase in Holocene temperatures and precipitation forced the dramatic replacement of the spruce-jack pine forest by Mixed Mesophytic forest taxa at approximately 10,000 BP. Continued climatic change resulted in a predominantly oak-hickory forest with remnant mesophytic species by the year 5000 BP. Around that time, the mixed mesopytic forest retreated to the east forming the dominant vegetation of the Eastern Highland Rim. This pattern of oak-hickory forest in the outer Nashville Basin and Mixed Mesophytic taxa on the Highland Rim persisted and formed a regional forest interspersed with cove hardwoods or remnants of mixed mesic forest growing in favorable moist forest habitats such as low terraces, ravines, and gorges dissecting the hills and bluffs. The forests of the Penitentiary Branch locale during the approximate 4500 to 2700 BP site occupation, therefore, were dominated by oakhickory species intermixed with Mixed Mesophytic taxa.

The Archaeobotanical Sample

Major quantities of archaeobotanical samples (n=145) were systematically recovered from features and excavation levels during the Penitentiary Branch site excavations. These 9.5liter sediment samples were collected primarily from features (n=130). Due to extremely cold water temperatures during field excavations, the preferred flotation method of immersing each sample in a reinforced mesh-bottomed tub within free running water (Struever 1968) could not be conducted. Instead, samples were stored in plastic collection bags and subsequently performed in a laboratory setting utilizing running tap water and a small barrel-type flotation device (Watson 1976). Initial attempts at flotation revealed that the extensive bivalve and gastropod remains within the soil matrix hampered and/or prevented recovery of charred plant debris. To alleviate this problem, sediment samples were dry screened through 6-mm hardware mesh, thereby removing all shell greater than 6-mm. Nevertheless, extensive amounts of fragmentary shell (approximately one third of the matrix volume) continued to suppress the flotation of charred plant fragments, and shell and rootlets obscured/contaminated those that floated to the surface. Ultimately as a result of these issues and both time and financial restrictions, approximately 50 percent (n=70) of the collected samples were processed.

Laboratory Analyses

Laboratory analysis of the carbonized nutshell, seed, and fruit material was conducted by Cridlebaugh, while the wood charcoal was identified by Andrea Shea. Comparative collections for wood charcoal and seeds were employed as identification aids in conjunction with reference literature (Martin and Barkley 1961; Panshin and de Zeeuw 1964). Each paleoboanical sample was dry sifted through a series of U.S. Standard screens with mesh sizes of 2 mm, 1 mm, and 500 microns. Material with diameters greater than 2 mm was sorted by genus and species, and the weight of each plant taxon was determined for each sample. The remaining sieved fractions were examined for seeds, fruits, and cucurbit fragments. Each fraction was examined at 7X–30X magnification with a binocular microscope. Identified wood charcoal, nutshell, and seed and fruit remains were counted and the total weight or number of specimens for each sample was calculated.

Results

The sample of carbonized woods, nutshell, fruits, and seeds consists of 37 taxa, including four species represented by the nutshell, 22 species identified from the wood charcoal, and 17 species of seed and fruit remains. Provenience and quantification of plant tax categorized by habitat are presented in Appendices D, E, and F.

While certain plant species may occur within several habitats, the approach employed in the evaluation of carbonized plant macrofossils from Penitentiary Branch places each plant taxon in the context of the habitat with which it is most typically associated. Bar graphs of taxa categorized by habitat facilitate interpretation of exploitation strategies (Figure 15). Habitat requirements were derived from Radford et al. (1968) and Harrar and Harrar (1962). Plant genera represented by carbonized seeds and fruits are assigned to bottomlands, disturbed uplands, while cultivars and cultigens including taxa such as maygrass (*Phalaris caroliniana*) are placed in lower mesic terraces/bottomlands (Asch and Asch 1977, 1978; Cowan 1978; Harrar and Harrar 1962; Martin and Barkley 1961; Reed 1971).

Wood Charcoal

Approximately 27 percent of the wood charcoal specimens (n=1,545) is comprised of unidentifiable wood (see Appendix D). The greatest representations of taxa identified to genus or species are ash (*Fraxinum sp.*) at 19.3 percent, red and white oak (*Quercus spp.*) at 17.0 percent, honey-locust (*Gleditsia triacanthos*) at 7.8 percent, and hickory (*Carya spp.*) at 6.7 percent. Although taxon from bottomland, mesic upland, and xeric upland habitats were exploited, the most extensive exploitation was of genera from bottomlands (52.4 percent; n=559), and mesic uplands (31.5 percent; n=336). A relatively high species diversity (n=11) characterizes the bottomland habitat which was most extensively exploited. It is also noteworthy that few arboreal disturbance indicators (n=2) are represented and comprise merely 0.4 percent of the total or 0.7 percent of the sample identified to taxon.

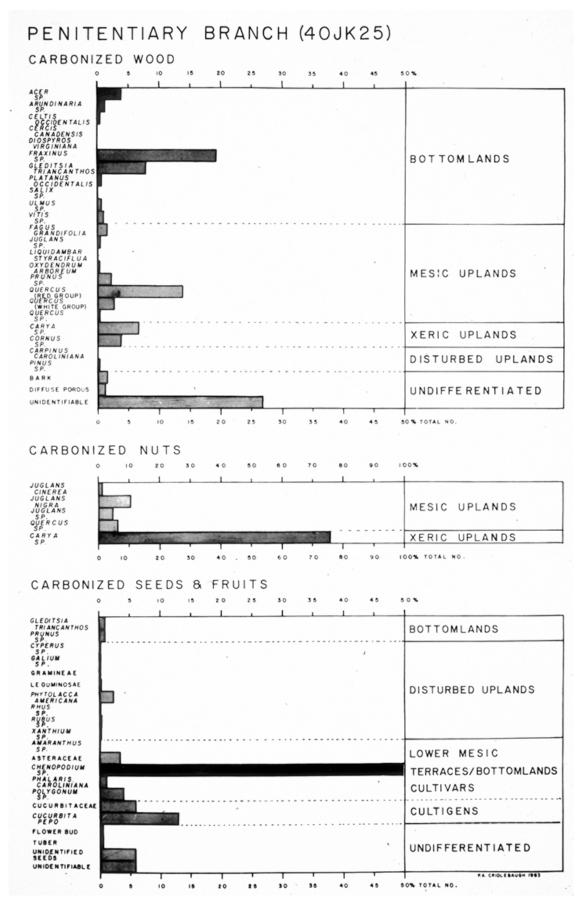


Figure 15. Percentages of carbonized wood, nutshell, seeds, fruits, and associated species habitats.

Carbonized Nutshell

Carbonized nutshell is tabulated by feature and habitat in Appendix E. Hickory nutshell (*Carya spp.*), which is most commonly associated with a mesic uplands habitat, represents 76 percent (40.091 g) of the sample The remaining 24 percent is derived from mesic upland walnut, including *Juglans cinerea* (1.4 percent; 0.743 g), *Julans nigra* (11.2 percent; 5.841 g), *Juglans spp.* (5 percent; 2.682 g), and acorn (6.4 percent; 12.607 g).¹²

Carbonized Seeds and Fruits

A total of 353 whole and fragmentary seed and fruit remains were recovered (see Appendix F). Eight-seven percent (n=307) were identifiable to genera or species. Of the identified specimens, 3.6 percent (n=11) are derived from arboreal and herbaceous bottomland taxa; 5.2 percent (n=45) are weedy herbaceous taxa characteristic of disturbed land. The greatest number of nonarboreal plant remains are representative of cultivars (n=176; 70 percent) and cultigens (n=65; 21.2 percent), and are derived from lower meric terrace/bottomland habitats. Goosefoot (*Chenopodium spp.*) represents 81.9 percent of the cultivars or 49.9 percent (n=176) of the total carbonized seed simple.

Squash (*Cucurbita pepo*) is the only cultigen recovered from Penitentiary Branch. The 65 fragments, comprising 21.2 percent of the identified seeds and fruits, were recovered from 17 features and three excavation unit levels. Four Cucurbit fragments were from Level 7, suggesting squash was associated with the Penitentiary Branch site occupation at least as early as 3375 BP.

Interpretation of Plant Exploitation

Plausible subsistence and economic potential of the nuts, seeds, fruits, and the plants they represent can be inferred from ethnographic sources and archaeological occurrence (Yanovski 1936; Yarnell 1974, 1976). Nutshell, seeds, and fruits are presumed to represent prehistoric food resources. That 91.2 percent of the identified seed and fruits remains from Penitentiary Branch are cultivars or cultigens supports this presumption. Wood was utilized for fuel, construction material, tools, and containers. The percentage of each genus within the above plant categories is assumed to reflect prehistoric utilization as well as the variables of deposition, preservation, recovery, and identification (Begler and Keatinge 1979; Ford 1979; Minnis 1981; Munson et al. 1971; Yarnell 1982).

The Archaic period inhabitants of Penitentiary Branch exploited plant taxa native to bottomlands, lower mesic terraces and uplands, xeric uplands, and disturbed habitats. Nutshell percentages in particular suggest xeric uplands were important for the procurement of hickory nut food. However, charred wood and both seed and fruit indicate that primary exploitation

¹² Weights in this section reflect recalculation of data tables; see Appendix E.

was of taxa occurring in bottomland and lower mesic terrace/upland habitats. The paleobotanical data and its application to specific habitats indicate that the Penitentiary Branch occupants procured plant material from bottomland, terrace, and upland habitats within the site locale. Primary exploitation of plant resources was within the immediate vicinity of the immediate occupation area along the lower river terraces. Exploited arboreal taxa are also indicative of an oak-hickory forest heavily interspersed with mixed mesic genera such as maple, ash, beech, and dogwood.

Despite the fact that Penitentiary Branch is the first Cumberland River site where squash has been recovered from a Late Archaic context,¹³ perhaps the most significant information derived from the paleobotanical data pertains to the paucity of disturbance indicators. Only 0.7 percent of the wood charcoal and 5.2 percent of the carbonized seeds and fruits represent arboreal and nonarboreal taxa which commonly invade disturbed land. Less than 1 percent (n=5) of the wood charcoal is pine (*Pinus spp.*). The indication is therefore that within the vicinity of the Penitentiary Branch site prehistoric occupation and land use had not been sufficient to encourage the growth of secondary, disturbance species.

¹³ An earlier *Cucurbita pepo* rind and seed were subsequently recovered along the Harpeth River from Middle Archaic levels at the Anderson site (40WM9)(Crites 1991:72).

IX. PALEOENVIRONMENTAL EXPLOITATION STRATEGIES: THE FAUNAL DATA

Emanuel Breitburg

The Penitentiary Branch site was situated within the upper reaches of the Nashville Basin and at the west base of the Eastern Highland Rim (Fennemen 1938). From 29–40 km to the east of the site is the escarpment of the Allegheny/Cumberland Plateaus. The site, moreover, was located within the tulip-deer-oak faciation at the southern terminus of the northern temperate deciduous biome (Shelford 1963:36). The rather unique location of the site and the recovery of over 27,000 bone and shell specimens therefore provide an excellent opportunity to examine the animal exploitative strategies of Late Archaic lowland/plateau hunter and foragers occupying a seasonal encampment along the Cumberland River. The density of cultural debris and the superimposition of features suggest that extensive procurement, consumption, and disposal activities were conducted at the site. These activities included stone, bone, and wood manufacture, plant and animal food processing, and mortuary activities.

In spite of impediments such as previous site destruction, the salvage nature of the excavations, and excavation/recovery problems (see Chapters I and III), a subassemblage of 10,600 vertebrate and 16,600 bivalve specimens were recovered from the unit levels and subsurface disturbances within a 378-m² excavation (Appendix G). Dr. Paul Parmalee, Department of Anthropology, University of Tennessee, provided assistance in identifying some of the faunal remains, while Patricia Coats of the Tennessee Division of Archaeology assisted in the tabulation of faunal remains from Penitentiary Branch. This material represents one of the most comprehensive collections of faunal remains from a Late Archaic site along the Cumberland River, and provides a comprehensive representation of the animal procurement and animal utilization activities at the site.¹⁴

Methods and Objectives

The methods employed to assess the faunal material involved the categorization of each specimen as identifiable or indeterminate mammal, bird, reptile, amphibian, fish, or bivalve. Each specimen was classified according to species, and if possible by element, anatomical position (i.e., left or right), and whether the specimen exhibited butchering cuts or modification. Notes pertaining to each species were recorded in a faunal inventory (on file, Tennessee Division of Archaeology) according to excavation unit, level, midden, and feature

¹⁴ For recent examinations of Archaic faunal assemblages in the Cumberland River Valley, see Deter-Wolf 2013; Deter-Wolf and Moore (2015); and Peres et al. (2016)

affiliation. The inventory was employed to generate a table of the frequency of skeletal portions for each occupational level and by each identifiable taxon. The tables of frequencies for skeletal portions were employed to determine the minimum number of individuals (MNI) represented for each species and identified for each level. The number of fragments of identified species, indeterminate remains, and MNI associated with each level is summarized in Appendices G and H.

Analysis of the faunal remains was oriented toward identifying the animal species used by site occupants, assessing the skeletal composition of represented species, assessing the MNI of identified species, and calculating the potential meat yield of edible species. Additional objectives of the analysis involved establishing a model of butchering strategies of various utilized species, and establishing a model of bone implement manufacture and utilization. The most significant objective of the analysis was to evaluate subsistence variety and econiche breadth (Hardesty 1977:109–120). Subsistence variety or the number of resources to the inhabitants' subsistence economy provides a measure of adaptability of site occupants to local resources and surrounding environmental zones. Subsistence variety was examined from the standpoint of quantity (meat yield estimates and dietary ratios), temporal variety (seasonality of site occupation and the seasonal procurement strategies of site occupants), and spatial variety (the environmental zones exploited by site occupants and the importance of these zones to the subsistence economy).

Distribution of Faunal Remains

Archaeological investigations recovered more than 27,208 specimens of vertebrate and invertebrate remains. The analysis, however, was limited to a sample of 27,208 specimens. The distribution analysis of examined faunal remains was limited to the vertical (i.e., diachronic) distribution of the material. Vertebrate remains were primarily associated with Levels 1 through 4 deposits (80 percent [*n*=8,480]). The remaining specimens were derived from the first seven levels of occupation (Levels 11 through 5). Of the 10,600 vertebrate specimens, approximately one half were derived from feature context and the other half from midden deposits. Bivalve fragments account for 16,608 specimens, and about 80 percent (*n*=13,233) of this material was associated with the last four levels of occupation (Levels 4 through 1). Seventy percent or 11,577 specimens were recovered from two separate 1 x 1 m sampling units placed in a filled gully possibly used as a shell dump. These units were located adjacent to grid coordinates 131R231 and 136R233. No bivalve utilization is indicated for the first three levels of occupation (11 through 9). Although gastropods were recovered during site excavation, analysis of shell was limited to vertebrate and bivalve species only.

Based on fragment counts alone, the peak of site activity occurred between Levels 2 and 4. These levels account for 75 percent (n=20,481) of all remains. The frequency and concentration of the vertebrate and invertebrate remains suggests that site occupants initially

were oriented toward the procurement of large vertebrates such as white-tailed deer, elk¹⁵, black bear, and turkey. The large quantity of molluscan material implies that shellfishing eventually became a major activity at the site. Molluscan utilization, however, does not become prevalent until the eighth level of occupation and continues to increase in quantity until the fourth occupational level, after which there is a moderate decrease in recovered specimens. Based on the vertical distribution of the faunal remains, the period of greatest activity was documented for levels 2 through 4.

The vertical distribution of the remains implies that the site was initially a hunting camp for large game mammals and birds (i.e., turkey) and a later source of bivalves and gastropods. The absence of bivalves in the earliest levels of occupation suggests limited use, if any, of the phylum. The later appearance of large quantities of molluscan remains may possibly indicate a concomitant development of bivalve habitat at the confluence of the Cumberland River and Penitentiary Branch, and site processing activities that enriched the organic quality of adjacent aquatic habitats, allowing molluscan populations to thrive.

Species Composition

Classification and tabulation of the 27,200 specimens recovered during 6-mm and 12mm waterscreen processing recorded a total of 75 orders, families, genera, and species (see Appendices G and H). Vertebrate remains account for 39 percent (*n*=10,600) of the material and were keyed to taxa in 3,488 cases (about 13 percent identifiable). A total of 19 mammal species representing 125 individuals were identified. These include white-tailed deer, the most frequently identified species with 2,540 specimens (9.3 percent of the total remains) representing 59 individuals. Other mammal remains were identified as human, elk, bobcat, bear, striped skunk, mink, raccoon, gray fox, domestic dog, gray wolf, porcupine, beaver, gray squirrel, woodchuck, chipmunk, rabbit, and opossum. The 246 fragments representing these species account for less than 1 percent of all remains.

Avian species are represented by five species and one genus. A total of 142 specimens (about 0.5 percent of all remains) were identified as raven, barred owl, turkey, red-tailed hawk, Cooper's hawk, and an indeterminate species of duck. A total of 20 individuals represent these species. Reptilian remains account for seven families, genera, and species of snakes and turtles. A total of 489 (1.8 percent) specimens represents 35 individuals identified as poisonous and non-poisonous snake families, eastern snapping turtle, possibly red-eared slider, painted or map turtle genera, eastern box turtle, snapping turtle, and spiny-softshell turtle. Amphibian remains are represented by 27 specimens and at least three individuals keyed to bullfrog and indeterminate frog and/or toad species. Piscine remains are represented by 44 specimens and

¹⁵ Although elk are identified as comprising a significant portion of the faunal material from Penitentiary Branch, these animals are otherwise entirely absent from Archaic faunal assemblages in the Cumberland River Valley (see Deter-Wolf 2013; Deter-Wolf et al. 2004; Dowd 1989; Morse 1967; Peres et al. 2016). Pending reanalysis, the identification of elk in this context should be regarded skeptically.

18 individuals, and account for two families, two genera, and three species. Catfish remains were identifiable in 14 cases, drum in 11 cases, river redhorse or redhorse species in 13 cases, sucker family in three cases, and garfish in a single case.

Indeterminate vertebrate remains of mammals account for 6,481 specimens or about 24 percent of all recovered remains. Indeterminate bird remains represent 333 pieces (1.2 percent), and reptiles account for 224 specimens or less than 1 percent of all remains. Amphibian and fish remains were indeterminate in two and 72 cases, respectively.

Molluscan specimens were identifiable to species or genus in 16,608 cases. The bivalve material accounts for 61 percent of all observed remains and was keyed to one genus and 33 species (see Appendix H). Of the 16,600 recorded bivalves, representing 9,062 individuals, *Pleurobema spp.*, dromedary mussel (*Dromus dromas*), Mucker (*Actinonaias ligamentina carinata*), spike (*Elliptio dilatata*), and *Dysnomia spp.* account for 4,902 (10.5 percent), 2,857 (10.5 percent), 2,752 (10 percent), 2,680 (10 percent), and 2,465 (9.0 percent) specimens, respectively, of all examined molluscan remains.

Accounts of Species

<u>Mammals</u>

Zooarchaeologists who study prehistoric site faunal assemblages and subassemblages within the eastern deciduous forest have unquestionably demonstrated that the white-tailed deer was the single most important exploited species. The analysis of the recovered faunal remains from Penitentiary Branch continues to support this observation. Deer remains account for the most numerous identifiable remains and the greatest number of individuals. Among the 2,540 identifiable specimens, fetal, neonatal (newborn), juvenile, and adult remains account for 58 individuals. The MNI was determined independently for each level (see Appendix I). The elements employed to ascertain the MNI varied with the frequency of represented skeletal remains. The total MNI was determined by summing the MNI for each level. It is assumed that the presence of natural stratigraphy and the absence of intrusion from succeeding levels of occupation justify using this approach to determine the MNI.

The skeletal composition of deer remains demonstrates that antler and cranial remains account for 27.4 percent (n=695) of the material, while postcranial remains of the vertebral column and thoracic region, forequarter, hindquarter, undifferentiated metapodial remains, and undifferentiated phalangeal and sesamoid fragments respectively account for 10.3 percent (n=261); 17.8 percent (n=451); 27.3 percent (n=694); 6.5 percent (n=165); and 9.2 percent (n=233). Approximately 7 percent of the remains display cut marks (n=184) and about 7 percent (n=174) exhibit modification resulting from implement manufacturing procedures or tool use.

Exclusive of white-tailed deer and human remains, all other identified mammal species were sparsely represented among the levels of occupation. The remaining identified mammals listed in Appendices G and H account for 209 specimens. These specimens represent 8.0, 2.0,

and less than 1 percent of all mammal remains, all vertebrate remains, and all remains, respectively. Although most of the species are common to the region both in prehistoric and historic times, porcupine is a notable exception.

The recovery of two portions of porcupine maxilla from Level 3 and a left calcaneum from Level 4 provides the first known record of the species in Jackson County. Evidence of the species occurring in the southern United States was reported by Parmalee (1963:267–268) and Parmalee and Guilday (1966:81–82), who reported the species as present in Pleistocene cave deposits in Tennessee and Late Archaic/Early Woodland deposits in Tennessee and Alabama. Hall and Kelson (1959) listed the eastern half of Tennessee as the most southern distribution of the species, but no living specimens had been recorded for the state. Parmalee has suggested that the species was probably never common and was exterminated by Indigenous inhabitants in marginal areas of its range. The other alternative is that the species was present during European settlement of the region and logging and agricultural activities may have contributed to their extirpation from the area.

<u>Birds</u>

Of the five species and one genus of identified avian remains, turkey was most commonly represented by both MNI and number of represented specimens. The species was associated with all levels of occupation. Of the 142 bird fragments, turkey remains account for 136 pieces. Duck species are represented by a single fragment, a coracoids, recovered from Level 1. Two species of hawk, red-tailed hawk and Cooper's hawk, were identified in Levels 1 and 2, respectively. Both species are represented by tarsometatarsi. A left femur shaft recovered from Level 1 was identified as barred owl. The most unusual species identified as the raven. A left distal carpometacarpal was recovered from Level 4. The species more commonly frequents the southern Appalachian mountains today and prefers high cliffs or well-shaded crevices as nesting sites.

Reptiles

Of the 489 specimens identified to the reptile class, 393 specimens (80 percent) represent the eastern box turtle. The species was identified as present in all levels of occupation. Specimens of spiny-softshell turtle (n=49) were recovered from all levels of occupation except Levels 7 and 11. Thirty-one fragments of turtles of the map and/or painted turtle genera were recovered from Levels 2 and 3. Snapping turtle is represented by a single modified costal fragment recovered from Level 2. Vertebrae of poisonous snakes and nonpoisonous snakes were recovered from Levels 3 through 5 and Level 11.

<u>Amphibians</u>

The only identifiable species of the amphibian class was bullfrog. The identified specimens were associated with Levels 2 through 4. Other amphibian remains identified as frog and/or toad genera were recorded for Levels 2 and 4. A total of 21 of the 27 recorded

specimens were classified as frog and/or toad genera, while the other six specimens represented bullfrog.

<u>Fishes</u>

Forty-four specimens of identifiable fish were recovered from Levels 2 through 8. Drum, catfish, suckers, and gar are represented by cranial elements. Suckers prefer deep and swift waters running over gravelly riffles of small and medium-sized rivers. They are intolerant of silt and turbid waters. Drum prefer turbid waters over a bottom of mixed sand and silt. Adults feed on mollusk. Catfish are most abundant in clear fast-flowing water with a bottom composed of sand and gravel in medium and large rivers. The presence of the species suggests that site inhabitants procured fish in several different types of aquatic zones.

<u>Bivalves</u>

Of the 33 species of identified bivalves (Appendices G and H), dromedary mussel, Mucker, spike, *Pleurobema cordatum pyramidatum*, and *Dysnomis propinqua/sulcata* were the most commonly identified species. These species account for a little more than one half of the examined invertebrates. Almost all the species recorded in the sample are considered riverine species and are common in larger river systems. Almost all identified species may be found in water depths ranging from 30 cm to 91 cm, and most prefer a strong current and a substrate composition of gravel or gravel and sand. It is likely that the represented species were recovered from a single habitat which was probably located near the site. The large quantity of bivalves associated with the deposits suggest that shellfishing was a major activity at the site. The most likely period of collections would have been during the summer and fall when river depths are low, facilitating access to shellfish beds.

Butchering Strategies

Only a single species, white-tailed deer, provides a large enough sample to discern the methods employed during the butchering of animals. Judging from the frequency of the recovered deer remains, the entire carcass of the animal was processed at the site for hides, meat, and bone. Specimens bearing marks indicative of butchering procedures or hide removal appeal on examples of three cranial and mandibular remains and 181 postcranial remains. The marks may be easily discerned as incised lines at strategic points of the skeleton to remove skin and flesh and to disarticulate the carcass into smaller portions for distribution. Cut marks were located on a drawing of a deer skeleton (Figure 16) to determine the areas treated during the butchering process.

Cranial and mandibular remains displaying cut marks consist of an occipital portion, a calvarium of a doe recovered from Feature 94, and a portion of a ramus. The recovered doe calvarium exhibits a series of cuts on parietal bones, frontal bones, and at the site of the nuchal

attachment of the occipital protuberance (cut no. 1).¹⁶ Marks appearing on the occipital portion were observed along the medial aspect of the condyle. The mandibular specimen exhibits a cut along the lateral aspect of the ascending ramus (cut no. 3). These cuts suggest that the head was defleshed and/or skinned. Marks appearing on the occipital portion indicate that the head was removed by treating the ligament attachments at the occipital condyle, while the doe calvarium indicates that further treatment or alternative treatment of the nuchal attachment was also practiced to detach the head from the carcass.

The observation of postcranial remains demonstrates that the carcass was cut into portions at a number of different points and stripped of meat. Eighteen specimens of atlas (n=4), axis (n=6), other cervical (n=1), thoracic (n=2), and lumbar (n=1) vertebrate and ribs (n=4) bear evidence of butchering procedures relating to the treatment of the neck, back, and rib cage.

Observations of atlas vertebrae indicate that the ventral, dorsal, and lateral aspects of the element were treated (cut nos. 2, 4, and 5). Cuts appearing in these areas imply the lateral ligaments of the atlanto-occipital ligament were severed to release the head at the parmastoid processes and the funicular part of the nuchal ligament was cut to release the head at the dorsal aspect of the neck. Cuts appearing along the ventral aspect also aided the head removal procedure. Another alternative point to release the head from the neck involved treatment of the axis vertebra. Cuts appear along the dorsal and lateral aspects of the four examined axis vertebrae. These cuts suggest that the ventral atlanto-axial ligament and dorsal interspinous ligament were alternative or collateral methods of head removal (cut nos. 6 and 7). Treatment of the cervical vertebrae is evident in a single case (cut no. 8). The element exhibits a cut across the base of the dorsal spine. This possibly indicates that the spinous ligament was cut and also implies that the neck was separated from the rest of the carcass or sectioned into smaller pieces.

Specimens bearing cuts on thoracic elements indicate that both thoracic vertebrae and ribs were treated during the butchering process (cut nos. 20, 21, 22). Cuts appearing along the thoracic spinous process in two cases suggest that the back may been defleshed, while an element with a cut along the ventral aspect of the body may indicate that the vertebral column was sectioned into smaller pieces for removal of the thoracic viscera. In three cases cut marks on the lateral aspect of rib shafts and along the proximal aspect of one specimen suggests that the sides of the thoracic cage were defleshed and the ribs disarticulated at the proximal aspect.

Evidence of butchering appears on one example of a lumbar vertebra. The specimen exhibits a cut along the ventral aspect of the body, implying that the abdominal viscera were removed (cut no. 23).

¹⁶ All cut mark numbers refer to Figure 16.

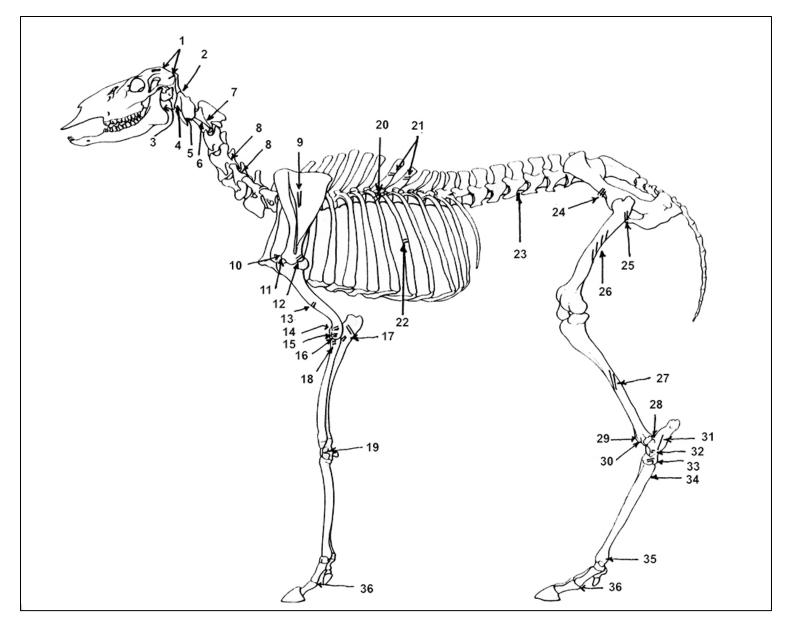


Figure 16. Locations of cut marks on deer bones.

Forequarter remains of the scapula, humerus, radius, ulna, carpus, metacarpus, and phalanges exhibit marks in 82 cases. Cuts appearing on scapulae suggest that the element was treated along the dorsal and ventral aspects of the blade, the neck, within the region of the glenoid rim and its respective tubercle. Many of the specimens exhibit a variety of these cuts. The cuts imply that the scapula as defleshed (cut no. 9) and separated at the distal aspect by treating the ligament attachments (cut nos. 10, 11, and 12). Twenty-five specimens of humeri exhibit cuts along the deltoid crest (cut no. 13), cuts across the anterior fossa of the distal aspect (cut no. 16), and cuts at the medial and lateral epicondyles (cut nos. 14 and 15). These cuts suggest that the element was separated from the forequarter by cutting the origins and insertions of muscles and ligaments at the anterior, medial, and lateral aspects.

Twenty-six specimens of radius elements exhibit cuts along the anterior, medial, and lateral aspects, below the proximal articular rim. These cuts indicate that site occupants separated the element from the forequarter by treating the long medial ligaments, and the insertion of the biceps brachii and brachialis muscles (cut no. 18). Collateral treatment appears on 12 specimens of ulnae. Cuts were observed along both the lateral and medial aspects of the proximal extremity (cut no. 17). These cuts sever the lateral and medial ligaments of the elbow. All of the cuts relating to the distal aspect of the humerus and proximal aspects of the radius and ulna serve to separate the forequarter at the elbow. In ten cases cuts were observed along the proximal extremity of the metacarpus. The cuts, appearing along the medial and lateral aspects, serve to remove the low part of the limb (cut no 19). Finally, cuts observed on undifferentiated phalanx fragments suggest that first and second phalanges were, on occasion, cut along the ventral aspect (cut no.6). These cuts indicate that the phalanges were removed by severing ligaments at the ventral and proximal aspects.

Hindquarter elements exhibit cuts on pelvic, femoral, tibial, tarsal, metatarsal, and phalangeal remains in 80 cases. In two cases cuts appear along the depression for the rectus femoris tendon (cut no. 24) and in two cases cuts appear along the ischial fragments. These cuts imply that the hindquarter was released from the carcass by cutting the tendon of the rectus femoris in some cases. The cuts appearing along the ischial specimens may suggest that the hindquarter was also released by treating the origins of muscles and ligaments. Femoral elements exhibit cuts in three cases (cut nos. 25 and 26). The knife cuts run along the entire anterior and posterior sides of the shaft, indicating the element was defleshed. Ten tibial elements display cuts along the shaft (cut no. 27). As in the case of femoral specimens, tibial specimens also indicate that the shaft was stripped of meat. Cuts also appear along the medial malleolus of the distal extremity of nearly all of the tibial specimens. These cuts indicate that the medial ligaments that articulate the ankle were cut to separate the lower leg from the tarsal complex (cut nos. 29 and 30). Central and fourth tarsal (n=2), astragali (n=30), and calcanea (n=26) indicate that the ankle was also treated along the anterior, medial, lateral, and posterior aspects to sever short and long ligaments to release the lower leg from the metatarsus (cut nos. 28, 31, 32, and 33). Eight specimens of metatarsi exhibit cuts along the proximal and distal extremities (cut nos. 34 and 35). Both points of treatment release the element as a single unit.

In summary, the observation of 184 elements bearing cuts suggests that deer were treated to remove the hide, deflesh elements, and disarticulate the carcass. The portions that were derived from the butchering procedures include the head, sections of the neck, the thoracic body; shoulder, upper arm, lower arm, and pes of the forequarter, while the hindquarter yielded portions composed of the rump, thigh, lower leg, and pes. In all, 11 portions were obtained from a single carcass for distribution.

Modified Bone

In addition to providing meat, mammals, birds, and reptiles were an important source of bone for the manufacture of implements and ornamental beads or charms and pendants. Deer bone was the most important source for the manufacture of awls, chert-working tools, hideworking tools, projectile points or awls and bone pins. A total of 174 specimens exhibiting modification represent tools or discarded manufacturing residue. Indeterminate large mammal long bone shafts were a source of awls and possibly fishhooks. Forty specimens were classified as deriving from large mammal bone. Other mammals that were a source of bone used for manufacturing purposes include the skull of gray wolf, the skull and long bones of gray fox, and the skull, jaw, and long bones of raccoon. Eleven pieces of manufacturing residue and finished pieces were identified to these species. Bird bone served as a material from which to make beads, awls, and other types of both utilitarian and nonutilitarian items. Turkey appears to be the most important source of bird bone used for manufacturing purposes. A total of 20 specimens exemplify the utility of bird bone. Finally, turtles were identified as an important source in the manufacture of cups, plates, or bowls. A total of 34 specimens indicate that box turtle was the primary species employed to make cups or bowls and soft-shell turtle, snapping turtle, and turtles of the map and/or painted genera were also used. The results of the analysis of modified bone are discussed below.

Modified Deer Bone

Upon completion or during the butchering procedure, elements of white-tailed deer were curated to manufacture utilitarian and non-utilitarian items. The sample of 174 modified deer bones exhibits modification indicative of manufacturing procedures or modification attributable to human race. Modified antler portions compose 41.8 percent (n=76) of 182 recorded specimens. Of the 261 vertebrae and ribs, two ribs exhibit modification. The sample of 451 forequarter remains contained 23 modified specimens (5.1 percent) and the sample of 694 hindquarter remains consists of 12 modified elements (1.7 percent). Undifferentiated metapodial fragments (n=165) were modified in 20 cases (12.1 percent). Of the 233 undifferentiated phalangeal and sesamoid remains, one specimen was modified. Finally, 41 modified specimens, although not attributable to species or element, probably represent deer bone also.

Antler was one of the most import elements of bone used to manufacture tools (Figure 17). Classification of the artifacts suggests that the material consists of manufacturing debris

(n=26), long handled antler chert-working implements (n=9), two different-sized groups of antler tine chert-working implements (n=7 and 5, respectively), other miscellaneous chert-working implements (n=17), antler drifts or hammers (n=8), and one possible projectile point, one awl, one handle, and one carved cylindrical piece of antler.

Antler manufacturing debris (Figure 17d) demonstrates that the portions that were employed for manufacturing purposes were obtained by employing three techniques. The desired portions amenable for implement manufacture were obtained by scoring the outer layer of antler and around the circumference of the shaft in an even plane until trabecular bone was reached. At this point the portion was snapped or broken. This method of treatment appears on 15 of the 26 specimens of manufacturing debris. The number of scoring marks and the angles of incision varied from two to five lines. The second technique involved the application of a semi-circular incision that ended in a V-shaped cut that in some cases crossed and in other cases did not cross at the terminations of the strokes. At least three separate lines of scoring were employed. The first cut involved a semi-circular incision. The V-shaped incision was produced by beginning a line of incision at the respective ends of the termination of the semi-circular cut and creating the V-shaped pattern. At this point the desired section was probably snapped along the semi-circular cut. Eight specimens exhibit this method. The third method was uncommonly employed and two specimens exemplify the method. The method involved literally chopping and hacking the circumference of the shaft to separate the desired portion from the element.

Based on the size of observed specimens, a long-handled variety (n=9) and two groups of smaller flaking tools were distinguished (Figure 18 and Figure 19a and b). Four long-handled specimens were recovered in a complete state. The lengths range from 147.0–175.0 mm and the average is about 162.5 mm in length. All of the specimens retain some evidence of the initial stages of manufacture such as scoring, scraping striations, or breakage. The working ends of the implements either display concave working facets below the tip or display blunted and flattened working ends from extensive use of intentionally blunted for specific chert-working procedures.

The second group of antler chert-working tools (see Figure 19a and b) consists of two different-sized tools. The tools are identified as separate from other categories because they are complete (i.e., there is both a working end and scored base). The first group consists of seven specimens. They range from 34.0 mm to 46.8 in length. The average length is 41.3 mm (SD 4.8 mm). The average diameter of six specimens ranges from 10.0 mm to 13.0 mm, the mean being 11.2 mm (SD 1.2 mm). The second group consists of five specimens that range from 55.3–69.0 mm in length. The average length is 61.7 mm (SD 5.3 mm). The diameter of four specimens ranges from 12.0–7.5 mm and the average diameter is 14.4 mm. All of these specimens exhibit varying degrees of modification attributable to manufacturing procedures or human use. Finally, 17 miscellaneous fragments of tips or shaft portions of chert-working tools were also recorded.



Figure 17. White-tailed deer antler: a) Incised handle; b) Projectile point blank; c and d) Modified antler exhibiting butchering marks.

Figure 18. Long handled deer antler chert-working implements.

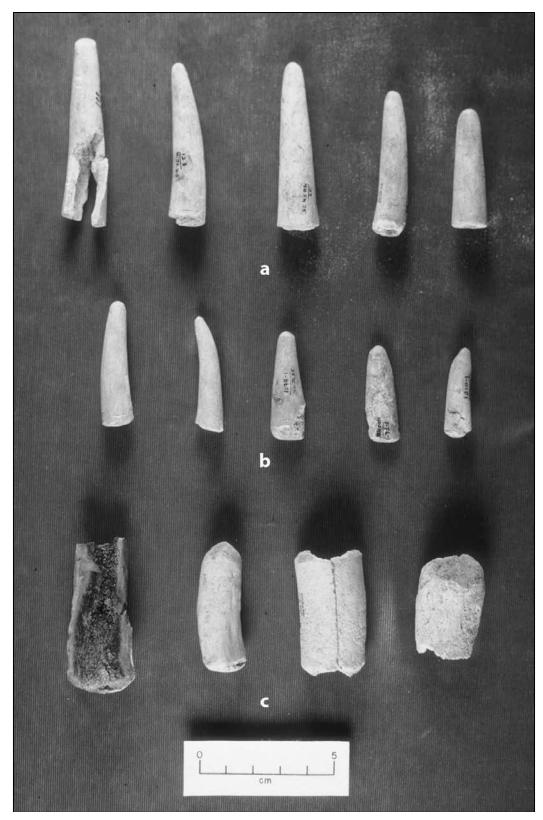


Figure 19. White-tailed deer: a-b. Antler tine chert-working implements; c. Modified beam sections (drifts).

In addition to the use of the tine and shaft tools, antler beams were also employed to make chert-working implements (see Figure 19c). Eight specimens include five artifacts that displayed heavily blunted end, and classified as drifts. Additional artifacts of antler consist of a complete antler handle. The specimen is complete and measures 11.2 cm in length (see Figures 17a and 20). A cross-hatched design was incised along each side of the handle and extensive polish is visible from use. The hafting element is 6.0 mm wide and 29.0 mm deep. The hafting element was produced by continuous longitudinal scoring. The specimen also displays a beveled end produced by scoring and breaking away the antler tine tip during the manufacturing process. The handle may have been used to haft a blade, point, or biface.

Figure 20. Drawing of incised white-tailed deer antler handle with incised pattern. Not to scale.

One possible antler projectile point was recovered from F-20 (see Figure 17b). The point was whittled from an antler tine for the entire length of the surface and a sharp point was fashioned at the end. There is no indication that the specimen was ever used and may have been discarded for some unknown reason. Additionally, an antler awl was identified from Level 5. The specimen exhibits a high degree of polish from use and numerous fine longitudinal striations.

Implements manufactured from forequarter elements include awls and end scrapers for working hides. These tools were fashioned from scapular and humeral elements, respectively. Specimens identified as awls and produced from the distal portions and blades of scapulae consist of 12 artifacts (Figure 21a). The awls were fashioned by modifying the blade into a handle and fashioning a point toward the distal extremity. The spine was incorporated within the main axis of the point and contributed to the structural durability of the implement.

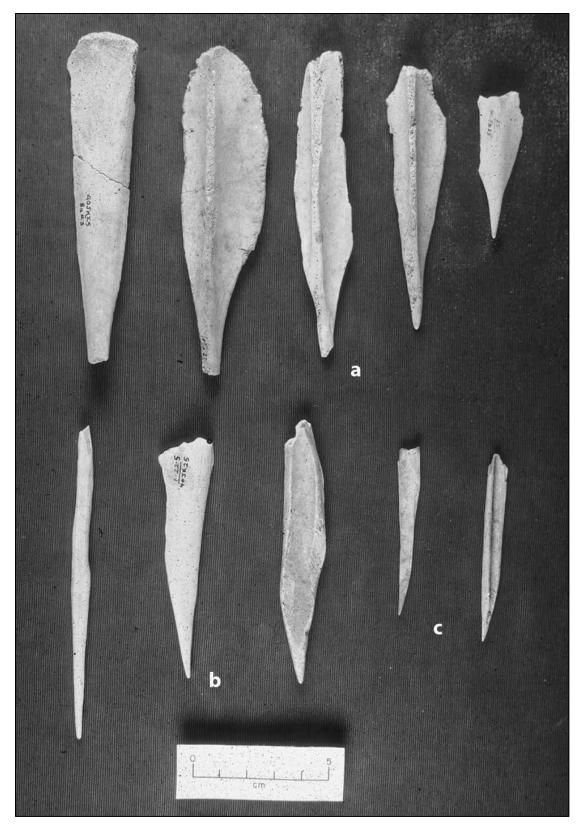


Figure 21. Awls: a. Modified scapula section awl, white-tailed deer; b. Splinter awl, mammal; c. Bird bone awl.

Five examples of bone end scrapers recovered from the site (Figure 22a and b; Figure 23) were fashioned from humeri. These include examples associated with Feature 21 (Level 4), distal portions recovered from units 133R230 and 133R230 (Level 4); and proximal portions recovered from Feature 33 (Level 2) and Feature 50 (Level 2). These tools are characterized best by the specimen recovered from Feature 21, which was made by scoring and breaking the proximal head of the humerus from the shaft perpendicular to the deltoid crest. The length of the resulting implement is 160.0 mm and it exhibits a very pronounced degree of polish from extensive use and handling. Modification of the implement is restricted primarily to the proximal area where the interior surface of the edge or rim was beveled by reaming processes to form a sharp edge. Beveling is apparent for 5.0 mm in the reamed area. Very fine striations define the working-edge of the implement.

Similar artifacts have been identified at Saltpeter Cave in Campbell County, Tennessee (Webb 1938:Plate 14b) and the Bluff Creek site west of Florence, Alabama (Webb and Dejarnette 1942: Plate 147). Webb and Baby (1957) concluded that these tools likely used to clean and dress hides. An additional report of these artifacts appears in Morse's dissertation (1967:Plate XXV, Fig. 2) on the Robinson site in nearby Smith County, Tennessee.

Although no additional implements may be specifically identified as being made from humeral elements, the recovery of two distal humeri which exhibit scoring and breakage suggests that the elements were used for other unknown purposes (see Figure 21d). Two modified ribs were recovered associated with Feature 35 (Figure 24b and c). One specimen represents manufacturing debris where the proximal aspect was scored and removed. The second specimen is a shaft fragment which exhibits abrasion of the anterior and posterior sides. Implements manufactured from ribs were not identified in the assemblage.

Modified postcranial remains such as femur, tibia, and phalanges appear to be uncommon to the sample of modified deer bones. One femoral portion (see Figure 21c) was identified as a possible hide-working tool. The specimen exhibits a highly polished cutting edge and shaft. One left tibia shaft fragment (Figure 25b) was fashioned into an awl. Finally, a fragment of a first phalanx (see Figure 24a) exhibits modification that included reaming the interior and perforating the distal articular surface. The specimen may be a dangle or related to a cup-and-pin gaming piece reported by Guilday (1963:159–163).

White-tailed deer metacarpi, metatarsi, and undifferentiated metapodial fragments indicate these elements were important sources of bone to make awls and bone pins. Manufacturing debris and awls manufactured from metacarpi and metatarsi consist of 32 specimens, while bone pins consists of 41 specimens. Manufacturing debris suggests that both bone pins and awls were made by scoring longitudinal sections from the posterior, medial, and lateral sides of metapodial shafts (Figure 26a and b).

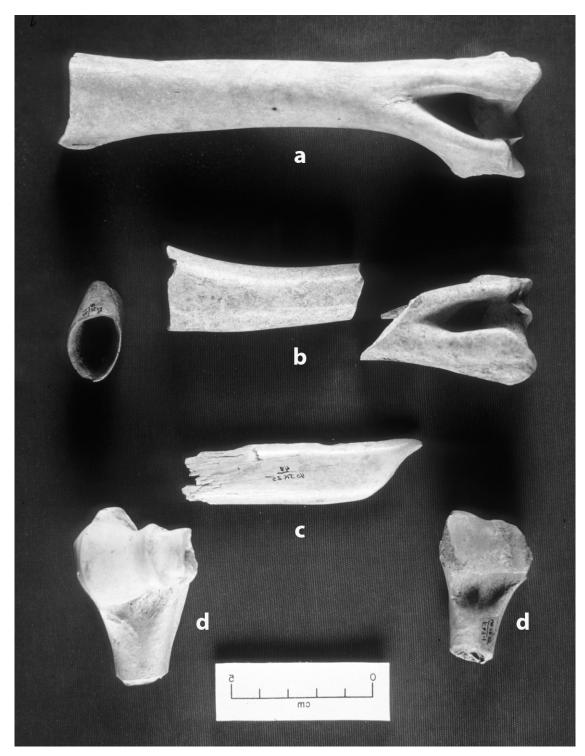


Figure 22. White-tailed deer humeri: a-b. End scraper or flensing implement; c. Beveled end scraper fragment; d. Modified humeri– groove and snap.

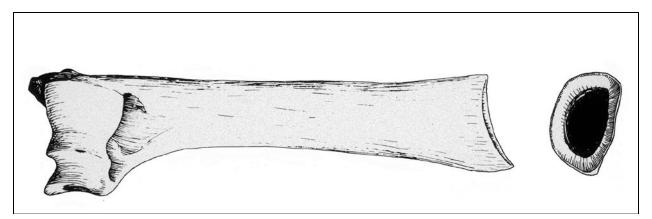


Figure 23. Line drawing of white-tailed deer humeri end scraper.

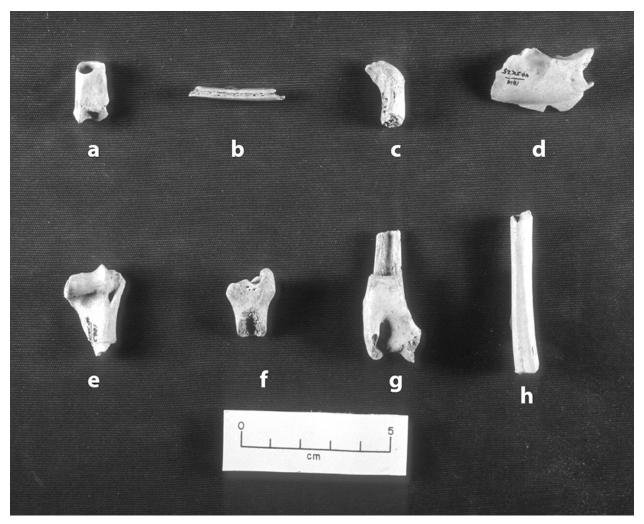


Figure 24. Modified bone: a. Phalange with drilled hole; b-c. Modified rib sections; d. Raccoon frontal with deep score marks; e. Raccoon humerus, scored and snapped; f-h. Modified raccoon bone.

Two awls fashioned from metacarpal portions measured 10.2 cm and 7.3 cm in length. Eight metatarsal portions consist of three pieces of manufacturing debris and four complete awls measuring 54.2 mm to 106.0 mm in length. Undifferentiated metapodial portions consist of three specimens of manufacturing debris and 12 complete awls ranging from 65.5–115.0 mm in length. Two specimens of metacarpals exhibit modified intertrochlear spaces (Figure 27a and b). The modification of the area is characterized by enlargement of the space and polished surfaces indicating that the implement held a dowel. The purpose of the tool is unknown. An additional specimen of a metacarpus (Figure 27c) exhibits an abraded posterior side for the entire length of the element; the element exhibits polish along the anterior side. The use of this specimen is unknown.

Undifferentiated metapodial portions indicate that bone pins were fashioned from the element in the same manner as awls. A total of 41 pieces were recovered. In some cases the heads of bone pins flared, in others they were round (Figure 26a-e, Row 1, 2, 3). Complete pins were recovered from Features 25 and 53 and measure 77.2 mm and 155.0 mm, respectively, in length. Some specimens exhibit lightly incised designs.

Indeterminate Modified Large Mammal Bone

Sixty-seven fragments of large mammals were classified as awls or components of awls (see Figure 21b). Two bipointed large mammal bones, possibly needles (see Figure 27b), measure 83.0 mm and 85.0 mm in length. Possible fishhook components (Figure 28c) were recovered from Features 8, 90, and 111. Nine miscellaneous fragments exhibiting polish, incised marks, or other modification were associated with deposits also.

Modified Gray Wolf, Gray Fox, and Raccoon Bone

Gray wolf was identified by the recovery of a cranial portion associated with Level 2, unit 133R230. The portion consists of the parietal and interparietal sections of the skull which were perforated or drilled through the interparietal bone. The diameter of the hole is 5.0 mm. The portion exhibits a high degree of polish and the posterior aspect of the section was truncated by abrading processes. The artifact may be a pendant or charm.

Gray fox bones were modified in three cases. Each specimen was classified as manufacturing debris. Feature 102 contained a frontal bone that exhibited fine scraping striations. Feature 17 contained a portion of a zygomatic arch that was scored and broken. The excavation unit adjacent to grid coordinates 136R230 (Level 1) contained a distal right humerus that was scored and broken 30.0 mm from the distal extremity.

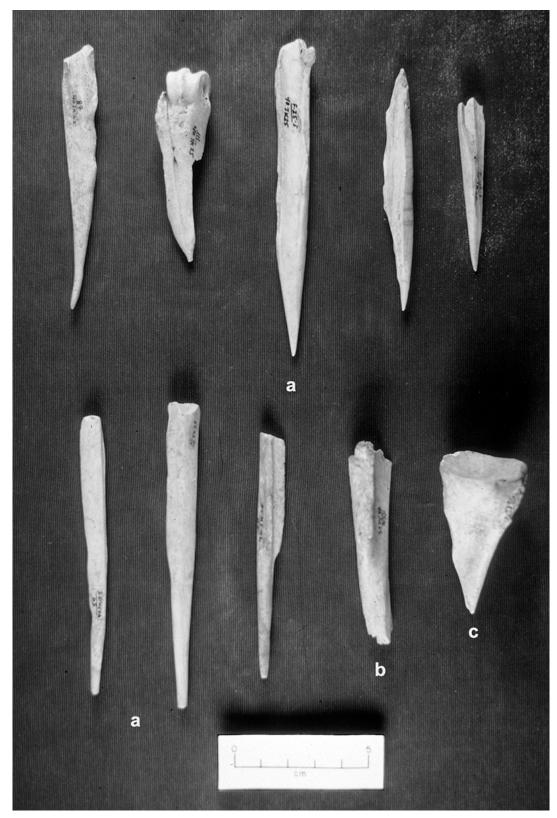


Figure 25. White-tailed deer awls: a. Metacarpal awls; b. Tibia awl; c. Scapula awl.

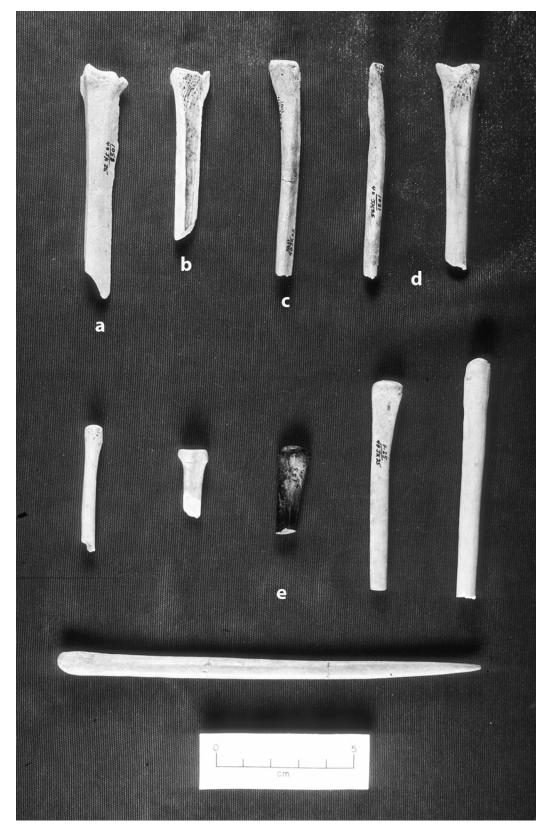


Figure 26. White-tailed deer metacarpi: a-b. Modified metapodial shafts, manufacturing stage; c-d. Manufacturing stage of bone pins; e. Metapodial and metacarpal bone pins.

Figure 27. White-tailed deer modified metacarpi: a-c. Modified metacarpal implements; d. Manufacturing debris.

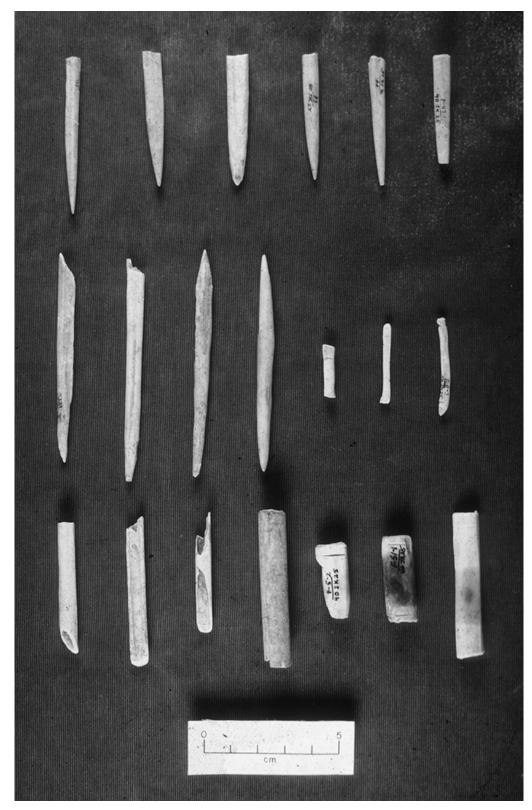


Figure 28. Bone implements: a. White-tailed deer metapodial bone pins; b. Large mammal bipointed needle; c. Fishhooks; d. Manufacturing process, bird bone; e. Turkey bone bead with long, deep score mark; f. Turkey bone beads, broken.

Seven modified specimens identified as raccoon elements represent manufacturing debris. Two frontal portions exhibit scoring marks and a right parietal bone exhibits polish from use or handling. A right ramus associated with Feature 100 was scored and broken between the third and fourth premolars. Three postcranial remains, exhibiting modification, consist of a left distal humerus which was scored and broken 25.0 mm above the distal extremity, a left distal tibia was scored and broken 23.0 mm above the medial malleolus, and a left proximal femur was scored and broken along the posterior and anterior aspects (see Figure 24e-g).

Modified Turkey Bones

Eight specimens identified as turkey bones were observed to be modified. Three specimens were identified as manufacturing residue. These include portions of a coracoid, tibiotarsus, and tarsometatarsus that exhibit scoring and breakage. The other five specimens were identified as turkey tibiotarsi and probably represent beads or portions of beads. The artifacts have been modified at both ends where the portion was scored and broken. In addition to these, two specimens exhibit scoring marks along the medial and lateral lengths of the bead. The beads measure 28.0–58.0 mm in length, with diameters from 10.0–12.0 mm. Three examples of beads appear in Figure 24f.

Modified Indeterminate Bird Bones

Bird bone was also employed to make awls and gouging tools. Four examples of awls range from 30.0–72.0 mm in length. Five specimens represent some type of gouging tools (see Figure 28d). The specimens were modified by abrasion processes to form a cutting or gouging edge.

Modified Turtle Bone

Box turtle remains exhibit modification on 28 specimens of neural, costal, and plastral portions. Most of the fragments probably represent portions of bowls or cups. Carapaces were prepared as cups or bowls by removing the neural arches and scraping the area smooth. Seven specimens exhibit this process. Costal bones were scraped along the interior. Sixteen specimens exhibit this type of treatment. The cup or bowl was then formed by scoring along the marginal bones. At this point the marginal bones were broken away from the carapace, leaving a shallow bowl or cup. No complete specimens were recovered. Portions of bowls and manufacturing residue appear in Figure 29. Eastern snapping turtle carapaces were also amenable toward the manufacture of plates. A costal portion recovered from Feature 35 (Figure 29f) exhibits a smoothed interior and polished exterior.

Plates were also fashioned from soft-shell turtle carapaces. Only one specimen, recovered from Feature 14, exhibits modification. The fragment is a complete costal bone that exhibits smoothed interior and polished exterior surfaces. The rim of the element was tapered by abrading processes. A rocker-incised design is visible for the entire length of the interior surface. The specimen appears in Figure 29k and Figure 30.

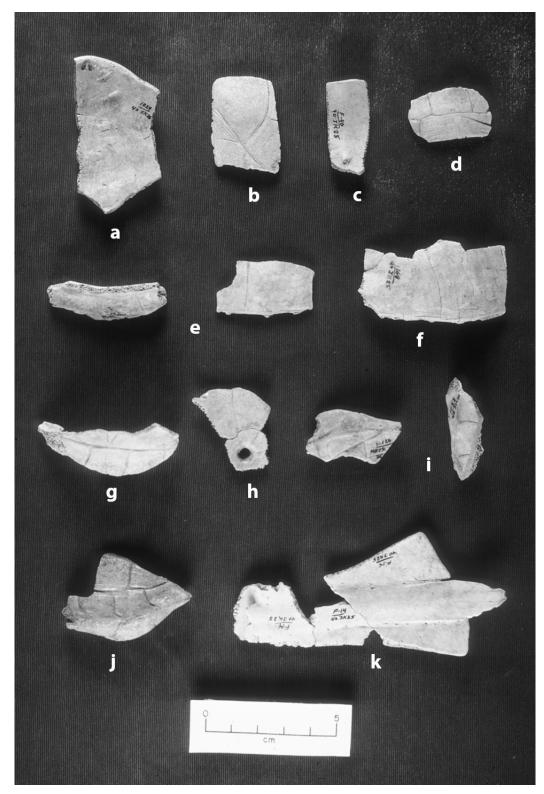


Figure 29. Box turtle, modified and manufacturing stages: a. Costal section with interior striations; b. Costal section, exterior scoring; c. Costal, smoothed interior; d. Costal worked rim and scoring marks; e-g. Costal, scored and snapped; h. Plastron, drilled hole; i–j. Manufacturing residue; k. Soft-shell turtle costal, incised.

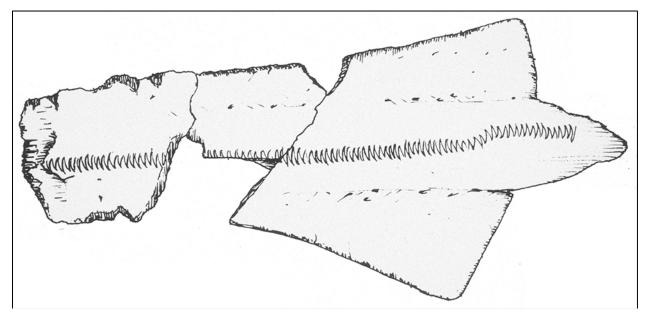


Figure 30. Line drawing of modified spiny soft-shell turtle, interior rocker incised.

Two map/painted turtle nuchal bones, one recovered from Feature 42 and one from unit 136R230 (Level 3), exhibit smoothing of the interior and exterior surface. Also recovered from unit 136R230 was a portion of a marginal bone that exhibits scraping striations on the interior and polish on the interior and exterior surfaces.

Subsistence Variety and Econiche Breadth

This section of the study examines the dietary importance of edible species to site occupants, the season(s) of site occupation and animal procurement, and the importance of exploited environmental zone to the subsistence economy. Two approaches were employed to generate the data necessary to evaluate diet, seasonality factors, and zones of exploitation. First, dietary ratios were determined for each edible species and for each level (Appendix J). This procedure involved determining the MNI for edible animal species and obtaining a liveweight estimate for each species. Employing White's (1953) method of determining useable meat estimates, the MNI and estimated kilograms of useable meat were multiplied to determine the total amount of useable meat per species or other taxa. Live-weight estimates for vertebrates were obtained from the literature presenting such data, while live-weight estimates for mussels were taken from Warren (1975:181). Following this procedure, the amount of useable meat for each species and class was summed and percentages were derived to create dietary ratios for intraclass (within the class/phylum) and interclass (between class/phylum) utilization.

The second approach was oriented toward defining subsistence variety and niche width (Hardesty 1977:120). Subsistence variety or the number of resources (in this case animal

species) used for subsistence and how much each resource is depended upon may be used to define the breadth or width of the ecological niche. A single value is derived by taking the square root of all dietary ratios (i.e., percentages), summing the values, and dividing 100 percent by the summed values. The single value that is derived takes into account how many resources are employed and how much each resource contributes to subsistence. The greater the index value, the more evenly the resources contribute to the total subsistence. Likewise, a lower value would indicate more dependence upon a few resources and a more focal food economy. Derived indices may provide an idea of resource variety, spatial distribution of resources, and temporal distribution of resources.

The results of these procedures indicate that mammals were the primary source of meat to site occupants. Deer was the most important species taken and provided an estimated 51.3 percent of the meat, while elk and bear were significant sources of meat, providing an estimated 24.5 percent and 11.1 percent, respectively (see Appendix J). All other mammals (bobcat, skunk, mink, raccoon, gray fox, porcupine, beaver, gray squirrel, woodchuck, rabbit, and opossum) contributed about 6 percent of the meat. Birds (primarily turkey), reptiles, amphibians, fish, and mussels account for 2.3 percent, 0.3 percent, less than 0.1 percent, 0.6 percent, and 3.5 percent of meat utilization, respectively. These values represent an estimate of the entire site sample without regard to stratigraphic considerations. When the material is examined by stratigraphic representation (see Appendix J), there is some variation in the importance of species as meat contributors. For example, only 19.4 percent deer utilization is apparent in Level 11, while elk utilization is 77.2 percent. In another case, mussel utilization of Level 4 and Level 6 was about 11 percent, while all other levels suggest about 0.5 percent to about 3.4 percent mussel utilization. This variation may be attributed to either sampling error or to variability in resource acquisition, resource availability, or simply the hunter's luck in acquiring animal species through time.

The evaluation of resource variety from the standpoint of quantity indicates that the initial level of occupation was oriented toward pursuing elk and deer. Levels 10 and 9 indicate that site occupants strictly procured deer. In Level 8 deer, elk, and bear became the primary sources of meat. Level 7 occupation indicates that the procurement of deer and elk provided the bulk of the meat and there is no evidence of bear utilization. By Level 6 deer and other smaller mammals were the primary sources of meat. There is no evidence of elk or bear utilization. Level 5 deposits indicate that elk provided more meat than deer, and there is no evidence for bear utilization. Level 4 deposits indicate that deer was the most important meat contributor followed by bear. There is no evidence for elk utilization. Levels 3 and 4 deposits demonstrate that deer was the primary source of meat, while elk and bear were secondary sources. Other mammals, birds, reptiles, amphibians, fish, and mussels account or a small percentage of meat utilization.

Values derived to measure resource variety for 10 levels of occupation are: 1.5, 1.1, 1.1, 3.2, 2.2, 2.5, 3.1, 3.3, 2.5, and 2.8 for Levels 11 through 1 and 2, respectively. These values demonstrate that the quantity of meat derived from all resources was limited in the first three

levels of occupation to one primary source meat (deer), while succeeding levels of occupation largely depended on three resources (deer, elk, and bear). The entire site sample indicates that these three species were the primary source of meat.

Temporal variety provides an ideal of how evenly the utilized resources are distribute during seasonal occupation of the site. Based on the presence of fetal and newborn deer remains, spring and summer occupations are indicated. The presence of deer antler and evidence for antler tool manufacture suggests that site occupation continued into the late fall. The presence of woodchuck remains suggests that occupants procured the species from May to late October when the species begins to hibernate. Warm-weather activities are indicated by the presence of reptile, amphibian, fish, and mussel remains. The absence of migratory birds argues against early winter and late winter occupation. The general evidence would suggest that site occupation was strictly geared to warm-weather occupation, lasting from May or June until late October or early November. There is little evidence to suggest that the site was occupied during the winter months. Such evidence would yield a value of 1.0 for temporal variety. This indicates that site occupation and seasonal procurement of animal resources are correlated. In other words, site occupants employed the area as a seasonal encampment.

Spatial variety provides an indication of the significance of exploited environmental zones to site occupants. The primary areas frequented to obtain animal species include forest margins to obtain such species as deer, elk, and turkey; woodlands to procure bear; and aquatic habitats to obtain aquatic mammals, fish, reptiles (i.e., turtles), and mussels. Forest edge was the most important area frequented, while woodland and aquatic zones, although exploited extensively, contributed little to the value of spatial variety. The values derived for spatial variety averaged about 1.5. This suggests that the food economy was largely based on the exploitation of a single zone, consisting of forest edges.

Conclusions

Zooarchaeological analysis of the faunal remains recovered from the Late Archaic Penitentiary Branch site focused on the examination of 27,208 specimens of bone and shell. A total of 75 orders, families, genera, and/or species, were identified from the sample. Deer was the most important animal resource utilized by site occupants to procure meat, hides, and bones. Elk and bear were found to be significant sources of meat also. Approximately 86 percent of the estimated value of meat utilization was attributed to deer, elk, and bear procurement. Although other vertebrates were taken (e.g., raccoon, beaver, and turkey), these species proved to be incidental to the food economy. Smaller mammals account for about 7.0 percent of the meat used, while birds, primarily turkey, accounted for 2.3 percent. Mussels, although gathered in large quantities, account for only about 3.5 percent of the meat contribution. Reptiles (turtles), amphibians, and fish were a minor source of meat.

The examination of the material from the standpoint of subsistence variety and econiche breadth indicates that the site was a seasonal encampment, occupied from early spring until late fall. Site occupants focused their hunting activities along forest margins to procure deer, elk, and turkey. Woodlands were a source of bear, while aquatic habitats were extensively exploited for aquatic mammals, turtles, fish, and mussels. However, aquatic habitat exploitation proved to be only supplemental source of meat.

X. LITHIC RAW MATERIAL RESOURCES AND IMPLEMENTS

Both chert and limestone were utilized by the Penitentiary Branch site occupants for the manufacture of chipped and ground stone implements. Chert types and source areas in the Nashville Basin and Eastern Highland Rim are virtually undescribed with the exception of specific research areas (cf. Faulkner and McCollough 1973; McCollough and Faulkner 1976). In addition, no geologic survey map has been prepared for the Penitentiary Branch locale, and no archaeological survey for the identification of prehistoric lithic quarry sites has been conducted in the site locality.

Generalized geologic data for the region indicates locally available lithic resources include the Catheys Formation, Chattanooga shale, the Fort Payne Formation, and St. Louis and Warsaw limestone (Hardeman et al. 1966). The Ordovician Catheys Formation, which commonly outcrops on hillsides, is comprised of blue-gray medium-grained argillaceous limestone and fine-grained, nodular argillaceous limestone (Hershey and Maher 1963:74). Chattanooga shale, a nearly black friable layered to tough, slaty, and bituminous shale, outcrops on low and mid-level slopes (Bassler 1932:137). This Devonian material underlies the Mississippian Fort Payne Formation, and is well preserved in the dissected hills and bluffs which form outliers of the Eastern Highland Rim into the Nashville Basin.

The locally abundant Fort Payne Formation is characterized by chert beds interbedded with coarsely crystalline pure limestone (Hershey and Maher 1963:78). Formation thickness ranges from 61 m to 91 m and underlies 3 m or greater of overburden. Chert color and purity are highly variable and silica content increases from south to north. Thick bedded, coarse-grained fossil fragmental St. Louis limestone is characterized by limited exposures as a consequence of a thick residuum of intermixed silt, clay, and fragmented chert (Hershey and Maher 1963:79–80). A thick residuum also covers Warsaw limestone, an interbedded coarse crystalline and fine- to medium- grained limestone.

Chert Resources

Fort Payne Chert

Fort Payne chert, a siliceous rock of impure chalcedony, was utilized predominantly in the Penitentiary Branch site manufacture of chipped stone implements. The Fort Payne chert classifications and descriptions devised by Faulkner and McCollough (1973; 1976) for the upper Duck River Valley proved to be an invaluable research tool for this analysis and were employed when feasible. Published descriptions (Faulkner and McCollough 1973; McCollough and Faulkner 1976) and reference collections at the University of Tennessee, Knoxville Department of Anthropology were used as aids in determining Penitentiary Branch lithic assemblage chert types. The highly variable color ranges of blues, grays, and tans as well the paucity of information regarding Fort Payne chert outcrops in the study area formed the criteria for subdividing the material into at least nine categories.

Blue-Gray Tan Chert: The outer cortex of this medium-grained to fine-grained silica material may be thin and smooth or thick and roughly pitted. The chert matrix ranges from light blue, blue-gray, and light gray to tan with some fossiliferous inclusions and faults. Specimens of this non-homogeneous chert may exhibit solid coloration or, most commonly, a mottled matrix with small light blue, gray, or tan silica inclusions.

Tan Porcelaneous Chert: A homogeneous tan slightly porous textured matrix characterizes this chert. In the upper Duck River Valley, Faulkner and McCollough (1973:53) found that tancolored chert occurred in separate beds or in outcrops which graded into blue-gray and tan chert. Consequently, Penitentiary Branch site Tan Porcelaneous Chert is probably a product of similar bedding.

Blue-Gray Tan Fossiliferous Chert: This is a medium- to fine-grained chert with a matrix coloration identical to the light blue, blue-gray, light gray, and tan of Blue-Gray Tan Chert. The major variation in this fairly lustrous chert is the extensive amount of fossiliferous inclusions which are commonly oolitic.

Gray-Tan Mottled/Banded Chert: This slightly porous chert is assumed to be a variant of Blue-Gray Tan Chert. Irregular swirls or concentric bands of tan and gray colored silica comprise the matrix; the cortex is tan-colored and smooth or slightly irregular.

Light Gray Chert: The matrix of this medium- to fine-grained chert grades from light gray to light blue-gray. A relatively homogeneous chert, the matrix occasionally exhibits small fossiliferous inclusions or tiny light gray silica inclusions.

Tan-Gray-Green Chert: The matrix of this medium- to fine-grained chert displays a green cast. Small tan silica and fossiliferous inclusions occur within the non-homogeneous silica matrix.

Blue-Gray Banded Chert: A light blue-gray fine-grained matrix with concentric bands of darker gray define this Fort Payne chert.

Blue-Gray Oolitic Chert: Blue-Gray Oolitic chert is a fine-grained lustrous material with a dark blue coloration and light blue or gray oolitic inclusions which create a salt and pepper or speckled effect. The outer cortex is thin and smooth. While this chert is probably derived from the Fort Payne Formation, it possibly is not a variant of Blue-Gray Tan Chert since it is more fine-grained and lustrous as well as intensively oolitic and darker in color.

Dark Blue-Gray Tan Chert: This chert is characterized by a more fine-grained and lustrous texture than Blue-Gray Tan Chert. In addition, the coloration is very dark mottled blue and gray with darker colored silica and fossiliferous inclusions. The cortex is thin and smooth.

Possible Fort Payne Chert

Gray Chert: A homogeneous medium- to fine-grained gray chert with occasional small fossiliferous inclusions.

Dark Gray Chert: A homogeneous fine-grained and lustrous matrix characterizes this dark gray material. Outer cortex is typically thin and smooth. This chert may be a variant of Dark Blue-Gray Tan Chert.

Gray Banded Chert: This is a fine-grained slightly porous silica material which is characterized by a dark gray coloration with irregular darker bands. The occurrence of this type chert at the Penitentiary Branch site is rare. A similar gray banded chert was located in a massive outcrop in the Duck River area (Faulkner and McCollough 1973:54); such material may be a part of the Fort Payne Formation or transported to the Penitentiary Branch locality.

Non-Local Cherts

Origin of the following cherts is unknown; however, coloration and textural characteristics we well as rarity of occurrence at the Penitentiary Branch site suggests they are not derived from the Fort Payne Formation. As a consequence, they are designated as non-local.

Black Chert: This material is a medium-grained homogeneous silica with black coloration.

Blue-Green Chert: This is a deep blue-green chert with a fine-grained and slightly vitreous texture. Artifacts and debitage of this material are extremely rare at the Penitentiary Branch site. Nodules of blue-green chert are derived from the St. Louis limestone at the interface of the Cumberland Plateau escarpment and Highland Rim (Faulkner and McCollough 1973:56).

Jasper: Jasper is a fine-grained chert with a reddish-brown coloration. Artifacts of this silica material are rare at the Penitentiary Branch site.

Indeterminate Chert

This is waterworn chert which simply cannot be identified due to the worn outer surface; consequently, it may be of local or non-local derivation.

Vein Quartz

Vein quartz is a dense medium-grained white quartz which rarely occurs at the Penitentiary Branch site. It may be water transported or outcrop on steep slopes in the area.

Chalcedony

This is a silica material characterized by a colorless to pale gray color with a waxy and translucent appearance.

<u>Agate</u>

This material is a variegated quartz which occurs in white and amber colors. It is similar to chalcedony in its waxy and somewhat vitreous texture. Artifacts and several nodules were recovered from the Penitentiary Branch site suggesting it may occur within near proximity to the site.

Other Lithic Materials

<u>Limestone</u>

Limestone outcrops on the hillsides in the immediate vicinity of the Penitentiary Branch site and is a locally abundant lithic material utilized prehistorically for cooking/hearth stones as well as in the manufacture of implements such as axes and hoes. This argillaceous and nodular material may be derived from the Cathys, St. Louis, and Warsaw Formations.

<u>Shale</u>

Chattanooga shale commonly outcrops in the study area. Fragments of black shale 24 mm or less in diameter comprised a large percentage of the site midden matrix. Larger and less friable pieces of shale were used in the manufacture of flaked and ground artifacts.

Sandstone

Sandstone is available but not locally abundant in the study area. This fine-grained rock was used as cooking/hearth stones, abraders, and pitted cobbles.

Chipped Stone Implements and Debitage

The observation of systemic variables in the analysis of lithic implements and debitage recovered from excavations at Penitentiary Branch was aimed at ordering the assemblage and determination of technology and function. Implements have been functionally assigned on the basis of specific definitive morphological and use-wear attributes; however, this analysis attempts to avoid typological assignments. The artifact categorization is flexible and simply categorizes implements with similar attributes. Artifacts, particularly projectile points/knives, are defined on this basis and reference to named cultural types is provided as a comparative aid.

Primary recorded attributes of the assemblage included raw material, manufacturing technique, and specific morphological and metric attributes. Vernier calipers were used to obtain measurements for the total implement (including hafting element) length, width, and thickness, as well as the stem/haft length, width, and thickness. Factors governing variability of metric attributes may be a product of raw material and/or functional processes such as resharpening. All bifacial and unifacial implements from features and excavation unit levels were analyzed and classified into the following categories: cores, blanks, performs, projectile points/knives, knives, scrapers, drills, perforators, denticulates, notched flakes, gravers, chisels, adzes, chipped stone digging implements, blades, and utilized flakes (see Appendix G). Lithic debitage from all features was analyzed. Select metric attributes for lithic implements are presented by category in Appendix K.

Cores (n=66)

Unprepared nuclei of cobbles, nodules, and tabular raw material and large, thick bifacial reduction flakes characterize cores recovered from the Penitentiary Branch site (Figure 31a). The 66 cores or core fragments are amorphous, subconical, discoidal, or blade cores with two or more flake scars. Most cores display one or two striking platforms and flake removal is unidirectional, bi-directional, or multi-directional.

Raw Material: Blue-Gray Tan (40; 2 Heat), Blue-Gray Tan Fossiliferous (2), Blue Gray Oolitic (2) Dark Blue-Gray Tan (11), Mottled Gray-Tan (2), Light Gray (2), Gray (1), Dark Gray (1), Gray Banded (1), Black (3), Agate (1)

Form: Amorphous 39 (59. percent), Subconical 21 (31.8 percent), Discoidal 5 (7.6 percent), Blade 1 (1.5 percent)

Core Rejuvenation Flakes (n=7)

These artifacts comprise the exhausted platform of a core removed as a flat or tabular flake. Raw material types include Blue-Gray Tan (6) and Gray (1) chert.

Chipped Stone Blanks

Penitentiary Branch site lithic artifacts classified as blanks were assigned to the blank manufacturing stage in the lithic assemblage on the basis of these characteristics which indicated a roughly shaped and blocked out artifact in the early stage of manufacture (Wormington 1957:274) exhibiting bifacial flake removals and elementary shape. Blanks were separated into five stages of manufacture ranging from most preliminary forms to well-shaped and thinned forms which suggest final implement shape. A total of 142 specimens were classified as blanks.

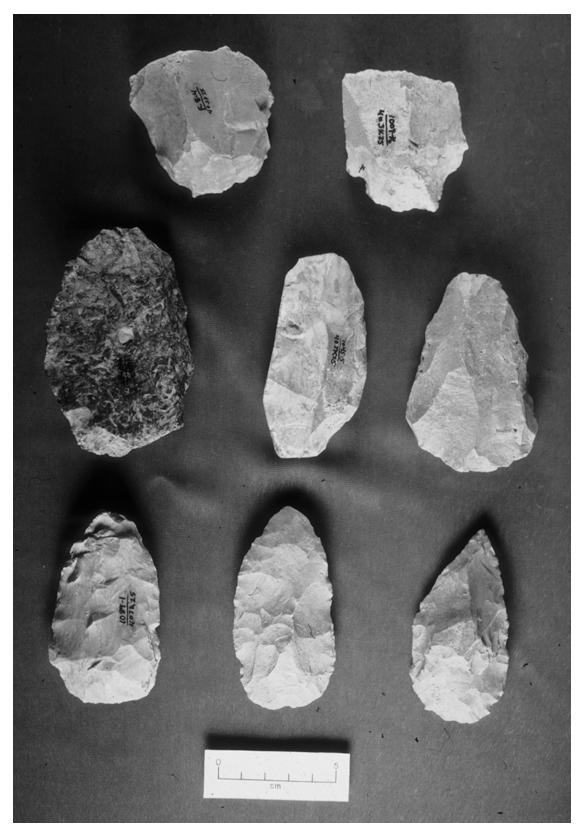


Figure 31. Chipped stone implements: a. Cores; b. Blank, Stage 1; c. Blank, Stage 2; d. Blank, Stage 3; e. Blank, Stage 4.

Blank Stage 1 (n=34)

These partially bifacially flaked stone artifacts were manufactured on a cobbles or thick flakes, and were amorphous to roughly ovate or elongate in shape (Figure 31b). They were manufactured through direct percussion removal of large flakes from portions or all ventral and dorsal surfaces, were rarely completely bifacially reduced, and occasionally unifacial. They exhibit extensive cortex, with hinge and step fractures commonly terminating in large knots. The lateral edges are distinguished by large flake scars terminating in highly irregular (zig-zag) edges. Peripheral shaping of individual specimens is typically incomplete.

Raw Material: Blue-Gray tan (22; 1 Heat), Blue-Gray Tan Fossiliferous (1), Blue-Gray Oolitic (3), Gray Tan Mottled/Banded (1), Dark Blue-Gray Tan (1), Gray Banded (3), Black (1), Agate (1), Quartz (1)

Blank Stage 2 (n=49)

These roughed out wholly to partially bifacially flaked lithic artifacts were manufactured on cobbles or thick flakes and reduced to suggest an oval or rectangular shape (Figure 31c). They were crudely ovate or elongate rectangular and manufactured through direct percussion removal of large flakes from the majority of the ventral and dorsal surfaces. Some cortex is retained, and these artifacts exhibit hinge and step fractures terminating in large knots. The lateral edges are acute but irregular and produced by large bifacial flake removals. Peripheral shaping is relatively complete, while proximal and distal ends are typically indeterminate.

Raw Material: Blue-Gray Tan (32), Blue-Gray Tan Fossiliferous (1), Dark Blue-Gray Tan (3), Blue-Gray Oolitic (3), Gray-Tan Mottled (1), Gray Banded (1), Gray (2), Dark Gray (3), Tan-Gray-Green (1), Agate (2)

Blank Stage 3 (n=39)

These roughed out bifacially flaked lithic artifacts were manufactured on a cobble or flake and reduced to suggest an ovate, triangular, or rectangular shape (Figure 31d). Manufacture involved direct percussion removal of numerous medium-sized flaked from ventral and dorsal surfaces, leaving hinge and step fractures terminating in knots. A small percentage of specimens still retain small patches of cortex. The lateral edges are relatively parallel, and peripheral shaping is relatively complete, with proximal and distal ends determinate.

Raw Material: Blue-Gray Tan (19), Blue-Gray Tan Fossiliferous (2), Blue-Gray Oolitic (3), Dark Blue-Gray Tan (5), Gray-Tan Mottled (1), light Gray (1), Dark Gray (1), Black (1), Gran Banded (2), Tan-Gray–Green (1), Agate (1), Limestone (2)

Blank Stage 4 (n=17)

These bifacially flaked lithic artifacts were reduced to suggest an ovate, triangular, or rectangular form, and appreciably thinned in contrast to previous stages of blank preparation (Figure 31e). Manufacture took place through direct percussion of medium to small flakes, leaving cortex in minor quantities on some specimens. Hinge and step fractures were present, with knotting less pronounced in comparison to previous stages of manufacture. The acute edge perimeters were straight, and edge preparation consisting of grinding was present on some specimens

Raw Materials: blue-Gray Tan (8), Tan Porcelaneous (1), Dark Blue-Gray Tan (2), Light Gray (1), Dark Gray (1), Black (2), Gray Banded (2)

Blank Stage 5 (n=3)

A thinned and shaped bifacial artifact theoretically requiring no further reduction prior to flake removals necessary for production of some type of lithic implement. These artifacts represent transitional Blanks/Preforms.

Raw Materials: Blue-Gray Tan (2), Dark Blue-Gray Tan (1)

Blank Fragments (n=70)

Roughly flaked bifacial fragments with large flake removals were classified as blank fragments since they lacked formalized flake removal more characteristic of performs or completed bifaces.

Raw Material: Blue-Gray Tan (45), Blue-Gray Fossiliferous (2), Blue-Gray Oolitic (2), Dark Blue-Gray Tan (12), Tan-Gray-Green (1), Gray Banded (3), Dark Gray (1), Black (2), Agate (1), Jasper (1)

Discussion

While some Penitentiary Branch blanks were probably manufactured on large core reduction flakes, they are primarily the product of bifacial removals from an unprepared nodule or block. Factors supportive of this suggested predominant form include the following: Stage 1–5 blanks lack evidence of a flake striking platform; blank form is massive and biconvex in cross-section; a total of 26.1 percent (n=37) of blanks retain cortex and/or fracture planes on two or more faces, while 69.7 percent (n=99) blanks exhibit cortex/fracture planes on one or more faces.

Cortex and fracture planes are also indicative of blank stage. Cortex on one or more faces is present on 91.2 percent (n=31) of the Stage 1 blanks; 77.6 percent (n=38) of Stage 2;

48.7 percent (n=19) of Stage 3; and 52.9 percent (n=9) of Stage 4 blanks. All remaining specimens retain no cortex or fracture planes.

Chipped Stone Preforms

Preforms, which follow blanks in the Penitentiary Branch lithic reduction sequence, have been defined by Crabtree (1972:85) as follows: "Preforming denotes the first shaping. Preform is an unfinished, unused form of the proposed artifact. It is larger than, and without the refinement of, the completed tool. It is thick, with bulbar scars, has irregular edges, and no means of hafting."

Preforms described below do not precisely correspond with Crabtree's definition. Penitentiary Branch performs are generally larger, slightly thicker, and less refined than the completed implement. They do not necessarily represent the first shaping and tend to have regular lateral edges. Preforms are primarily characterized by the lack of hafting elements on bifacially flaked shaped pieces. A total of 198 specimens were classified as performs and assigned to one of three preform stages.

Preform Stage 1 (n=41)

These bifacially thinned and shaped artifacts exhibit an amorphous oval to triangular shape but lack refinement of completed implements (Figure 32a). Blade edges are parallel or expanded, while lateral edges may be slightly irregular or regular. The basal area is generally triangular or rounded. These artifacts were manufactured through direct percussion, and commonly exhibit large knotting due to raw material and incomplete thinning. Little cortex remains on Stage 1 preforms.

Raw Material: Blue-Gray Tan (23; Heat 2), Blue-Gray Tan Fossiliferous (1; 1 Heat), Blue-Gray Oolitic (2), Dark Blue-Gray Tan (2), Tan Porcelaneous (3), Gray-Tan Mottled (1), Blue-Gray Banded (1), Tan-Gray-Green (2), Light Gray (1), Dark Gray (2), Black (2), Agate (1)

Preform Stage 2 (n=64)

Bifacially thinned and triangular, tear-drop, or rectangular shaped artifacts which exhibit slightly more refinement than Stage 1 preforms (Figure 32b). The edges are parallel or expanded, and lateral edges are regular with fine percussion flake removals. The basal areas are triangular and straight or rounded. These artifacts were manufactured through direct percussion, followed by pressure flaking along lateral edges of some specimens. The ventral and dorsal surfaces were thinned and exhibit little cortex.

Raw Material: Blue-Gray Tan (28; Heat 4), Blue-Gray Tan Fossiliferous (7; Heat 1), Blue-Gray Oolitic (1), Tan Porcelaneous (2), Dark Blue-Gray Tan (6), Blue-Gray Banded (1), Tan-Gray-Green (4; 1 Heat), Light Gray (3; Heat 1), Gray (2), Dark Gray (4), Black (1; Heat 1), Gray Banded (3), Agate (1), Indeterminate Water Worn (1)

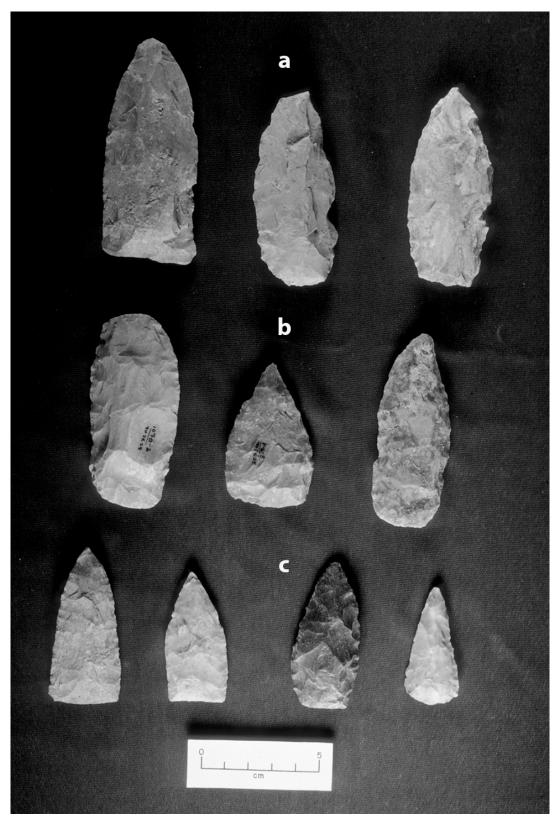


Figure 32. Preforms: a. Preform, Stage 1; b. Preform, Stage 2; c. Preform, Stage 3.

Preform Stage 3 (n=93)

Thinned and shaped bifaces which are well finished and lack only hafting modifications in order to be classified as completed implements (Figure 32c). Their shapes are primarily triangular, with some specimens of tear-drop and pentagonal forms. Blade edges are expanded triangular or parallel, with lateral edges well finished via intermittent pressure flaking and grinding. The basal area is well thinned and shaped and may be expanded triangular with straight base, occasionally incurvate or excurvate, or rounded.

Raw Material: Blue-Gray Tan (39; Heat 6), Blue-Gray Tan Fossiliferous (3; Heat 2), Blue-Gray Oolitic (3), Gray Tan Mottled (7; Heat 1), Dark Blue-Gray Tan (7; Heat 1), Tan Porcelaneous (6; Heat 2), Blue-Gray Banded (2; Heat 1), Tan-Gray-Green (2), Light Gray (2; Heat 1), Gray (6; Heat 2), Dark Gray (3), Black (2; Heat 1), Blue-Green (3; Heat 1), Chalcedony (2), Agate (1), Quartzite (1), Gray Banded (4)

Preform Fragments (n=137)

Bifacial fragments characterized by medium to slightly smaller flake scars and less refined shaping than that typical of completed implements were placed within this category. All proximal fragments are those of performs; however, medial and distal fragments are less diagnostic and a small percentage may be blanks.

Sample Size (Proximal): 36

Raw Material: Blue-Gray Tan (18; 1 Heat), Blue-Gray Tan Fossiliferous (1), Dark Blue-Gray Tan (3), Blue-Gray-Green (2), Tan Porcelaneous (2), Light Gray (2), Gray (2), Gray-Tan Mottled (3), Black (1), Jasper (1), Agate (1)

Sample Size (Medial): 27

Raw Material: Blue-Gray Tan (18), Dark Blue-Gray Tan (4), Blue-Gray Tan Fossiliferous (1), Blue-Gray Oolitic (1), Blue-Gray Banded (1), Gray Banded (1), Black (1)

Sample Size (Distal): 74

Raw Material: Blue-Gray Tan (31), Dark Blue-Gray Tan (13), Blue-Gray Tan Fossiliferous (2), Blue-Gray Oolitic (5), Tan Porcelaneous (2), Gray-Tan Mottled (2), Blue-Gray Banded (5), Tan-Gray-Green (4), Light Gray (2), Gray (2), Dark Gray (3), Black (1), Blue Green (1), Jasper (1)

Discussion

The primary distinction between the three preform stages is reduction refinement. Stage 1 preforms are characterized by large bifacial flake removals while flake scars become increasingly smaller with subsequent stages. In addition, intermittent pressure flaking increases and by the final Stage 3, the preform is refined to the extent that it simply lacks notching and utilization in order to be classified as a finished implement.

Penitentiary Branch cores and blanks rarely display evidence of thermal alteration (n=1). Preforms are the first stage of lithic reduction which tend to exhibit thermal pretreatment. Each preform stage, moreover, provides clues regarding the use of heat in lithic manufacture. Evidence of heat alteration is displayed on 7.3 percent (n=3) of the Stage 1 preforms; 12.5 percent (n=8) of Stage 2; and 19.4 percent (n=18) of Stage 3 preforms. Out of the total preforms (n=198), 14.6 percent are heat altered with 1.5 percent represented in Stage 1; 4.0 percent represented in Stage 2; and 9.1 percent represented in Stage 3.

While the variable of unintentional heat alteration cannot be factored, the assumption is made that it was intentional. Thermal treatment experiments conducted by Hood and McCollough (1976:195–215) suggest that heating of Fort Payne blue-gray and tan chert and fossiliferous cherts facilitates flaking ease and flake removal size. The Penitentiary Branch core, blank, and preform data therefore indicate cores and blanks were not subjected to thermal treatment; this method of altering the reduction quality of the chert was first employed in the latter stages of preform manufacture.

Comparative preform data is unavailable from the Robinson site. Preforms are not identified from that site, but may be included in a catch-all category of "Other Flint Bifaces" (Morse 1967:84). Some preforms may be included in the 119 lateral edged, oblique-transverse edged, and pointed bifaces (Morse 1967:84); however, Morse (1967:85) indicates that many of these bifaces appear to be implements which have been reworked. Whether or not Robinson site preforms were identified as such, the indication is that they were not as prevalent as at Penitentiary Branch.

Projectile Points/Knives

Bifacial lithic artifacts with complete hafting elements recovered from the Penitentiary Branch site are classified as projectile points/knives. While these artifacts probably functioned primarily as projectile points, attributes such as asymmetrical and beveled or resharpened blades indicate either a primary or secondary knife function. Finally, a small percentage of stemmed artifacts, which originally may have been utilized as projectile points, are classified as to specific implement type rather than projectile point type.

Variations in stem and shoulder morphology were the primary criteria used to separate the 294 projectile points/knives into 32 categories. In some instances these are rather discrete variations; however, the decision to split rather than lump specimens into specific categories was based on the spatial and temporal controls on this assemblage. Although this taxonomic approach adds to the plethora of projectile point types identified from Southeastern sites, morphological attributes and variables are described for each category. As a consequence, specimens are not forced into established typologies which fail to adequately allow for variations as a product of raw material and resharpening. Moreover, these Penitentiary Branch categories are lumped into cluster groups thereby making the taxonomy less cumbersome.

Variables were recorded at area of greatest specimen length, width, and thickness and stem length, width, and thickness. Neck width, lateral side to lateral side, was obtained directly under the shoulder.

Category 1: Auriculate Base (n=1)

This artifact exhibited a broken baled and apparent auriculate base. The haft was expanded, with ground lateral edges. Base was incurvate, thinned but unground, and exhibited acute weakly flaring auricles. The haft area is flattened/plano-convex in cross-section (Figure 33a). Although only 17 mm of a single specimen of this type was present in the assemblage, it appears close to the Beaver Lake type (Cambron and Hulse 1975:10) or similar transitional Paleo-Indian period lanceolate types with recurvate blade edges and auriculate bases. This single fragment was recovered from Feature 63, Level 2 (Stratum C).

Raw Material: Light Gray

Category 2: Corner Notched, Prominent Barbs, Expanded Base (n=1)

The blade of this artifact was large and triangular in form, with straight edges. It exhibited prominent barbs, deep, narrow corner notches, and an expanded stem terminating in rounded auricles. The base was straight, thinned, and basally ground. Very fine pressure flaking along the lateral edges creates a finely serrated blade which is flattened in cross-section (Figure 33b). Category 2 is referable to the Archaic period Lost Lake type (Cambron and Hulse 1975:83) and the Category 38 (Deep Corner Notched, Straight to Excurvate Ground Base) points recovered from Early Archaic strata in the Little Tennessee River Valley (Chapman 1977:51). The single specimen associated with the Penitentiary Branch site was from surface collection.

Raw Material: Blue-Gray Tan

Category 3: Deep Side Notched, Rectangular Stem (n=17)

Category 3 exhibits medium to small elongate, excurvate, or triangular blades with exhibit extensive resharpening, and asymmetrical, excurvate blade edges. The shoulders are horizontal to tapered, and the stem exhibits deep, rounded side notches which are commonly ground. The expanded rectangular stem terminates in square auricles. Bases are straight to incurvate and thinned, with eight specimens exhibiting grinding. This type is biconvex, planoconvex, or flattened in cross-section (Figure 33c).

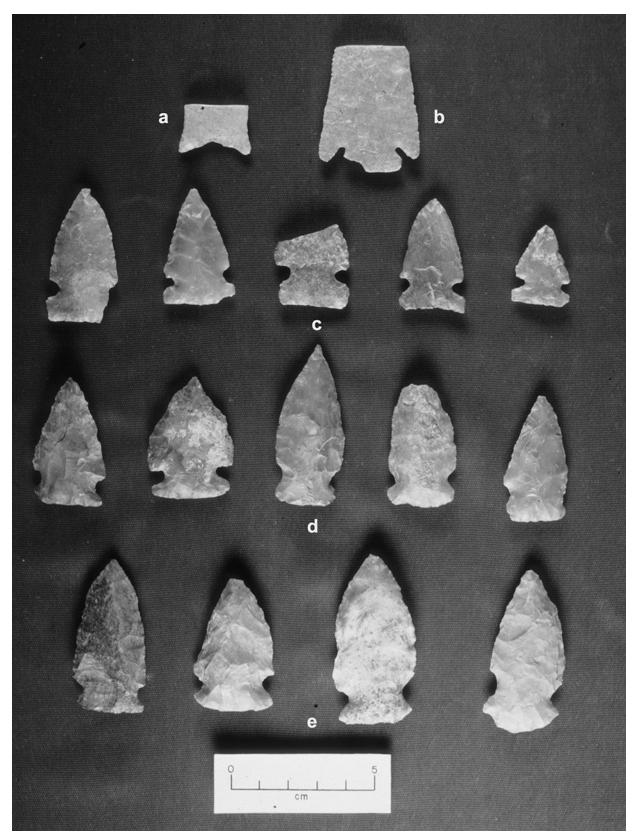


Figure 33. Projectile points/knives: a. Category 1; b. Category 2; c. Category 3; d. Category 4; e. Category 5.

These points were recovered primarily from Stratum C at Penitentiary Branch, and with the exception of basal grinding on 47 percent of the examples, are identical to the Big Sandy I type (Lewis and Kneberg 1959). These projectile points have been recovered from an Early Archaic (10,000 BP) context at the Stanfield-Worley Bluff Shelter (DeJarnette et al. 1962), and from Middle to Late Archaic strata at the Eva site (Lewis and Lewis 1961:37), ca. 4000 to 2000 BC.¹⁷ This later date range is more compatible with Late Archaic context at Penitentiary Branch. Many of the Category 3 specimens exhibit resharpening which accounts for the reduced size of a number of the artifacts.

Raw Material: Blue-Gray Tan (10; 3 Heat), Blue-Gray Tan Fossiliferous (2; 2 Heat), Gray Tan Mottled/Banded (3), Gray (1), Chalcedony (1)

Category 4: Side Notched, Expanded Stem, Tapered Shoulders (n=12)

This category features a medium to small blade, typically resharpened, with excurvate to asymmetrical blade edges (Figure 33d). The shoulders are narrow, tapered, and horizontal. Stems are expanding with weakly acute auricles and rounded side notches which may be ground or battered/hinged. Bases vary from straight (n=6; 50.0 percent), to weakly excurvate (n=3; 25.0 percent), and weakly incurvate (n=3; 25 percent), are thinned, and 41.7 percent (n=5) exhibit heavy basal grinding. Points are biconvex and plano-convex in cross-section.

These are variants of the Penitentiary Branch Category 3/Big Sandy type and may be lumped with that category. The primary distinction between the two categories is that Category 4 lacks the rectangular base with square/rectangular auricles diagnostic of Category 3. Otherwise the two categories are virtually identical, particularly regarding blade attributes, resharpening, and millimeter measurement means. As Big Sandy/Big Sandy variants, these specimens from Penitentiary Branch Strata G-C are affiliated with the Late Archaic period.

Raw Material: Blue-Gray Tan (9; 2 Heat), Light Gray (1; 1 Heat), Gray (1), Chalcedony (1)

Category 5: Wide Expanded Stem, Side Notched (n=12)

Category 5 is medium triangular to excurvate, with straight to asymmetrical blade edges and narrow, tapered shoulders (Figure 33e). Notching grades from side to corner, and are rounded to angular. Stems are broad, expanded, and rounded to acute auricles. Bases are straight (n=7), excurvate, and weakly incurvate, and all are thinned. One specimen exhibits basal grinding. Points are biconvex in cross-section.

This category is similar to the "Other Side-Notched, Faulkner type" recovered from the Robinson site (Morse 1967:65) and some illustrated specimens of Undifferentiated Side Notched points recovered from the Three Mile phase at the Eva site (Lewis and Lewis 1961:37–

¹⁷ Big Sandy II points from Eva exhibit unground bases and originate within the Three Mile phase.

38). The context of these types at other southeastern sites, as well as Category 5 at Penitentiary Branch, indicate a Late Archaic period affiliation.

Raw Material: Blue-Gray Tan (6; 2 Heat), Blue-Gray Tan Fossiliferous (1; 1 Heat), Blue-Gray Oolitic (1; 1 Heat), Gray-Tan Mottled Banded (2), Chalcedony (1), Agate (1)

Category 6: Side Notched, Short Expanded Stem (n=13)

Blades for Category 6 are elongate to excurvate triangular, with parallel to asymmetrical blade edges that are typically resharpened (Figure 34a). Shoulders are narrow and tapered. Stems are short, broad, and expanded, and exhibit incipient to medium deep rounded side notches with rounded auricles. Bases are straight to weakly incurvate, and thinned, battered, or ground (n=4). Points are biconvex (n=12) and plano-convex (n=1) in cross-section.

These specimens are possibly referable to the Upper Valley Side Notched type (Kneberg 1956) and the Damron type (Cambron and Hulse 1975:40), which have been recovered from questionable Woodland period contexts at sites in the Tennessee and Alabama, but is more firmly affiliated with Archaic period strata (Cambron and Waters 1961; DeJarnette et al. 1962; Morse 1967:64). At the Penitentiary Branch site Category 6 is firmly affiliated with the Late Archaic period and appears to be a terminal variant of the Archaic side notched tradition (Morse 1967:64).

Raw Material: Blue-Gray Tan (5; 3 Heat), Dark Blue-Gray Tan (3; 1 Heat), Blue-Gray Tan Fossiliferous (2), Blue-Gray Oolitic (1; 1 Heat), Gray Tan Mottled (1), Dark Gray (1)

Category 7: Undifferentiated Side Notched (n=2)

Category 7 points at Penitentiary Branch exhibit large and triangular blades with asymmetrical edges (Figure 34b). Shoulders are narrow and tapered, and stems are broad and rectangular with shallow side notches and slightly rounded lateral edges. Bases are straight and thinned. These rather amorphous specimens were recovered from Stratum C, Level 3, and the surface at the Penitentiary Branch site. The artifacts are a continuum of the side notched tradition and a Late Archaic cultural affiliation may be suggested. Morphological characteristics of blade size and asymmetry suggest utilization as knives.

Raw Material: Dark Blue-Gray Tan (1; 1 Heat), Light Gray (1: 1 Heat)

Category 8: Side Notched, Deeply Incurvate Expanded Stem, Medium-Small Blade (n=28)

This type exhibits narrow blades with excurvate to asymmetrical blade edges (Figure 34c). Shoulders are weak and tapered. Stems are wide and expanded, and exhibit rounded to acute flaring auricles with a "fish-tail" aspect, and shallow to medium side notches. Bases are deeply incurvate to weakly incurvate, thinned, and 22.2 percent (n=6) exhibit basal grinding. Category 8 points are biconvex and rarely plano-convex in cross-section.

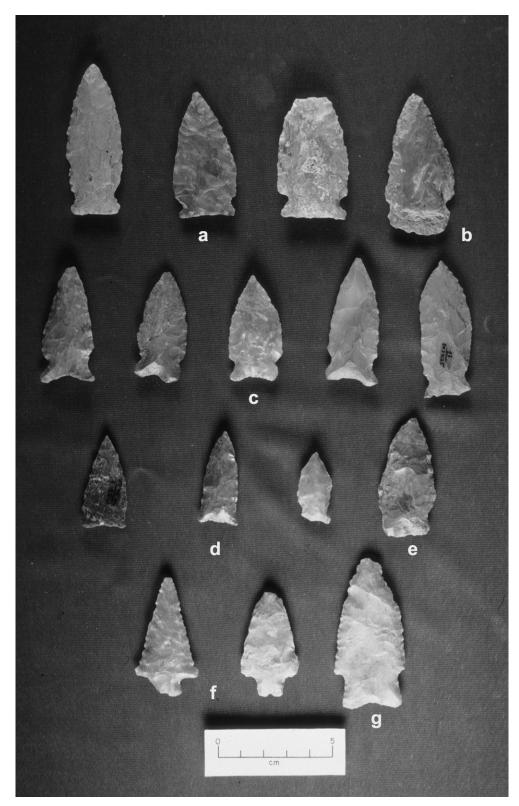


Figure 34. Projectile points/knives: a. Category 6; b. Category 7: c. Category 8; d. Category 9; e. Category 10; f. Category 11; g. Category 12.

These specimens may be referable to the Greenbrier type (Lewis and Kneberg 1960) and the Nickajack Reservoir Provisional Type 9 (Faulkner and Graham 1965:28 Plate XII). Specimens assigned to the Greenbrier type are affiliated with the Paleoindian to Early Archaic in northern Alabama and western Tennessee, and the Late Archaic in northern Alabama. Provisional Type 9 is possibly associated with the Early Woodland period. Whether or not the Penitentiary Branch Category 8 is comparable to the Greenbrier type, it is firmly affiliated with the Late Archaic period at the site. These specimens appear to cluster well with the Category 3/Big Sandy artifacts. A single specimen was utilized as a notched biface.

Raw Material: Blue-Gray Tan (13; 5 Heat), Blue-Gray Tan Fossiliferous (2), Gray-Tan Mottled/Banded (5; 1 Heat), Gray (1), Dark Gray (1), Gray Banded (1), Chalcedony (3), Jasper (2)

Category 9: Shallow Side Notched, Incurvate Expanded Stem, Small Blade (n=10)

Specimens in this category exhibit elongate to blades with excurvate to asymmetrical blade edges and are extensively resharpened (Figure 34d). They may have narrow tapered to incipient or non-existent shoulders, and shallow side notches. Stems are wide and expanded with acute to rounded flaring auricles. Bases are incurvate to straight, and may be thinned or in one instance exhibit unfinished cortex. They are biconvex and plano-convex in cross-section.

These specimens may be variants of Penitentiary Branch Category 8. The decision to not to group the two sets of projectile points was based on the variation in stem measurements. While the blade can be expected to be reduced during resharpening, reduction of the stem is not expected. Consequently, the indication is that the Category 9 specimens were originally manufactured on a smaller blank than Category 8.

Raw Material: Blue-Gray Tan (4; 2 Heat), Blue-Gray Oolitic (1), Blue Green (2), Chalcedony (1), Agate (2)

Category 10: Undifferentiated Corner/Side Notched (n=2)

Category 10 points exhibit medium triangular blades with asymmetrical edges (Figure 34e). Shoulders are tapered to incipiently tapered and asymmetrical. Stems are wide and weakly expanded, and exhibit weak corner to side notches. The bases are weakly incurvate and thinned, and points are biconvex in cross-section. Similar specimens were recovered from Stratum C, Level 2 at the Penitentiary Branch site (Morse 1967), suggesting a Late Archaic to Early Woodland Period cultural affiliation.

Raw Material: Light Gray (1), Gray Banded (1)

Category 11: Corner Removed, Narrow Stem, Notched Base (n=5)

Artifacts in this category are medium to small with overall triangular forms and parallel (n=4) to excurvate (n=1) blade edges (Figure 34f). One specimen exhibits serrated blade edges.

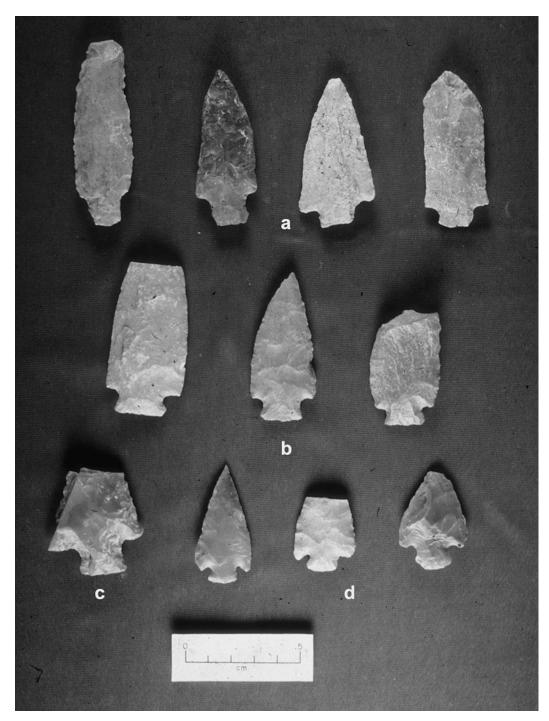
Shoulders are medium horizontal to weakly inversely tapered. Stems are narrow and straight to weakly expanded (n=2) with ground or battered notches. The base is weakly notched or bifurcated (n=3) to straight (n=1), with one indeterminate. One specimen exhibits a distinctive V-shaped basal notch. Category 11 points are biconvex and plano-convex in cross-section.

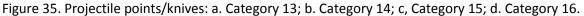
The basal element of this category exhibits attributes similar to Stanly Stemmed (Coe 1964:35) and Little Tennessee River Category 15 (Chapman 1977:35). However, blade and stem size of those Middle Archaic points is greater than the Category 11 specimens recovered from Penitentiary Branch. The Penitentiary Branch points were recovered from a Late Archaic period context in Stratum C.

Raw Material: blue-Gray Tan (3; 1 Heat), Gray Tan Mottled/Banded (1), Blue Green (1)

Category 12: Corner Removed, Wide, Long Stem, Incurvate Base (n=1)

These triangular points exhibit slightly asymmetrical blade edges and serrated lateral edges (Figure 34g). Shoulders are one horizontal and one tapered. Stems are wide, long, and weakly expanded with an incurvate and thinned base exhibiting weak grinding. The point is flattened with beveled lateral edges in cross-section. This category is referable to the Appalachian Stemmed type (Kneberg 1957:66), and likely affiliated with the Late Archaic period. It was recovered from Level 2, Stratum C, at Penitentiary Branch.


Raw Material: Blue-Gray Tan


Category 13: Short Straight to Weakly Expanded Stem, Asymmetrical Blade (n=25)

Category 13 from Penitentiary Branch consists of medium-large triangular to elongate points with asymmetrical to straight blade edges (Figure 35a). Asymmetrical edges diagnostic of knife blades predominate. Shoulders are narrow to medium horizontal, tapered, and rarely weakly inversely tapered. Stems are short and straight to weakly expanded with corner notches. Bases are straight to weakly Excurvate and thinned, while two specimens exhibit basal grinding. These artifacts are biconvex and flattened in cross-section.

This category is perhaps most comparable to Category 100, Medium-Short Straight Stemmed, Narrow Blade described from the Duck River Valley (Faulkner and McCollough 1973:120). The Penitentiary Branch Category 13 point is also referable to the Flint Creek type (Cambron and Hulse 1975:51), although few of the Category 13 blades exhibit serration. Category 13 specimens display extensive evidence of resharpened blades which are commonly asymmetrical and beveled. Although the stem is shorter than the Late Archaic Ledbetter type (Kneberg 1956), blade treatment is similar and may be generally assigned to a Ledbetter group.

Raw Material: Blue-Gray Tan (12; 3 Heat), Blue-Gray Tan Fossiliferous (2), Blue Gray Oolitic (1), Tan-Gray-Green (1), Gray (3), Black (1; 1 Heat), Gray Tan Mottled (2; 1 Heat), Gray Banded (3; 1 Heat).

Category 14: Short Medium Expanded Stem, Asymmetrical Blade (n=22)

Artifact within this category feature medium-large elongate to weakly triangular blades with excurvate and asymmetrical edges (Figure 35b). Shoulders are narrow to medium horizontal, tapered, or rarely inversely tapered. They exhibit wide, rounded notches, and a wide neck terminating in an expanded stem. Bases are thinned and predominantly straight, though

occasionally weakly incurvate, with two specimens exhibiting basal grinding. They are biconvex and plano-convex in cross-section.

These specimens are similar to Penitentiary Branch Category 13 in terms of the corner notched shoulders and asymmetrical blades. The major differences are reflected in the stem treatment and blade and stem width: Category 14 is, on the average, 2.6 mm (blade) and 4.6 mm (stem) wider than Category 13. This category also resembles the Ledbetter (Kneberg 1956) and Pickwick types (DeJarnette et al. 1962) with the resharpened asymmetrical blade and asymmetrical shoulders. Both these Late Archaic types are associated with shell middens in northern Alabama and Tennessee. The Penitentiary Branch Category 14 projectile point/knife is affiliated with the Late Archaic period, Strata J, K, C and A.

Raw Material: Blue-Gray Tan (14; 2 Heat), Blue-Gray Tan Fossiliferous (2; 1 Heat), Gray Tan Mottled (2), Tan-Gray-Green (1), Dark Gray (2), Gray Banded (1)

Category 15: Corner Removed, Broad Stemmed, Wide Blade (n=3)

These wide, thick, triangular points exhibit parallel straight blade edges, shoulders which are barbed to horizontal, and straight to weakly expanded stems (Figure 35c). Bases are straight and thinned, and one specimen exhibits a weakly ground basal edge. They are biconvex and flattened in cross-section. This category is comparable to Normandy Reservoir Category 104, Medium-Large Straight-Expanded Stemmed, Strong Shouldered, Wide Blade (Faulkner and McCollough 1973:122) and the Cotaco Creek type (DeJarnette, Kurjack, and Cambron 1962). One similar point was recovered from the Robinson site (Morse 1967:75). Penitentiary Branch Category 15 is assigned to the Late Archaic to Early Woodland and is associated with Levels 13, Strata A and C.

Raw Material: Blue-Gray Oolitic (1), Light Gray (1), Dark Gray (1)

Category 16: Inversely Tapered Shoulders, Short Narrow Weakly Expanded Stem (n=8)

Category 16 points are small and triangular, with asymmetrical blade edges (Figure 35d). Shoulders are narrow and barbed to inversely tapered. They exhibit short, narrow weakly expanded stems terminating in tapered (rounded) auricles. Bases are straight (n=4) to excurvate and thinned, and no specimens exhibit grinding on the base. They are biconvex in cross-section. These artifacts are comparable to the Wade type (Cambron and Hulse 1975:122), recovered from Late Archaic contexts in northern Alabama (Webb and DeJarnette 1948) and southeastern Tennessee (Faulkner and Graham 1966:72), as well as from Early Woodland sites in Alabama and Tennessee. Morse (1967:58) recovered 18 points similar to Category 16 from the Robinson site.

Raw Material: Blue-Gray Tan (5), Blue-Gray Oolitic 1), Light Gray (1; 1 Heat), Gray (1)

Category 17: Barbed Shoulder, Wide Expanded Deeply Notched Stem, Straight Base (n=41)

Artifacts within Category 17 from Penitentiary Branch exhibit medium, triangular blades with straight to asymmetrical edges that have been extensively resharpened (Figure 36a). One specimen exhibits grinding on both lateral edges. Shoulders are barbed to inversely tapered. These points have rounded notches, narrow necks, and expanded stems terminating in acutely pointed to tapered auricles. Bases are straight to weakly incurvate and thinned, with nine specimens exhibiting weakly ground bases. They are biconvex to flattened in cross-section.

This projectile point category is comparable to Robinson (Morse 1967:53–58), Motley (Ford et al.) 1955:129–130), and McIntire (Cambron and Hulse 1975:86) points. Those from Penitentiary Branch exhibit moderate to weak barbs and wide expanded stems. The three types referred to above are associated with Late Archaic to Early Woodland period strata in Alabama (Webb and Dejarnette 1948), Kentucky (Webb 1946), Tennessee (Faulkner and Graham 1966; Morse 1967) and the lower Mississippi River Valley (Ford et al. 1955). A Later Archaic period affiliation is indicated for the Cumberland River drainage in Tennessee. The Penitentiary Branch specimens were recovered primarily from Strata A, C, D, E, and G.

Raw Material: Blue-Gray Tan (20; 1 Heat), Dark Blue-Gray Tan (3), Blue-Gray Tan Fossiliferous (6; 1 Heat), Blue Gray- Oolitic (3), Gray (2; 1 Heat), Dark Gray (2; 1 Heat), Gray Banded (3), Blue-Green (1), Jasper (1)

Category 18: Small Horizontal Shoulder, Wide Expanded Deeply Notched Stem, Incurvate Base (n=13)

Category 18 consists of medium, triangular points with straight to asymmetrical blade edges that are typically resharpened (Figure 36b). Shoulders are narrow horizontal to inversely tapered, while stems are deep, with rounded notches, widen necks in relation to blade with, and wide expanded stems terminating in tapered to acutely pointed auricles. Bases are incurvate and thinned, and ground on two of the specimens. These points are biconvex and plano-convex in cross-section.

This category closely corresponds to Penitentiary Branch Category 17, with the most noticeable variations being the incurvate base, narrow horizontal to inversely tapered shoulder and wide stem neck (mean of 2.0 mm wider). Consequently, Category 18 shares traits with Robinson projectile points (Morse 1963) but is most similar to the Motley (Ford et al. 1955:129–130) and McIntire (Cambron and Hulse 1975:86) types. All of these types are associated with Late Archaic shell midden sites in northern Alabama, Kentucky, and Tennessee.

Raw Material: Blue-Gray Tan (8; 2 Heat), Tan Porcelaneous (1), Light Gray (1), Gray (2; 1 Heat), Chalcedony (1)

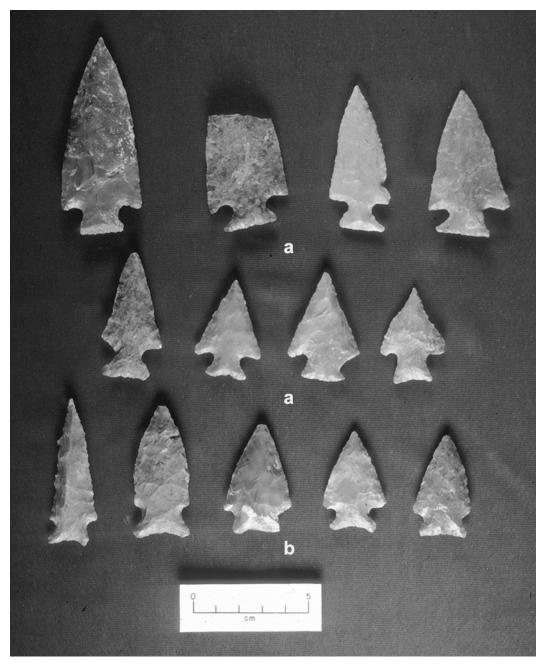


Figure 36. Projectile points/knives: a. Category 17; b. Category 18.

Category 19: Tapered Shoulders; Long, Expanded Stem (n=7)

This point type category at Penitentiary Branch consists of narrow and elongate specimens with straight to excurvate blade edges (Figure 37a). At least one example was extensively resharpened. They exhibit narrow, tapered shoulders, wide, elongate notches, and narrow expanding stems terminating in slightly rounded auricles. Bases are straight to excurvate and thinned, while two exhibit basal grinding. They are biconvex in cross-section.

These specimens may be variants of Penitentiary Branch Categories 17 and 18, with primary variation being the tapered shoulder. Motley (Ford et al. 1955) projectile points may be similarly variable with inversely tapered, tapered, and horizontal shoulders (following Cambron and Hulse 1975:92) or long barbs (Ford et al. 1955). Penitentiary Branch Category 4 is associated with the Late Archaic period.

Raw Material: Blue-Gray Tan (4), Blue-Gray Oolitic (1), Tan-Gray-Green (1), Light Gray (1; 1 Heat)

Category 20: Corner Removed, Narrow, Weakly Expanded Stem (n=3)

Category 20 points are triangular and elongate with parallel straight blade edges (see Figure 37b). They exhibit medium to broad tapered shoulders, weakly expanded narrow stems, and straight to expanded bases. They are biconvex and plano-convex in cross-section. Artifacts in this category were recovered from Stratum I (Level 8) upwards through Stratum C at Penitentiary Branch. This indicates a Late Archaic period cultural affiliation. The hafting element resembles the Flint Creek type (Cambron and Hulse 1975:51).

Raw Material: Blue-Gray Tan (1; 1 Heat), Blue-Gray Tan Fossiliferous (1; 1 Heat), Blue-Gray Oolitic (1)

Category 21: Corner Removed, Expanded Stem, Straight Base (n=12)

Artifacts in Category 21 are medium triangular to lanceolate in form, with parallel and asymmetrical blade edges (Figure 37c). They exhibit horizontal, weakly barbed and tapered shoulders although individual specimens may vary. Stems are medium and expanded with acute to blunt auricles, while bases are straight and thinned. Three specimens exhibit basal grinding. They are biconvex, plano-convex, and flattened in cross-section.

The Penitentiary Branch Category 21 type somewhat resembles Robinson (Morse 1967:53–58), Motley (Ford et al. 1955:129–130), and Penitentiary Branch Category 17 forms. However, greater neck width, shorter stem length, depth of corner removals, and basal form distinguish Category 21 from these three types. Category 21 specimens were recovered from the Late Archaic period Levels 1--4 and 6 (Strata A--D and F) at Penitentiary Branch.

Raw Material: Blue-Gray Tan (7; 1 Heat), Gray-Blue Green (1), Blue-Gray Oolitic (1), Light Gray (1), Gray (1), Blue-Green (1)

Category 22: Medium Shallow Notched, Expanded Stem (n=13)

Category 22 consists of narrow to medium elongate lanceolate points with parallel to asymmetrical blade edges and tapered shoulders (Figure 37d). Notches on individual specimens grade from shallow side to corner notched, while stems are broad to medium expanded. Bases for Category 22 are straight to weakly incurvate, and four specimens exhibit basal grinding.

They are biconvex, flattened, and plano-convex in cross-section. The distal ends of 69.2 percent (n=9) of Category 22 specimens are rather crudely manufactured and have been broken medially. These specimens may be variants of Penitentiary Branch Category 14. Level distribution indicates a definite Late Archaic period cultural affiliation.

Raw Material: Blue-Gray Tan (8; 4 Heat), Blue-gray tan Fossiliferous (1), Gray Tan Mottled/Banded (1), Light Gray (1), Dark Gray (2)

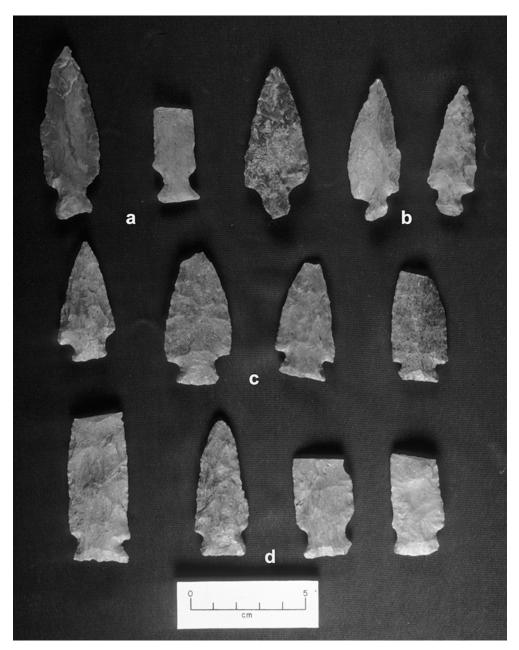


Figure 37. Projectile points/knives: a. Category 19; b. Category 20; c. Category 21; d. Category 22.

Category 23: Corner Notched, Expanded Stem, Straight-Incurvate Base, Small Blade (n=9)

Artifacts in Category 23 are small and triangular to lanceolate form with parallel straight to asymmetrical blade edges which have been resharpened (Figure 38a). Shoulders are narrow and weakly tapered, while stems medium expanded stems exhibit moderately deep corner notches. Bases are straight and weakly incurvate, with thinning (n=7) and unfinished cortex (n=2). Two (22.2 percent) exhibit basal grinding. They are biconvex, plano-convex, and flattened in cross-section.

This category is comparable to Category 84, Medium Undifferentiated Expanded Stemmed, Narrow Blade (Faulkner and McCollough 1973:111) from the Upper Duck River area. The Penitentiary Branch site specimens have smaller blades but the stem attributes and measurements are similar to Category 84. Penitentiary Branch specimens are distributed through the midden from Levels 11–1 (Strata L–A), and are of firm Late Archaic period context.

Raw Material: Blue-Gray Tan (3; 1 Heat), Blue-Gray Oolitic (1; 1 Heat), Gray Tan Mottled (1), Light Gray (1), Gray (1), Dark Gray (1), Chalcedony (1)

Category 24: Small Corner/Side Notched, Expanded Stem, Straight Base (n=2)

These lanceolate points exhibit excurvate, symmetrical blade edges and distinct rounded notches. Each specimen exhibits one side and one corner notch (Figure 38b). Shoulders are narrow horizontal to weakly tapered, while stems are medium expanded. Bases are straight and thinned, and cross-section is biconvex. These specimens are probably referable to corner notched and expanding stem types and are associated with the Late Archaic occupation at Penitentiary Branch.

Raw Material: Blue-Gray Tan (1), Agate (1)

Category 25: Corner Notched, Expanded Stem, Excurvate-Straight Base (n=10)

Category 25 consists of medium excurvate-triangular and lanceolate forms with parallel and asymmetrical blade edges that commonly exhibit resharpening (Figure 38c). Shoulders are asymmetrical, prominently tapered, and horizontal, while stems are wide to medium expanded with blunted to flaring auricles. Category 25 points exhibit deep corner notches and excurvate to straight thinned bases. Four specimens exhibit basal grinding. These points are biconvex and plano-convex in cross-section, and are analogous to examples of the Corner Notched/Corner Removed type (Chapman1981:78) from the Little Tennessee River Valley. Category 25 specimens were recovered from Late Archaic Strata A–C at Penitentiary Branch.

Raw Material: Blue-Gray Tan (3), Blue-Gray Tan Fossiliferous (1), Dark Blue-Gray Tan (1; 1 Heat), Tan-Gray-Green (1), Light Gray (2), Gray (1; 1 Heat), Blue-Green (1)

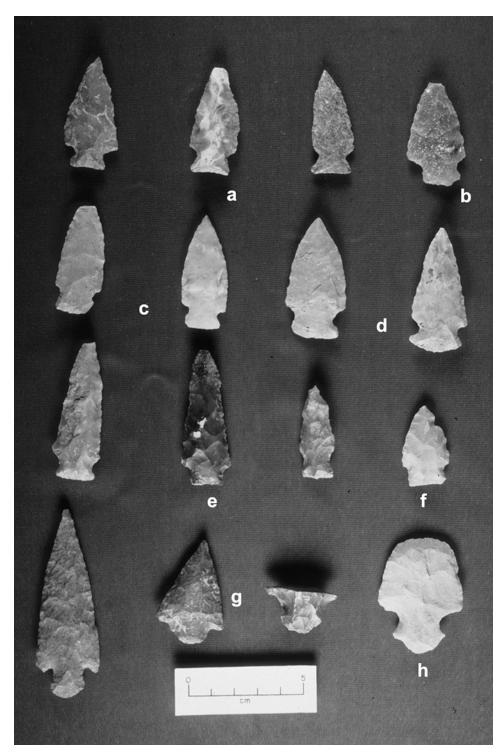


Figure 38. Projectile points/knives: a. Category 23; b. Category 24; c. Category 25; d. Category 26; e. Category 27; f. Category 29; g. Category 30; h. Category 32.

Category 26: Corner Removed, Short Expanding Stem, Narrow Elongate Blade (n=10)

Artifacts from Category 26 at Penitentiary Branch are narrow and elongate to triangular with straight to asymmetrical blade edges (see Figure 38d). Shoulders are tapered to weakly tapered, and the stems are short and weakly expanded. These points exhibit straight and thinned bases. One specimen retains cortex on a portion of the basal edge, while a second exhibits heavy grinding on the basal edge. They are plan-convex, rhomboidal, and biconvex in cross-section.

Category 26 specimens were recovered from Late Archaic affiliated Strata A–C and F–G at Penitentiary Branch. The plano-convex and rhomboidal cross-section as well as the blade width of Penitentiary Branch Category 26 strongly suggests drills morphology. However, these specimens exhibit no polish or edge grinding. Several have been extensively resharpened.

Raw Material: Blue-Gray Tan (3: 2 Heat), Blue-Gray Tan Fossiliferous (1), Tan-Gray-Green (1), Blue-Gray Oolitic (1), Gray-Tan Mottled (1), Dark Gray (1), Blue-Green (2)

Category 27: Corner Removed, Straight Stem (n=2)

These lanceolate-triangular forms exhibit asymmetrical blade edges, narrow horizontal shoulders, and wide, straight stem with incipient auricle on one lateral edge (see Figure 38e). Bases are straight, and one of the two specimens exhibits a weakly ground basal edge. They are biconvex and plano-convex in cross-section. Specimens were recovered from Levels 1 and 2, Strata A and C at Penitentiary Branch.

Raw Material: Light Gray (2)

Category 28: Corner Removed, Straight/Contracted Stem, Elongate Blade (n=2)

Category 28 points are narrow, elongate and elongate-triangular with straight blade edges and narrow (incipient) tapered shoulders. Stems are wide straight to weakly contracted, and bases are straight and thinned. They are biconvex in cross-section. These artifacts may have functioned primarily as knives, and were recovered from the plowzone and Stratum C at Penitentiary Branch.

Raw Material: Blue-Gray Tan (1), Indeterminate Water Worn Chert (1)

Category 29: Corner Removed, Rounded Stem, Barbed Shoulders (n=5)

These points are elongate-triangular and triangular with straight and asymmetrical blade edges (see Figure 38f). Shoulders are barbed, while stems are contracted-rounded and weakly expanded-rounded. Their bases are rounded and thinned, and they are biconvex, flattened, and weakly beveled in cross-section. These artifacts display some characteristics of the Late Archaic-Early Woodland period Wade (Cambron and Hulse 1975:122) and Gary (Newell

and Krieger 1949:164) types, and resemble Penitentiary Branch Category 16. However, the distinctively excurvate to rounded stem base makes this later correlation uncertain. The specimens of Category 29 were recovered from Stratum C at Penitentiary Branch.

Raw Material: Blue-Gray Tan (1), Blue-Gray Tan fossiliferous (1), Blue-Gray Oolitic (1), Gray Banded (1), Gray (1)

Category 30: Corner Removed, Contracted Stem, Round Base (n=1)

The single, partial example of a Category 30 point from Penitentiary Branch exhibits a wide, contracted-rounded stem and tapered shoulders (see Figure 38g). The base is rounded and partially thinned, and exhibits battering on the basal edge. This point may be comparable to the Late Archaic-Early Woodland Gary type (Newell and Krieger 1949:164), and was recovered from Feature 123, Level 2 at Penitentiary Branch.

Raw Material: Dark Gray

Category 31: Corner Removed, Expanded Stem, Small Blade (n=1)

This short, expanded point exhibits medium asymmetrical and tapered shoulders, a medium expanded stem, and excurvate, thinned base. It is plano-convex in cross-section, and was recovered from a Late Archaic context at Penitentiary Branch.

Raw Material: Blue-Gray Tan

Category 32: Corner Removed, Wide Expanded Rounded Stem (n=1)

Category 32 consists of a single triangular point refashioned as an end scraper (see Figure 38h). It exhibits weakly tapered shoulders, and a wide expanded-rounded stem with wide barbs on the lateral edges. The base is long, rounded, and thinned, and the point is biconvex in cross-section. This specimen was recovered from Stratum C, and is somewhat similar to the Bacon Island type (Cambron and Hulse 1975:9). A Late Archaic cultural affiliation is suggested for this specimen, which is cross referenced as a Category 7 bifacial end scraper.

Raw Material: Blue-Gray Tan

Projectile Point Fragments

Distal Fragments (n=178)

Raw Material: Blue-Gray Tan (88), Tan-Gray-Free (14), Light Gray (10), Gray (13), Dark Gray (7), Dark Blue-Gray Tan (12), Blue-Gray Tan Fossiliferous (7), Gray-Tan Mottled (7), Tan Porcelaneous (8), Blue-Gray Oolitic (4), Blue-Gray Banded (2), Agate (3), Chalcedony (2), Gray Banded (1)

Medial Fragments (n=38)

Raw Material: Blue-Gray Tan (2), Dark Blue-Gray Tan (2), Light Gray (1), Gray (4), Gray-Tan Mottled (4), Blue-Gray Tan Fossiliferous (3), Blue-Gray Oolitic (2), Blue-Gray Banded (1), Blue-Green (1)

Proximal Fragments (n=10)

Raw Material: Blue-Gray Tan (4), Blue-Gray Tan Fossiliferous (2), Dark Blue-Gray Tan (2), Gray Tan Mottled (1), Gray (1)

Discussion

At least 80.6 percent (n=237) of the 294 projectile points from Penitentiary Branch are manufactured of Fort Payne chert, with the majority of those from Blue-Gray Tan chert. In addition, 19.7 percent (n=58) display obvious and detectable thermal alteration.

Most of the Penitentiary Branch projectile points can be categorized into four collective groups (after Faulkner and McCollough 1973) on the basis of similar hafting elements. Although total implement (including stem) length, width, and thickness were recorded, stem metrics seem most reliable for assigning projectile points/knives to specific categories. Factors governing variability of metric attributes within a specific category may be a product or raw material and/or functional processes such as resharpening. Specimens within each group are chronologically similar as established by site context and radiocarbon dating from Penitentiary Branch and other mid-South Archaic site investigations (DeJarnette et al. 1962; Lewis and Kneberg 1959; Lewis and Lewis 1961; Morse 1967). Placement of several of the projectile point categories into the four groups illustrates the artifacts can be lumped for a synoptic view.

<u>Side Notched (Big Sandy) Group</u>.¹⁸ Categories 3, 4, 5, 6, and 7 fit well within this group. Side notched points, designated as the Big Sandy type, have been recovered from Early Archaic (DeJarnette et al. 1962; Fowler 1959:19) through Late Archaic (Lewis and Lewis 1961:37; Morse 1967:64) contexts. As a result of excavations of the Three Mile component at the Eva site, Lewis and Lewis (1961:37) place unground Big Sandy variants at ca. 4000 to 2000 BC. The occurrence of "classic" Big Sandy type points, Category 3, and probable variants predominately in Levels 1, 2, 3, and 4 (Strata C) at the Penitentiary Branch site suggests the side notched point dates from 3185 to 2975 BP.

The Penitentiary Branch Side Notched group is of apparent local manufacture with 87.5 percent (n=49) of the 56 points made of Fort Payne chert and 55.4 percent (n=31) from Blue-Gray Tan chert.

¹⁸ Only 32 percent (18 of 56) points in this group exhibit basal grinding. This suggests that the bulk of the side notched points from Penitentiary Branch are more properly lumped into the Late Archaic Big Sandy II tradition.

<u>Side Notched Incurvate Base Group</u>.¹⁹ Side notched and incurvate base Categories 8, 9, and 10 are similar to the Greenbrier type (Lewis and Kneberg 1960), although the validity of the Paleo-Indian through Late Archaic period assignment of this type in Tennessee and Alabama is not well established; consequently, this Penitentiary Branch group should not be seriously affiliated with that type.

Side notched and incurvate base points occur at Penitentiary Branch in Strata A-C; associated dates range from 3185-2975 BP, uncorrected. This group, therefore, appears to be affiliated with the Side Notched group and may be a variant or a late form in that tradition. Of the 40 specimens, 67.5 percent (*n*=27) are comprised of Fort Payne chert.

<u>Corner Removed, Asymmetrical or Broad Blade (Ledbetter) Group</u>. This group is composed of Categories 12, 13, 14, 15, and 22 which are similar to such named types as Ledbetter and Cotaco Creek. The approximated date for Ledbetter is 2800 BC (Lewis and Kneberg 1959). At the Robinson site, 55 Ledbetter points were recovered (Morse 1967:45) from contexts ranging from approximately 1280–500 BC. At Penitentiary Branch, specimens comprising this cluster were recovered from Levels 1–9, with dominant occurrence in Levels 1–5 (Strata A-F). Consequently, the group would range from approximately 3375–2975 BP. Of the 64 specimens included in this group, 84.4 percent (n=54) are manufactured of Fort Payne chert. The majority of these 54 specimens are of Blue-Gray Tan chert.

<u>Corner Removed/Notched, Expanded Stem (Motley/Wade/Robinson) Group</u>. Categories 16, 17, 18, 19 and 21 are similar to the Wade, Motley, Robinson, and McIntire types. The Wade type, affiliated with the Late Archaic–Early Woodland horizon at the Tennessee Westmoreland-Barber site, where it was dated from 755–340 BC. Wade, Motley, and Robinson type points were all recovered from Robinson Shell Mound, where dates range from 3230–2450 BP. At Penitentiary Branch this group occurs predominantly in Levels 1–4 and occasionally Level 6. The group would therefore date from approximately 3050–2975 BP. This group comprises the largest number of specimens (n=81) of the four point groups from the site. Approximately 84 percent (n=68) of the Corner Removed/Notched, Expanded Stem specimens are manufactured of Fort Payne chert, with 54.3 percent (n=44) of these from Blue-Gray Tan chert.

Other Chipped Stone Implements

Knives

This functional classification is characterized by attributes which include an asymmetrical blade edge which is acute and sinuous. Sixteen bifacial and unifacial specimens were classified as knives, and further subdivided into five categories.

¹⁹ Cursory reexamination of points from this group suggest some fall within the range of the Big Sandy / Big Sandy Auriculate typology rather than the suggested Greenbrier type.

<u>Category 1</u> included six auriculate or stemmed bifaces with asymmetrical or beveled blade edges. Stems on these artifacts were corner- or side notched with weak tapered shoulders (n=3), while bases were straight or incurvate with evidence of thinning and grinding on two specimens. Several specimens exhibit beveled blades due to resharpening. Category 1 knives are biconvex, plano-convex, and beveled in cross-section.

Raw Material: Blue-Gray Tan (3: 1 Heat), Dark Gray (3)

<u>Category 2</u> consisted of seven medium to large bifaces with triangular or contracted basal areas. Blades were asymmetrical, with sinuous blade edges. Basal areas were triangular or contracted, with straight or excurvate bases which on three specimens exhibit grinding. Four specimens were poorly thinned near one lateral edge, while acute lateral edges of three specimens create ad beveled effect. Cross-section: biconvex, plano-convex, and beveled. Knife specimen 1023–6 is unique in that it exhibits extensive resharpening from use and "classic" knife characteristics including an acute tip and triangular rounded base. Blade edges are beveled along both lateral edges.

Raw Material: Blue-gray Tan (3; 1 Heat), Dark Blue-Gray Tan (1), Gray Tan Mottled (1; 1 Heat), Tan-Gray-Green (1), Non-local Chert (1)

<u>Category 3</u> included a single roughly oval biface made from Blue-Gray Tan chert, with an acute tip and one steep, sinuous lateral working edge. The blade was asymmetrical and sharpened, with use-wear macroscopically visible along the single working edge. The basal area was rounded/oval, and the artifact was plano-convex in cross-section.

<u>Category 4</u> consists of a single rectangular bifacial backed knife made from Blue-Gray Tan Fossiliferous chert. The blade is bifacially flaked along one edge, while the opposing edge consists of the flat, unmodified natural fracture plane. Both the distal and proximal ends exhibit snap fractures. This artifact is biconvex in cross-section.

<u>Category 5</u> is comprised of a single heat-treated lanceolate unifacial knife with acute lateral edges, made from Blue-Gray Tan chert. The blade is weakly asymmetrical with one steep working edge, while the opposite lateral edge less acute and terminates in an acute distal end. The base exhibits crenated fracturing. The artifact is plano-convex in cross-section.

Scrapers (n=15)

Implements classified as scrapers are characterized by continuous, regular retouch along one or both lateral edges, the distal end, or both. Penitentiary Branch site scrapers included unifacial end and side scrapers (n=5), unifacial end scrapers (n=4), unifacial side scrapers (n=4), bifacial end scrapers (n=1), and core scrapers (n=1).

<u>Unifacial End and Side Scraper, Category 1</u> (n=3). Specimen 1 (Figure 39e) was manufactured on a heat-treated Blue-Gray Oolitic chert blade and exhibits acute lateral edges characterized by fine flake scars and batter produced during use. The distal end exhibits acute percussion flake

removals and use-wear, while the proximal end retains striking platform and cortex. The ventral side is slightly incurved.

Specimen 2 was manufactured on a thick bifacial reduction flake of Dark Blue-Gray Tan chert. The lateral edges exhibit direct percussion flake removals producing steep and acute edges showing battering and small flake scars from use-wear. The distal end is steep and acute, similar to "thumbnail" end scrapers, and shows batter and use-wear. The proximal end features the striking platform and some cortex.

<u>Unifacial End and Side Scraper, Category 2</u> (*n*=3). These amorphous scrapers are manufactured on flakes, and exhibit lateral edges which are acute and show batter and use-wear. Their distal ends are acute, with extensive batter. Striking platforms and hafting areas are distinguishable on the proximal ends. Ventral sides are flat to weakly curved. Raw material for this category included Blue-Gray Tan (1), Dark Blue-Gray Tan (1), and Blue-Gray Tan Fossiliferous (1) chert.

<u>Unifacial End Scraper, Category 3</u> (n=3). These tools are manufactured on bifacial thinning flakes, with percussion flaking on the distal ends utilized to produce an acute working edge. The working edges exhibit batter (n=3) and polish (n=1). Proximal ends show the striking platform, while ventral sides are flat to weakly curved. Raw material types included Gray-Tan Mottled/Banded (1), Gray (1), and Dark Blue-Gray Tan (1) chert.

<u>Unifacial End Scraper, Category 4</u> (*n*=1).The single example of category 4 is an end scraper manufactured from Blue-Gray Tan chert on a long distally expanded flake. The distal end exhibits an obtuse angle, and is expanded and rounded, while the working edge displays batter and grinding extending onto ventral surface. The proximal end shows a flat striking platform and tapered end which may have served as hafting element. The ventral surface is weakly curved.

<u>Unifacial Side Scraper, Category 5</u> (n=4). These side scrapers are manufactured on amorphous, thick flakes and exhibit working edges which are acute and battered. The ventral and dorsal surfaces are unmodified, and one specimen retains cortex on dorsal surface. Striking platforms may or may not be present on the proximal end. There is no evidence of hafting elements. The raw material consists of Blue-Gray Tan (3) and Black (1) chert.

<u>Bifacial End Scraper, Category 6</u> (n=1). This triangular end scraper was manufactured on a biface made from Blue-Gray Tan chert. The distal end shows a working edge with batter and polish, while the proximal end is expanded with a triangular basal area. The base is weakly incurvate.

<u>Bifacial End Scraper, Category 7</u> (*n*=1). This end scraper is manufactured on a bifacial projectile point made from Blue-Gray Tan chert. The working edge exhibits polish and is "thumbnail" in relation to the angle; with a width of 23 mm. The proximal end exhibits an expanded-rounded stem. The projectile point on which this tool is made may be cross referenced as projectile point/knife Category 32.

Drills (n=27)

Drills are characterized by long, narrow bits/blades which are triangular, rhomboidal, or quadrilateral in cross-section. Bits are bifacially worked and expand slightly from the tip to the base. The 27 drills recovered from the Penitentiary Branch site excavations were subdivided into six categories.

<u>Stemmed Drill, Category 1</u> (Figure 39a) (n=4). These are bifacial implements, presumably manufactured from projectile points. All specimens are characterized by corner removed/notched stems. Bits are rhomboidal (n=2) and triangulate (n=2) in cross-section, and show signs of batter (n=2) and polish (n=1). Two specimens display long, straight corner removed stems with straight bases; however, the projectile point category from which they were manufactured is indeterminate. A third drill with a corner notched expanded stem and straight base in addition to barbed shoulders suggests the Wade-Motley-Robinson projectile point group. The fourth specimen is corner notched, straight based, and shoulders are tapered; it is analogous to projectile point Category 17. Raw material includes Blue-Gray Tan (1), Blue-Gray Oolitic (1), and Black (2) cherts.

Expanded Triangular to Rounded Based Drill, Category 2 (Figure 39b) (n=11). Category 2 consists of bifacial implements with an expanded triangular, rounded, or rectangular basal/hafting areas. Bits are rhomboidal (n=5) and triangular (n=6) in cross-section and show polished/grinding (n=2), battering (n=3), both batter and polish (n=1), or no visible wear (n=5). Raw material types include Blue-Gray Tan (7), Light Gray (1: 1 Heat), Gray (1), and Tan Porcelaneous (2) chert.

<u>Rough, Chunky Bifacial Drill, Category 3</u> (Figure 39c) (n=2). These drills were manufactured on chunky, moderately flaked bifaces with unfinished hafting areas. Bits are rhomboidal in cross-section. Bases are unfinished with striking platforms of large, thick, bifacially reduced flakes. These tools were manufactured from Tan-Gray-Green (1) and Blue-Gray Banded (1) chert.

<u>Unhafted Bifacial Drill, Category 4</u> (Figure 39d) (n=5). Straight bifacial drill bits with flat unfinished bases and no hafting element. Bits are rhomboidal (n=4) and triangular (n=1 in cross-section), and appear battered (n=2), battered and polished (n=2), or with indeterminate usewear (n=1). Category 4 tools are manufactured from Blue-Gray Tan (1), Blue-gray Fossiliferous (1), Tan Porcelaneous (1), Dark Gray (1), and Tan-Gray-Green (1) chert.

<u>Flake Drill, Category 5</u> (Figure 39e) (n=3). These drills are made on bifacial thinning flakes with unmodified bases/hafting areas and bifacially flaked bits. Bits are triangular (n=1) or beveled (n=20) in cross-section. Bit use-wear includes battering (n=1), and both batter and polish (n=1), along with one example which has been retouched. They are manufactured from Blue-Gray Tan (1) and Blue-Gray Tan Fossiliferous (2) chert.

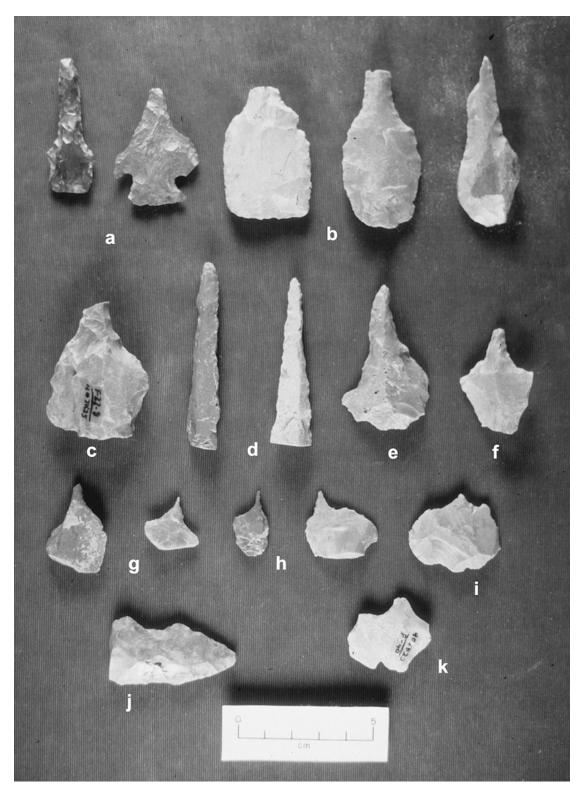


Figure 39. Drills, perforators and notched flakes: a. Drill, Category 1; b. Drill, Category 2; c. Drill, Category 3; Drill, Category 4; E. Drill, Category 5; f. Drill, Category 6; g. Perforator, Category 1; h. Perforator, Category 2; i. Perforator/Graver; j. Notched Flake; k. Notched biface.

<u>Modified Nodule Drill, Category 6</u> (Figure 39f) (n=2). These tools are manufactured on partially and roughly bifacially modified Blue-Gray Tan chert nodules with amorphous basal areas. Bits are rhomboidal and triangular in cross-section, and show polish on the distal end and lateral edges (n=1) as well as minor battering (n=1). The basal areas are unmodified.

<u>Broken Drill Bits</u> (*n*=12). Broken drill bits were manufactured from Blue-Gray Tan (2), Blue-Gray Tan Fossiliferous (2), Blue-Gray Oolitic (1), Gray-Tan Mottled (1), Dark Blue-Gray Tan (2), Light Gray (2), and Black (2) cherts. Two specimens showed macroscopic polish.

<u>Drill Preforms</u> (n=3). Three bifacially flaked artifacts exhibit expanded basal areas and tapered distal ends suggestive of drill bits. These distal ends, however, are partially flaked but unfinished. Specimen 1059–5 is triangular and made from Gray Banded chert, with a straight base and manufactured on a decortications flake. The tapering distal end is beveled with bifacial flaking on one lateral edge, while the opposing lateral edge is flaked on the ventral surface but cortex is retained on the dorsal.

Specimen 1001–5 is an expanded and rounded thinned biface made from Blue-Gray Tan chert with a small projection of the striking platform at the base. The short tapered triangular "bit" appears burinated on one lateral edge while the opposing edge is similar but the product of a fracture plane. The artifact is not actually burinated.

Specimen 1078–2 is a thick roughly flaked nodule made from Blue-Gray Tan chert, with an expanded slightly triangular basal area and a weakly excurvate cortex-covered base. The triangular, tapered projection exhibits flake removals, a natural fracture plane, and a single long, narrow flake driven from the broken apex to the base of the projection.

Perforators (n=14)

Perforators are characterized by thin, narrow or narrow tapered projections formed by unidirectional flake removals from the lateral edges. The 14 specimens recovered from Penitentiary Branch were manufactured on small to medium bifacial thinning or decortications flakes.

<u>Perforator, Category 1</u> (Figure 39g) (*n*=11). Perforators on bifacial thinning or decortication flakes. Perforator projection removals on both lateral edges run from the ventral to dorsal surface and the projection is opposite the striking platform. Raw material types include Blue-Gray Tan (7), Dark Blue-Gray Tan (3), and Indeterminate, Water Worn (1) chert.

<u>Perforator, Category 2</u> (Figure 39h) (*n*=3). Perforator manufactured on a flake. Projection removals are from ventral to dorsal surface on one lateral edge and dorsal to ventral on the opposing lateral edge. Projection is directly opposite striking platform. Raw material types include Blue-Gray Tan (1) and Blue-Gray Oolitic (2) chert

<u>Denticulate</u> (*n*=1). A denticulate is a flake with an intentionally produced serrated edge produced by several single- or multiple-blow removals. A single specimen manufactured on a bifacial thinning flake of Gray Banded chert was identified from the Penitentiary Branch site.

<u>Perforator/Denticulate</u> (*n*=1). A Category 2 perforator and denticulate manufactured on a bifacial thinning flake of Blue-Gray Tan chert. The perforator bit is asymmetrical and the denticulate notching runs along one lateral edge immediately below the projection.

<u>Perforator/Graver</u> (Figure 39i) (*n*=1). A bifacial thinning flake of Blue-Gray Tan chert modified with a Category 1 perforator, and a graver spur is opposite the flake striking platform.

<u>Drill/Graver</u> (n=1). A broken medial portion of a Blue-Gray Tan bifacial drill, the proximal end of which has been modified to create a single graver spur.

Notched Flake/Notched Biface (n=10)

These artifacts consist of a flake or biface characterized by a deep and broad notch created by multiple flake removals. Fifty percent of the notched flakes and bifaces display minor use-wear.

<u>Notched Biface</u> (Figure 39j) (*n*=5). One specimen is manufactured on the lateral edge of a broken and unidentifiable projectile point. A second artifact is notched on the lateral edge of a Category 8 projectile point/knife. Examples include Blue-Gray Tan (4) and Dark Blue-Gray Tan (1) chert. One notch is present on each specimen.

Notched Flake (Figure 39k) (*n*=5). Examples include Blue-Gray Tan (3), Dark Blue-Gray tan (1), and Blue-Gray-Green (1) chert. One notch is present on each specimen.

Chisels (n=4)

The Penitentiary Branch assemblage includes four elongate rectangular bifaces characterized by roughly parallel lateral edges terminating in a tapered but broad straight to curved/rounded distal end (Figure 40a). All examples are manufactured on Blue-Gray Tan chert. These artifacts exhibit refined bifacial flaking of distal working end to approximately one-third length of implement, with the remaining portion roughly bifacially worked. Distal ends show use-wear attrition and minor batter and polish. The proximal ends are unfinished, straight and flat. One specimen displays deep, broad side notching immediately below the distal working end.

Adzes (n=4)

A thick, broad, and elongate roughly square to rectangular biface which displays a broad curved distal working end. Due to distinctions in size, raw material, and use-wear, the four adzes identified from Penitentiary Branch were subdivided into two categories.

<u>Adze, Category 1</u> (Figure 40b) (*n*=2). Category 1 exhibits refined bifacial reduction, with distal ends that are broad and curved, with minor attrition. They are manufactured from Blue-Gray Tan (1) and Blue-Gray Tan Fossiliferous (1) chert.

<u>Adze, Category 2</u> (Figure 40c) (n=2). These limestone tools are roughly bifacially flaked, with broad and curved distal ends, minor grinding/polish on one surface and a small portion of working edge, and extensive polish/grinding on ventral and dorsal surfaces well back from working edge.

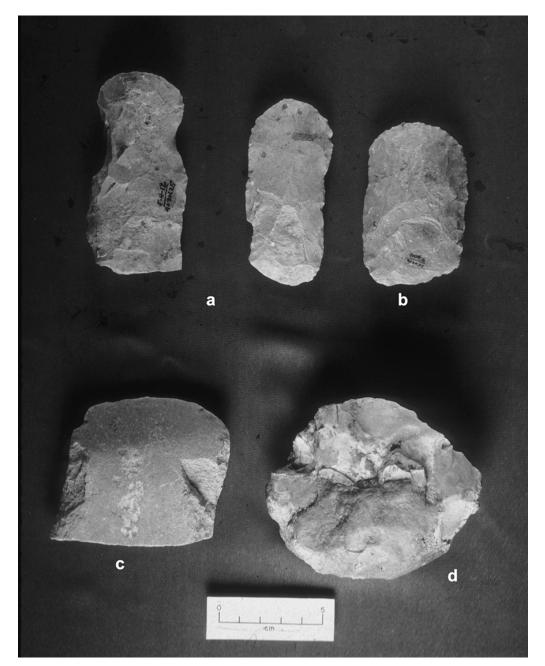


Figure 40. Chipped stone implements: a. Chisels; b. Adze, Category 1; c. Adze, Category 2; d. Cobble chopper.

Cobble Chopper (n=1)

One chalcedony cobble/nodule was characterized by bifacial flake removals to form a sharp edge on the distal end that exhibits batter and use-wear (Figure 40d). Approximately one half of the remainder of the nodule retained natural cortex on entire surface.

Chipped Stone Digging Implement (n=17)

This artifact category includes 17 thin, oval to oval-elongate, coarse-grained limestone slabs which have been bifacially flaked approximately 15 mm from the lateral edges onto ventral and dorsal surfaces around the entire perimeter (Figure 41). These implements, assumed to have functioned as digging implements such as hoes, display intermittent to extensive grinding and polish on the distal working edge (n=11). Eight specimens are characterized by obvious hafting elements and in general, the proximal end is narrow with the distal end flared and broad. The proximal end base/haft is generally straight or rounded. Hafting elements were commonly produced by wide single-and occasional multiple-blow side notching. The neck width and notch length (parallel with the lateral edge) are indicated below.

Bifacial Fragments (n=93)

Ninety-three bifacially reduced fragments badly broken and could not be assigned to any reduction sequence. Raw material types represented in this category include: Blue-Gray Tan (6), Dark Blue-Gray Tan (3), Blue-Gray Oolitic (4), Blue-Gray Tan Fossiliferous (1), Tan-Gray-Green (2), Blue-Gray Banded (2), Light Gray (2), Gray-Tan Mottled (1), Gray (2), Dark Gray (2), Black (1), Blue Green (1), and Agate (2).

Blades (n=45)

The definition employed for the identification of blades from the Penitentiary Branch site is as follows: "A specialized elongated flake with parallel to sub-parallel lateral edges; its length equal to at least twice its width. Cross- or transverse-section may be either planoconvex, triangular, subtriangular, rectangular, often trapezoidal, and on the dorsal face, one or more longitudinal crests or ridges" (Crabtree 1968:1).

Additional variables were employed for the accurate identification of blades from this assemblage, which includes more than 300 bifacial thinning flakes that exhibit parallel to sub-parallel lateral edges. Consequently, criteria included:

1) Length greater than width

- 2) Parallel to sub-parallel lateral edges
- 3) Cross-section of one or two longitudinal ridges on dorsal surface
- 4) Two or more dorsal scars reflecting uni-directional removals
- 5) Platform preparation reflecting reduction or abrasion to facilitate blade removal
- 6) Platform angle less than 90°
- 7) Bulb of applied force

Figure 41. Limestone digging implements.

Ultimately, analysis identified 45 blades manufactured from Blue-Gray Tan (40; 1 heat), Tan Porcelaneous (1), Dark Blue-Gray Tan (3), Chalcedony (1). In cross-section approximately 84 percent (*n*=36) of the blades are triangulate; the remaining 16 percent are trapezoidal. Blade termination consists of outrepassé, feather, hinger, and step. Only one blade displays retouch which is manifested on the lower portion of both lateral edges and the distal end. Twelve other blades are utilized (Cridlebaugh 1978). Although no blade cores were identified, their absence may be a product of failure to recognize exhausted blade cores. The blades may not represent a blade industry at Penitentiary Branch, but their quantity and quality indicate intentional manufacture. A full accounting of blade attributes is presented in Appendix L.

Utilized Flakes (n=110)

This artifact category includes 110 decortication, bifacial thinning, or shatter flakes which exhibit irregular or continuous fine flake removals on one or more edges indicative of edge utilization. Raw Materia types present include Blue-Gray Tan (72), Dark Blue-Gray Tan (16), Blue-Gray Tan Fossiliferous (1), Blue-Gray Oolitic (2), Tan-Gray Green (1), Gray-Tan Mottled (1), Light Gray (3), Gray (4), Dark Gray (2), Black (3), Gray Banded (3), Chalcedony (1), and Agate (1).

Debitage (n=11,342)²⁰

Debitage recovered from Penitentiary Branch site features was selected for analysis. The decision to analyze this sample was based on the fact that method of field recovery was consistent for all features whereas it varied somewhat for excavation units. The majority of features were associated with Stratum C. Appendix M categorizes and quantifies the 11,342 bifacial thinning flakes, decortications flakes, flat flakes, shatter flakes, core fragments, modified nodules, and modified module fragments.

Raw material is predominantly Fort Payne chert and identical to the chert types described in this chapter. The categories quantified in Appendix M are the product of stone implement manufacture. Bifacial thinning flakes were separated into two size classifications since the large (>3 cm) flakes comprise a great proportion of the sample and they also represent evidence of primary stage of lithic manufacture (blanks and preforms) at the site.

Ground Stone Implements

Grooved Axe (n=12)

Seven fully grooved limestone axes were recovered from Levels 2, 3, 4, and 10 at the Penitentiary Branch site (Figure 42). These tools were manufactured by pecking and then grinding the artifact. On observable specimens, the proximal end is flattened on both lateral edges and the butt (n=1) or the lateral edges are rounded and the butt flat (n=2). Distal end bits which are not broken display polish and one specimen exhibits apparent bifacial flake resharpening removals. Five additional fragments of a ground stone axe, probably grooved, were recovered from Feature 8.

Hammerstones (n=16)

Sixteen hammerstones, displaying batter and/or grinding on one or more surfaces, were recovered from the excavations (Figure 43b and c). Raw material types included Blue-Gray Tan

²⁰ This total is incorrectly given as 16,610 in the original report.

Cobble (8), Blue-Gray Tan Modified Nodule (1), Unidentified Chert Nodule (3,) Chalcedony Cobble (1), Chalcedony Cobble Fragment (1), Limestone Cobble (2), and Sandstone Cobble (1).

Pitted Cobble (n=1)

A single pitted cobble or nutting stone was recovered. This thick and flat fine-grained sandstone slab is characterized by nine pits on one surface and seven on the opposing side; pit diameters average 37; the specimen was from Level 2, Stratum C.

Figure 42. Fully grooved axes.

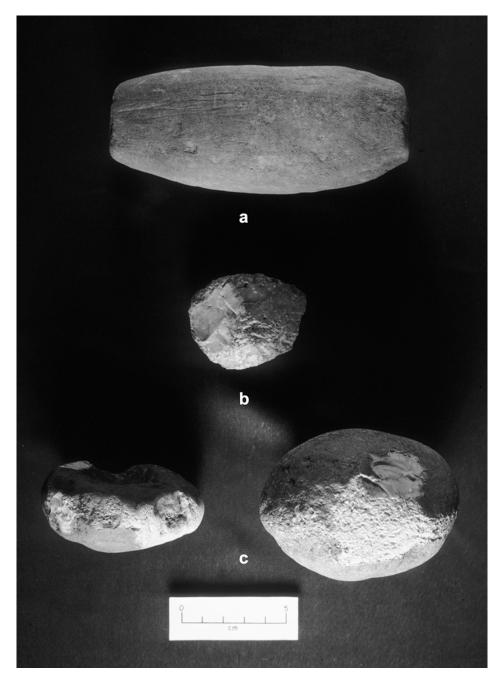


Figure 43. Ground stone implements: a. Tubular pipe blank; b-c. Hammerstones

Abraded Cobble (n=1)

Excavations recovered a single naturally shaped, triangular and flat, fine-grained sandstone cobble which has been abraded. The cortex has been abraded or ground away from both surfaces inward leaving a portion of the center surface on both sides unabraded. The three lateral edges are flat and two corners are also heavily worked.

Ground Stone Gorget (n=1)

The lithic assemblage included a single amorphously shaped limestone gorget with one drilled hole (Figure 44a). The lateral edge nearest hold is shaped and flattened, while the opposing edge is unmodified. The hole has been drilled from both the ventral and dorsal surfaces.

Ground Stone Bead (n=1)

A fine-grained limestone bead, ground and drilled, was recovered from Feature 22, which also contained Woodland ceramics (Figure 44b). The hole is drilled from both sides, and is less than 0.5 mm wide at the center.

Boatstone (n=1)

A portion of a ground and polished unfinished limestone boatstone was recovered from Feature 11 (Figure 44c). It is plano-covex in shape with a wide groove on the ventral surface and tapered, rounded end.

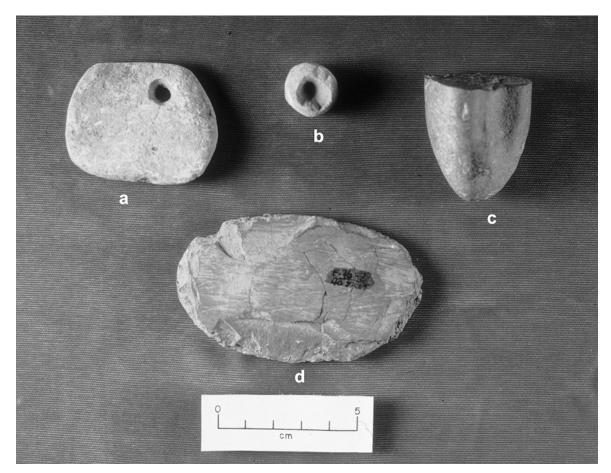


Figure 44. Ground stone implements: a. Gorget; b. Bead; c. Boatstone; d. Shale gorget blank.

Tubular Pipe Blank (n=1)

This elongated, rounded fine-grained limestone artifact exhibits tapered ends and basal flattening (Figure 43a). It was manufactured through a combination of pecking and grinding, and manufacturing striations extend along the length of object. This is probably a tubular pipe blank which was abandoned due to the breakage of a large flake from one side.

Gorget (?) Blanks (n=3)

These artifacts consist of oval (n=2) and roughly rectangular (n=1) shale (Figure 44d) showing bifacial flake removals from the lateral edges. Incomplete grinding and polish is present on surfaces and edges of one example, and grinding and polish on the surface of another; while no modification beyond bifacial flake removals is visible on the third.

Ground Stone Fragment (n=1)

This smoothed ground and polished shale fragment did not fit readily within any of the artifact categories described above.

Summary and Interpretation

The lithic reduction sequence at the Penitentiary Branch site encompassed the reduction of unprepared nodules and/or blocks. Data are too imprecise to establish whether the primary sequence for the manufacture of completed bifacial implements was from primary bifacial blanks and preforms or core reduction flakes subsequently bifacially altered. That the manufacture of bifacial implements from primary bifacial blanks and preforms was a relatively important aspect of the manufacturing technology, however, is suggested by the following evidence:

- a) Bifacial blanks lack ventral surfaces and flake striking platforms.
- b) Bifacial blanks are predominantly large biconvex masses of raw material.
- c) Bifacial blanks exhibiting cortex on two surfaces comprise 26.2 percent (n=37) of the sample; blanks retaining cortex on one or more surfaces comprise 69.8 percent (n=99) of the sample.
- d) The ratio of cores to blanks is 1:2.2 and cores to blanks and preforms, 1:5.

Fabrication of chipped stone implements was primarily by direct percussion with a hammerstone, billet, and abrader. Although few hammerstones were recovered from the site, numerous antler billets comprise the faunal inventory. Debitage, especially large thinning flakes, and flake scars on the lithic specimens, indicate direct percussion was employed at all stages of manufacture. Completed implements exhibit intermittent pressure flaking scars along the lateral edges or periphery and working edges. Hinging and step fractures are also highly

characteristic of the manufacturing technique; moreover, hinging commonly resulted in knots. This was both a product of the manufacturing technique as well as the properties of the raw material.

Both the debitage and artifact specimens indicate the primary raw material utilized in the chipped stone lithic technology at Penitentiary Branch was locally available Fort Payne bluegray tan chert, or a probable variation of that category. Excluding bifacial fragments and debitage, 82.1 percent (n=793) of the chipped stone assemblage was manufactured of this material. This includes 90.9 percent (n=60) of the cores; 83.1 percent (n=118) of blanks; 80.8 percent (n=160) of preforms; 80.6 percent (n=237) of projectile points/knives; and 82.0 percent (n=218) of other chipped stone implements. Of the total chipped and ground stone assemblage (excluding fragments N+998) 20.5 percent (n=205) of the specimens are comprised of other cherts such as dark gray, black, gray banded, and blue green as well as vein quartz, chalcedony, agate, limestone, shale, and sandstone.

Fort Payne chert is characterized by fossiliferous inclusions and fissures. An unavoidable consequence of the combination of direct percussion and inclusions in the matrix of this medium-grained chert was hinging and knotting which resulted in somewhat crudely manufactured implements. Although thermal alteration facilitates and improves the flaking quality of Fort Payne blue-gray and tan and fossiliferous cherts (Hood and McCollough 1976:195–215), heat treatment of lithic material at Penitentiary Branch was rare. With the exclusion of bifacial fragments and utilized flakes, the total number of specimens exhibiting thermal alteration is 97, or 12 percent of the sample. A breakdown of specimens within each classification indicates 3 percent (n=2) of the cores display heat treatment; 0.7 percent of blanks (n=1); 14.6 percent of preforms (n=29); 19.7 percent of projectile points/knives (n=58); and 9.2 percent of other chipped stone implements, (n=7). Thermal treatment seems to increase as stages of preform reduction advance. Out of the total sample (n=810, treated and untreated) under consideration, 3.6 percent of the thermally altered artifacts are preforms and an increase is evidenced by 7.2 percent projectile point stage implements. The increase in the thermal alteration of projectile points versus preforms and earlier manufacturing stages may reflect intentional alteration; however, accidental exposure of the projectiles to heat in such areas as hearths and cooking ovens cannot be discounted. In addition, Faulkner and McCollough (1973:53) and Penny and McCollough (1976:152) have suggested that blue-gray and tan Fort Payne chert occurs in natural pink beds which may have been altered by forest fire.

The Penitentiary Branch chipped stone lithic assemblage was comprised primarily of bifacial implements with unifacial implements apparently being of less importance. With the exclusion of cores, debitage and bifacial fragments, bifaces encompass 77.9 percent (n=703) of the chipped stone assemblage, while unifaces account for an additional 22.1 percent (n=199). If only completed and utilized implements are considered, 64.6 percent (n=363) are bifacial and 35.4 percent (n=199) are unifacial implements.

Finally, although approximately 97 percent of the lithic assemblage is composed of chipped stone artifacts, the remaining 3 percent consists of ground stone artifacts. Most prevalent are hammerstones and grooved axes; less prevalent are personal and/or ceremonial items. Fully grooved axes and other ground and polished artifacts were formed by pecking and/or minor flaking a blank/preform and subsequently grinding the object into its desired final form. Raw materials were limestone, shale, chert and sandstone.

Viewed as a whole, this chipped and ground stone assemblage suggests lithic implements were manufactured from unprepared nodules and prepared blanks at the Penitentiary Branch site. The manufacturing technique was primarily direct percussion and abrasion resulting in the production of bifacial, unifacial, and ground stone implements useful for food and fiber procurement and processing.

XI. PREHISTORIC CERAMICS

Six fragments of limestone-tempered ceramics less than 12 mm in diameter were recovered from feature fill and general excavation levels. Four badly leached and eroded limestone-tempered residual sherds were recorded from Feature 22, a large deep (1.28 m) midden-filled pit. These Woodland period ceramic fragments, recovered from the upper fill, but below an upper sand cap, possibly represent a Woodland period storage pit. A fifth such sherd was recovered from Level 3 of Unit 127R203 and may be interpreted as intrusive into the Late Archaic midden. Finally, one limestone-tempered Bluff Creek Simple Stamped sherd was intrusive into Level 2, Unit 127R203. These data suggest use of the Penitentiary Branch site during the Woodland period was isolated and temporary since no additional artifacts and features were clearly diagnostic of that period.

XII. EURO-AMERICAN SETTLEMENT

Few written accounts of early exploration into the Cumberland River Valley of Middle Tennessee are extant. French traders were in the region as early as 1710, and by 1715 a trading post was established in the present-day Nashville area. The Treaty of Paris and end of the French and Indian War in 1763 opened the way for English exploration and American settlement of the region. One of the first historic accounts of the region was recorded by Thomas Hutchins in 1768. Hutchins surveyed the Cumberland River from its mouth to near present-day Nashville, Tennessee. Although no journal of this exploration exists, survey notes and maps provide some information of the territory and specifically of the area within close proximity to the Penitentiary Branch site. Hutchins notes a 15 m-deep spring with indigo-colored water (Williams 1928:210; 221–226). That locale is situated approximately eight km southwest of the Penitentiary Branch site, and is currently known as Blue Spring.

A decade after Hutchins' survey, the fervor for land led to settlement by the Transylvania Company. Claims on the territory by the Shawnee, Chickasaw, and Cherokee did not preclude determination by members of the Transylvania Company to establish Euro-American settlements. Consequently, by 1780 several hundred settlements had been established along the Cumberland River from Virginia to Fort Nashborough. Fort Blount was constructed in 1794 on the south side of the Cumberland River in present-day Jackson County, Tennessee, 19.3 km southwest of the Penitentiary Branch site, and intended to protect Euro-American settlers in that area.²¹ Thomas Dillon visited Fort Blount in 1796 and found it to be protected by approximately 15 men who were poorly supplied with provisions (Williams 1928:360). In 1797 Louis Phillipe visited the area and found Fort Blount about to be rebuilt, following an Indian attack, and a countryside which appeared famine-stricken (Williams 1928:438).

By the turn of the century, the Euro-American population in the Nashville region had expanded considerably, although in the Fort Blount area it was apparently not as intensive. In 1799 Steiner and Schweinitz (Williams 1928) journeyed along the Fort Blount road, crossed Flin's Creek (Flynn Creek, southern Jackson County) numerous times, and arrived at Fort Blount. They note that the countryside was broken and the soil rather poor. In two day's travel in the area, Steiner and Schweinitz mention two houses in addition to Fort Blount, which no longer was marked by a garrison but simply by a large house (Williams 1928:505–506).

The Penitentiary Branch Site

There is little evidence of Historic period occupation and utilization of the immediate Penitentiary Branch site area. Chimney remains from a late nineteenth century house are

²¹ See Smith and Nance (2000) for further information on Fort Blount.

located approximately 305 m south of the prehistoric site. Local informants indicate the Late Archaic site area was utilized as a garden by residents of that property as late as 1940. At the time of the salvage excavations, the site was in pasture with two twentieth century outbuildings located to the west of the shell midden. Historic material cultural remains recovered during excavations of the plowzone at Penitentiary Branch, therefore, provide useful data pertaining to early historic settlement. These materials are listed below in Table 2.

Table 2. Historic artifacts recovered from the Penitentiary Branch site

Artifact		Count
Ceramics		
Earthenware Fragments		
Underglaze blue painted pearlware (bowl) (Figure 45a)		2
Blue shell-edge pearlware (Figure 45b)		1
Blue painted pearlware (Figure 45d)		1
Relief decorated edgeware pearlware		1
Underglaze polychrome painted pearlware		6
Pearlware		7
Green shell-edge creamware		1
Blue shell-edge creamware (Figure 52c)		2
Creamware		17
Polychrome painted white earthenware		1
Stoneware Fragments		
Lead-glazed stoneware		3
Salt-glazed stoneware		2
Red stoneware		1
	Total	45
Tobacco Pipes		
Stub-stemmed pipes (Figure 45 e)		2
	Total	2
Glass		
Amber Bottle or jar glass fragments		2
Light green Bottle or jar glass fragments		1
Clear Bottle or jar glass fragments		6
	Total	9
Metal		
Two-tined metal fork; one tine broken; no handle		1
Machine cut nails		30
Wire nails		5
Spike		1
Screw		1
U-shaped wire staple		1
Barbed Wire		2
Other Wire Fragments		2
Horseshoe Fragments		2
Tin handle or fitting		1
Other unidentified metal		4
	Total	50
	Grand Total	106

Discussion

The manufacture of underglaze blue painted pearlware (c. 1780–1820; median 1800), blue shell-edge pearlware (c. 1780–1830; median 1805) (South 1977:212), blue painted pearlware (c. 1795–1840; median 1818), relief decorated edgeware pearlware (c. 1800–1820; median 1810), and underglaze polychrome painted pearlware (1820–1840; median 1830) suggests Euro-American occupation at Penitentiary Branch as early as 1780. Stub-stemmed pipes date from 1810–1820; two-tined metal forks date from the late 1700s, and machine cut nails after 1830 (median c. 1890).

On the basis of all the ceramic, glass, and metal specimens, the most probable early date for Euro-American settlement within the immediate site locale would have c. 1830–1840. Despite the readily available water resources at Penitentiary Branch, an additional set of factors which would argue against early permanent Euro-American settlement pertains to the paucity of good agricultural soils and a topography poorly suited for residential sites.

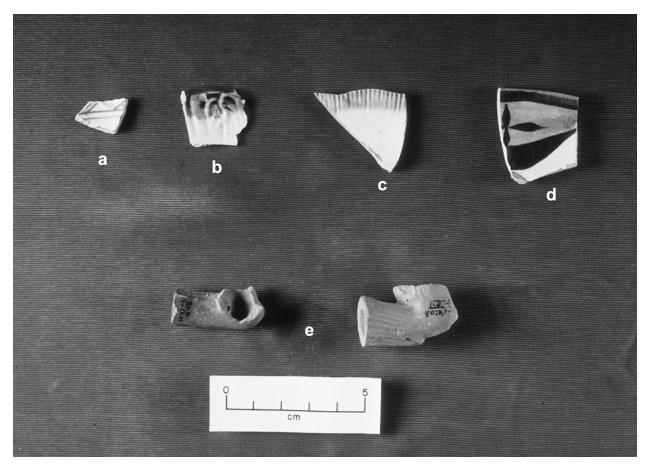


Figure 45. Historic ceramic and pipe remains: a. Underglaze blue painted pearlware; b. Blue shell-edge pearlware; c. Shell-edge creamware; d. Blue painted pearlware; e. Stub-stemmed pipes.

XIII. LATE ARCHAIC SETTLEMENT AND SUBSISTENCE AT PENITENTIARY BRANCH

Prehistoric cultural deposits in the Upper Cumberland River Valley have been identified primarily along the Cumberland River and its tributaries. Survey data (Ball 1979; Morse 1963; Polhemus 1963; Tennessee State Site Files) indicate Late Archaic period sites were typically situated on the floodplain or lower terraces at the confluence of streams with the Cumberland River, on tributary floodplains from the confluence to approximately 3 km upstream, and on lower terraces and knolls adjacent to the Cumberland River. Of 16 Late Archaic period sites identified in Jackson County, Tennessee, only 25 percent (*n*=4; 40JK2, 40JK10, 40JK21, and 40JK25) are shell middens. One of these, 40JK21, was located approximately 1.8 km upstream from the Penitentiary Branch site at the Hamilton Branch-Cumberland River confluence.

The Penitentiary Branch (40JK25) and Robinson Shell Mound (40SM4) sites represent the only Late Archaic period components extensively investigated in the Cumberland River Valley. Robinson is located 86 meandering river kilometers downstream from Penitentiary Branch in Smith County, Tennessee. The two sites are comparable as both were Late Archaic shell middens situated in the Upper Cumberland River Valley²² on erosional colluvium of nearby bluffs adjacent to the Cumberland River. At the Robinson site a "mountainous" (Morse 1967:8) bluff rose 38 m to the north of the site and at Penitentiary Branch a bluff rose 130 m to the west. Physiographically, the two sites were similarly located; Robinson was on the Eastern Highland Rim at its interface with the outer Nashville Basin and Penitentiary Branch was the reverse.

A comparison of the bivalve and gastropod shell density at Penitentiary Branch and Robinson sites cannot be achieved accurately since quantitative determinations of midden content such as those performed by Cook and Treganza (1947, 1956) were not conducted at either site, and no photographs of Robinson site profiles are available for examination. A 5–10 cm-thick layer of loam with a "large concentration of shell and broken limestone" (Morse 1967:12) and sparse shell in other thicker layers suggests shell density at Robinson was much less extensive than at Penitentiary Branch, where 1.5 m of stratified midden consisted of three layers comprised of more than 60 percent shell, and six other layers made up of 20–35 percent shell.

The density of whole and fragmentary shell within the Penitentiary Branch midden made it difficult to identify the point of origin for cultural features. Nevertheless, 134 features, four postholes, and 17 burials were excavated. Intensive occupation or reoccupation of the site

²² The use of "Upper Cumberland" reflects geologic divisions of the Cumberland River watershed. From an archaeological perspective, both sites fall within the Archaic shell-bearing tradition of the Middle Cumberland River Valley (Peres and Deter-Wolf 2016).

area is indicated by approximately 63 percent (n=84) of the features which were intrusive or superimposed into another. Features consisted of large round to oval straight to sloping walled and primarily flat based pits, basins, and depressions, and were subcategorized on the basis of fill. Of the sample, 39.6 percent (n=53) were midden filled pits and basins; 30.6 percent (n=41), rock filled/lined pits and basins; 12.7 percent (n=17), rock and shell filled pits and basins; 9.7 percent (n=13), shell filled pits and basins; 3.7 percent (n=5), depressions; 2.2 percent (n=3) fired clay deposits; and 0.7 percent (n=1), linear disturbances and tree fall/stumps.

The fired clay deposits along with concentrations of charcoal, ash, and fire-oxidized clay likely functioned as hearths. At least a portion of the rock filled/lined pits and basins are presumed to have functioned as earth ovens while other pits and basins were storage and refuse containers. While the majority (approximately 75 percent) of these features were concentrated in a 12x12 m-area, no discrete activity areas were discerned. Although Penitentiary Branch pits and basins were apparently similar to pits and earth ovens excavated at the Robinson site, a major dissimilarity was the presence of bell-shaped pits and fired clay floors at Robinson. Such clay areas or platforms have been reported from additional Late Archaic sites including the Banks site along the Duck River (Faulkner and McCollough 1974:201), the Higgs site in the lower Tennessee River Valley (McCollough and Faulkner 1973:58–59), Mulberry Creek in northern Alabama (Webb and DeJarnette 1942:238), Indian Knoll on the Green River in Kentucky (Webb 1946:241), and the Robeson Hills site in the Wabash River Valley of Illinois (Winters 1969:91). These features, often associated with postholes, are interpreted as prepared clay occupation/habitation areas.

Identification of only four shallow postholes at the Penitentiary Branch site precludes any definition of structures. The hypothesis that partial posthole patterns represent complete archaeological remains of simple structures (Faulkner and McCollough 1974:207–211, Webb 1946:242) seems a more plausible explanation of the posthole patterns at the Robinson site than Morse's (1967:14) interpretation, and may be inferred for other late spring to early autumn Upper Cumberland River Valley sites such as Penitentiary Branch.

The 17 Penitentiary Branch site human inhumations, interred within and intruded upon by pit and basin features, were clustered within a probable cemetery area. The inhumations of men, women, and children exhibited flexed body positions, an absence of grave goods, and shallow to indiscernible burial depressions, but otherwise were not characterized by any coherent mortuary patterning. Similar Indian Knoll burials for which there was no visible pit were assumed to have been placed on the midden surface or within a shallow depression and covered with shell-filled midden (Webb 1946:245). The typical burial placement at the Robinson site, where 62 inhumations were investigated, was within a vertical-walled and flat-based circular pit (Morse 1967:122). That site also exhibited definite association of grave goods with seven individuals, including whelk shell gorgets or beads interred with five inhumations and which provide evidence of participation in an exchange network (c.f. Goad 1980:1–16).

While two domestic dog (*Canis familiaris*) burials were excavated at the Robinson site, no such recoveries were made at Penitentiary Branch. Dog bones, were, however, identified

from three levels with a minimum number of individuals (MNI) estimated at three. The 11 elements exhibited no butchering marks, thereby suggesting a non-food use of the animals.

The recovery, identification, and analysis of 27,208 specimens of vertebrate and invertebrate remains from Penitentiary Branch presents a major contribution to Late Archaic period studies. The primary meat sources of site occupants were white-tailed deer, elk, and bear; other mammals such as bobcat, skunk, mink, raccoon, gray fox, porcupine, beaver, gray squirrel, woodchuck, rabbit, and opossum provided less than 10 percent of the meat. The large quantity of bivalve shell remains indicate this invertebrate resource provided an important supplemental food source at 3.5 percent of the total meat yield.²³ Interpretation of faunal remains by their stratigraphic occurrence indicates temporal fluctuations in the importance of species. During the earliest occupation of the site, elk was utilized more than deer; later deer was a primary meat source; and at other times deer, elk, and bear were heavily exploited. By the latter stages of site occupation, deer and mussels were apparently most extensively procured.

According to Breitburg's butchering strategies analysis, deer were processed for the removal of the hide, to deflesh elements, and to disarticulate the carcass in order to obtain the head, sections of the neck and thoracic body as well as the forequarter and hind-quarter. Deer antler and bones and bones of birds (turkey), raccoon, and turtle were used in the manufacture of bone implements. Manufacturing debris exhibits a variety of techniques including scoring around the circumference of the shaft followed by snapping, a semi-circular incision terminating in a V-shaped cut, hacking the circumference of the shaft to separate the desired portion(s), scoring, whittling, abrasion, and polishing.

Table 3, an activity index, assigns bone implements to specific activity categories. Deer antler was utilized extensively in the manufacture of implements for stone fabrication or processing. Items necessary for this activity included long-handled chert-working implements, antler tines, antler drifts, and hammers. Bone fishhooks and projectile points were used in food procurement activities, while bone end scrapers, awls, and needles were important for the processing of hides and possibly fiber items. Bone beads, pendants, pins, cups, and bowls are classified as personal items and a bone dangle as a recreational item which may have been used in the pin-and-cup game. The incised decorated bone handle and incised turtle shell may have been associated with ceremonial or utilitarian activities. This assemblage was similar to that recovered from the Robinson site; however, a mussel shell pendant, perforated carnivore canines, and a cut human femur were identified from that Late Archaic component.

Local lithic resources, predominantly consisting of Fort Payne chert, provided raw material for the manufacture of chipped and ground stone artifacts. The chipped stone implement assemblage was comprised of cores, blanks, preforms, projectile points/knives, knives, scrapers, drills, perforators, gravers, chisels, adzes, notched flakes and bifaces, bifaces,

²³ The use of meat yield to measure the relative importance of freshwater shellfish at Archaic shell-bearing sites in the Middle Cumberland River Valley has recently been called into question (Peres and Deter-Wolf 2013).

utilized flakes, blades, and debitage. Table 3 indicates the activities in which these implements were employed. Projectile point categories are overall quite similar to types from the Robinson site, and include: side notched; side notched, incurvate base; corner removed, asymmetrical blade; and corner removed/notched, expanded stem groups. Several projectile point categories correlate well with named types diagnostic of the Late Archaic period in the Middle South. Of the 294 projectile points, 19 percent (n=56) are referable to the Big Sandy type or Upper Valley Side Notched, while 13.16 percent (n=40) may be variants or a late form of that tradition. Additionally, 21.8 percent (n=81) are identifiable as Motley, Wade, and Robinson types.

In comparison to the large projectile point assemblage, the remainder of the chipped stone implement assemblage was neither extensive in terms of implement category or quantity. Drills, knives, scrapers, perforators, and chipped limestone digging tools were the most numerous of these artifacts. With the inclusion of ground stone artifacts such as fully grooved axes and hammerstones, the implication of the total bone and stone assemblage is for an emphasis on utilitarian activities involving implement manufacture and food procurement, and processing and fabrication of plant and animal byproducts (Table 3). Certainly, the 142 lithic blanks and 198 preforms as well as the large metric diameter of primary and bifacial thinning flakes are indications that stone tool fabrication was an important activity at the Penitentiary Branch site.

Quantities of paleobotanical remains recovered from the Penitentiary Branch site cannot be used to determine the importance of plant food horticulture, gathering, and processing, although the species represented are indicators of the importance of such activities. Possible cultigens (cultivars) such as goosefoot, maygrass, pigweed, knotweed, and the cultigen squash are presented in the sample. Both cultivars and cultigens were quite important in the Late Archaic subsistence economy, as demonstrated by the recovery of such plant remains as sunflower, squash, and gourd from Late Archaic sites in eastern North America (c.f., Chapman 1981; Chomko and Crawford 1978; Cowan 1981; Crawford 1982; McCollough and Faulkner 1973; Marquardt and Watson 1976). Such plant data establish the basis for Cleland's (1976) Late Diffuse model of Late Archaic period exploitation strategies.

The Penitentiary Branch paleobotanical data is an important contribution to the Cumberland River Valley paleoethnobotanical record. Wood charcoal was collected but unidentified from the Robinson site excavations with the exception of 11.8 percent gm of hickory and acorn shell. Consequently, the Penitentiary Branch material represents, to date, the only identified carbonized wood, nutshell, and fruit and seed assemblage from a Late Archaic period site in the region. Carbonized nutshell comprised four arboreal species, while wood comprised 22 species, and fruits and seeds 17 taxa (15 non-arboreal taxa). In descending order, the most extensively utilized woods were ash, oak, and honey locus while nut resources were hickory, walnut, and acorn. Predominant cultivars and cultigens were goosefoot, squash, knotweed, and asteraceae. Cucurbit remains have been identified from the lower Little Tennessee River Valley Bacon Bend site dated 4390 BP (Chapman 1981:3940), the Pomme de Terre River Valley, Missouri Phillips Spring site c. 4257 BP (Kay et al. 1980), the Green River

Valley Carlston Annis site c. 4030 BP (Crawford 1982:208; Marquardt and Watson 1976), the northeastern Kentucky Cloudsplitter Rockshelter c. 3700 BP (Cowan 1981), the lower Little Tennessee River Valley Iddins site c. 3655 BP and 3250 BP (Chapman 1981:129); and the Green River Bowles and Peter Cave sites, c. 3440 BP and 3415 BP (Crawford 1982:208). The Penitentiary Branch cucurbits, c. 3375 BP, fill a geographical gap in the archaeological record and provide additional evidence of plant food cultivation at Late Archaic period shell midden sites. It is interesting to note that plant food assemblages at the Green River Valley and Cumberland River Valley shell midden sites differ. Chenopods and maygrass, absent at the Green River sites (Crawford 1982:213), were present at the Penitentiary Branch site, while sumpweed (*Iva annua*) was not identified in either case.

Activity Category	Implement Category
Implement Manufacture	
Wood Fabrication/Processing	Notched flakes, notched bifaces, utilized flakes, chopping implements,
	axes, adzes, chisels
Bone Fabrication/Processing	Notched flakes, notched bifaces, gravers, drills, denticulates, utilized
	flakes, abraders, hammerstones
Stone Fabrication/Processing	Hammerstones, cores, abraders, drills, antler tines, long-handler antler
	chert-working implements, antler drifts or hammers (baton)
Food Procurement (Foraging)	
Hunting	Chert projectile points/knives, bone projectile points
Fishing	Bone fishhooks, bone projectile points
Plant Food Horticulture	Digging implements, cobble choppers, knives, blades, utilized flakes
Animal Processing/Fabrication	
Butchering	Knives, cobble choppers, blades, utilized flakes
Hide Processing	Chipped stone scrapers, knives, blades, perforators, gravers, utilized flakes;
	bone end scrapers, awls, needles
Plant Food and Fiber Processing	Knives, scrapers, notched flakes/bifaces, utilized flakes, pitted cobbles
	(nutting stone), hammerstones
Domestic Construction (Structures,	Digging implements, axes, adzes
Storage, and Earth Ovens)	
Personal	Stone and bone beads, stone gorgets, bone pendants/charms, bone pins,
	bone cups and bowls
Recreational	Bone dangle (pin and cup)
Ceremonial	Pipe blank, boatstone, incised/decorated bone
Burials	Digging implements

Table 3. Activity index for artifacts from Penitentiary Branch.

The plant remains assemblage at the Penitentiary Branch site indicates cultigens plant food production occurred at least as early as 3375 BP with procurement of local domesticated and wild plant foods. Bottomland, lower mesic terraces, xeric upland and disturbed land plant taxa were exploited. Based upon the evidence of carbonized wood and fruit and seed remains, primary exploitation was of bottomland and lower mesic terrace taxa. The small percentage of disturbance favored taxa points to the interpretation that land use in the vicinity of the site had not been sufficient to encourage their growth during the occupation of the site.

Subsistence and Settlement: Interpretations

Robinson site subsistence and settlement interpretations (Morse 1967) are anchored in Morse's Deer Yarding Hypothesis (Morse 1967:247–258) which is based on the supposition that deer yarded during Late Archaic period winters in the Middle South. The hypothesis is questionable since there is no analogy for the occurrence of deer yarding during historic times in the south (Waselkov 1978:23; Morse 1967:158). It has been suggested that it is misleading to use the modern situation as a basis for reconstructing prehistoric environmental conditions–particularly in as dynamic a setting as a floodplain (Yerkes 1981:214).

This subsistence and settlement model assumes that large concentrations of deer yarded in protected valleys during each winter. As a consequence, Late Archaic period people established winter "villages" in the protected valley near the deer yarding locale in order to optimally exploit their primary food source, white-tailed deer. Presumably the major factors involved in the selection of the village included availability of the shoals as a place to cross the river, as an area of good fishing and shellfishing, protection against the elements, protection against enemies, and availability of deer (Morse 1967:253–254).

Finally, Morse's model concludes that shell midden sites represented winter occupations and that "shellfish consumption was restricted to winter villages" (Morse 1967:296). Morse views shellfish as a supplemental or back-up food resource available for consumption if deer were unavailable or the yarding mechanism failed to occur. By itself, Morse's interpretation of shellfish as a supplemental meat food recalls analyses by Parmalee and Klippel (1974), who provide convincing data that bivalves were a supplemental or famine food for prehistoric subsistence economies. Conversely, acceptance of the Deer Yarding Hypothesis implies deer drives or other intensive exploitative hunting techniques. It is expected that if deer did yard in the Upper Cumberland River Valley, they were both numerous and easily exploited, thereby reducing the probability that a supplemental or back-up animal food such as freshwater shellfish was necessary during the winter.

Rather, it might be hypothesized that early spring would have been the most feasible time for large-scale inclusion of supplemental shellfish in the diet. It has been proposed that this would represent the most probable famine period since stored foods (i.e., nuts and dried fruits and seeds) utilized during the winter would have depleted. Moreover, new spring plant growth, for the procurement of greens and tubers, would have not occurred yet, and many animals would still be in hibernation.

Other Late Archaic subsistence and settlement models have been proposed by Cleland (1976), Dye (1977), and Bowan (1977). Dye incorporates Cleland's (1976:70) Late Archaic diffuse exploitation strategy model of multiple resource scheduling. While I do not concur with all aspects of Dye's model for the Western Middle Tennessee Valley, such proposals as Late Archaic adaption to a variety of animal and plant resources (Dye 1977:75) and the spring to fall cultivation and collection of domesticated and wild plants and shellfish (Dye 1977:70–73) are applicable to the activities at the Penitentiary Branch site. Although no data are available for upland Late Archaic period sites in the Cumberland Valley, Bowan's (1977:116) proposed model

(Western Tennessee Valley) for summer settlement and subsistence is applicable to the Penitentiary Branch site: it was a floodplain base camp where activities included hunting, fishing, wild and domesticated plant procurement, mussel collection, and related activities (see Table 3).

No artifacts indicative of exchange/trading activities were recovered from the Penitentiary Brach site. Morse (1967) suggested this was an activity which occurred at winter shell midden occupation sites. The absence of exotic items such as marine shell or copper may be the product of sampling error, site location, or cultural factors rather than specific seasonality for trading. Moreover, the Penitentiary Branch site may exemplify the Kay et al. (1980) down-the-line exchange hypothesis. If cucurbits were not established cultigens at the Penitentiary Branch site by 3400 BP and were, in fact, a product of down-the-line exchange, this Upper Cumberland River Valley Late Archaic period site may have been have a beneficiary of down-the-line exchange rather than directional exchange (Kay et al. 1980:820).

The combination of artifact and feature data collected from the Penitentiary Branch site, with emphasis upon the faunal and paleobotanical data, form the basis for subsistence and settlement interpretations of the site. Penitentiary Branch was a base encampment where primary activities were large mammal hunting, wild and domesticated plant collection, shellfish/fish collection, and stone and bone implement fabrication. As demonstrated by the inhumations, the individuals who participated in these activities were children, women, and men for whom there is no archaeological evidence of traumatic death. The death of one female can, however, be attributed to pregnancy complications. The adult population suffered from osteoarthritic involvement and extensive tooth wear and loss.

Site occupation was probably a product of seasonal scheduling for the procurement of deer, elk, bear, and mussels, and a variety of plant foods. Deer, elk, and turkey were exploited from the forest margins; bear, from the upper woodlands; and shellfish, fish, and turtles, from the aquatic habitats. Plant foods were derived from bottomland, forest margin, and upland habitats. It is presumed the site was occupied from spring to late autumn or a portion of that time. Interpretation of this occupation season is based on the following data:

- 1) The presence of fetal and newborn deer remains.
- 2) The presence of blackberry (*Rubus* spp.), cucurbit, nut, and other summer to late autumn plant remains.
- 3) The presence of deer antler and tool manufacture which suggests occupation continued into the late autumn.
- 4) The presence of woodchuck, a species which begins hibernation in late autumn, elements suggests procurement of the animal from May through October.
- 5) The large quantity of mussel remains which probably would have been procured most easily during summer and fall.

6) The absence of migratory birds argues against winter occupation.

An additional non-archaeological factor which argues against winter occupation of the site is the topography/physiography of the locale. The modern (AD 1976) ground cover and arboreal vegetation at the Penitentiary Branch site was not synonymous with the prehistoric vegetation; therefore, the modern site probably was more exposed than the prehistoric. The bluff which rose 130 m to the west of the site was present during the Late Archaic period occupation, however. By mid-October, AD 1976, this bluff obscured the sun and cast a shadow over the occupation area from early afternoon (approximately 2:30–3:00 p.m.) until sunset. The declination of the sun in addition to the exposure of the site at the confluence of a small stream and major river resulted in an extremely unprotected, cold environment. The factor and the above archaeological data provide strong evidence for non-winter occupation.

In conclusion, while the Deer Yarding Hypothesis may be applicable to the Robinson site, the Penitentiary Branch site faunal and botanical data indicate that hypothesis is not suitable for this occupation. Most obviously, shell middens are not automatically indicative of Late Archaic period winter occupations. Penitentiary Branch provides an alternative archaeological example of subsistence and settlement in the Upper Cumberland River Valley in contrast to the Robinson site.

REFERENCES CITED

Asch, David and Nancy Asch

1977 Chenopods as Cultigen: A Re-evaluation of Some Prehistoric Collections from Eastern North America. *Midcontinental Journal of Archaeology* 2(1):3–45.

Asch, Nancy and David Asch

1978 The Economic Potential of *Iva annua* and its Prehistoric Importance in the Lower Illinois Valley. In *The Nature and Status of Ethnobotany*, edited by R. I. Ford. Anthropological Papers 67, Museum of Anthropology, University of Michigan, Ann Arbor.

Ball, Donald

1979 Archaeological Reconnaissance, Survey and Salvage Excavations in the Salk Lick Recreation Area, Jackson County, Tennessee. U.S. Army Engineer District, Nashville.

Bassler, R. S.

1932 *The Stratigraphy of the Central Basin of Tennessee*. Bulletin 38, Division of Geology, Nashville.

Begler, Elsie B. and Richard W. Keatinge

1979 Theoretical Goals and Methodological Realities: Problems in the Reconstruction of Prehistoric Subsistence Economies. *World Archaeology* 2(2):208–226.

Bowen, W. R.

1977 A Re-evaluation of Late Archaic Subsistence and Settlement Patterns in the Western Tennessee Valley. *Tennessee Anthropologist* 2(2):101–120.

Braun, E. Lucy

1950 Deciduous Forests of Eastern North America. Free Press, New York.

Cambron, James and David Hulse

1975 *Handbook of Alabama Archaeology, Part I: Point Types*. Archaeological Research Association of Alabama, University of Alabama, Tuscaloosa.

Cambron, Jesm and Spencer Waters

1961 Flint Creek Rock Shelter (Part II). Journal of Alabama Archaeology 7(1).

Chapman, Jefferson

1977 Archaic Period Research in the Lower Little Tennessee River Valley–1975: Icehouse Bottom, Harrison Branch, Thirty Acre Island, Calloway Island. Report of Investigations 18. Department of Anthropology, University of Tennessee, Knoxville. 1981 The Bacon Bend and Iddins Sites: The Late Archaic Period in the Lower Little Tennessee River Valley. Report of Investigations 31., Department of Anthropology, University of Tennessee, Knoxville.

Chomko, Stephen A. and Gary W. Crawford

1978 Plant Husbandry in Prehistoric Eastern North America: New Evidence for its Development. *American Antiquity* 43(3):405–408.

Cleland, Charles E.

1976 The Focal-diffuse Model: An Evolutionary Perspective on the Prehistoric Cultural Adaptations of the Eastern United States. *Midcontinental Journal of Archaeology* 1(1):59–75.

Coe, Joffre L.

1964 *The Formative Cultures of the Carolina Piedmont.* Transactions of the American Philosophical Society 54(5), Philadelphia.

Cole, Fay-Cooper and Thorn Deuel

1937 *Rediscovering Illinois, Archaeological Explorations in and around Fulton County.* University of Chicago Press, Chicago.

Cook, Fred C.

1975 Alkyl Halide Flotation: An Effective Separation of Shell Midden Components by their Various Densities. Paper presented at the 32nd Annual Meeting of the Southeastern Archaeological Conference, Gainesville.

Cook, Sherburne F. and Adan E. Treganza

- 1947 The Quantitative Investigation on Aboriginal Sites: Comparative Physical and Chemical Analysis of Two California Indian Mounds. *American Antiquity* 13(2):135–141.
- 1956 The Quantitative Investigation of Indian Mounds with Special Reference to the Relation of the Physical Components to the Probable Material Culture. *University of California Publications in American Archaeology* and Ethnology 40:223–262, University of California Press.

Cowan, C. Wesley

- 1978 The Prehistoric Use and Distribution of Maygrass in Eastern North America: Cultural and Phytogegraphical Implications. In *the Nature and Status of Ethnobotany,* edited by Richard I. Ford, pp. 263–288. University of Michigan, Ann Arbor.
- Cowan, C. Wesley, H. Edwin Jackson, Katherine Moore, Andrew Nickelholf, and Tristine L. Smart
 1981 The Cloudsplitter Rockshelter, Menifee County, Kentucky: A Preliminary Report.
 Southeastern Archaeological Conference Bulletin 24:6–76.

Crabtree, Don

- 1968 Mesoamerican Polyhedral Cores and Prismatic Blades. *American Antiquity* 33:446–478.
- 1972 *An Introduction to Flintworking*. Occasional Papers 28. Idaho State University Museum, Pocatello.

Crawford, Gary W.

1982 Late Archaic Plant Remains from West-Central Kentucky: A Summary. *Midcontinential Journal of Archaeology* 7(2):203–244.

Cridlebaugh, Patricia A.

- 1978 Late Archaic Blade Attributes: The Penitentiary Branch Site. Paper presented at the 35th Annual Meeting of the Southeastern Archaeological Conference, Knoxville.
- 1981 The Late Archaic Penitentiary Branch Site: A Report of Investigations. *Tennessee Anthropological Association Newsletter* 6(6):2–6.

Damon, P.E., C.W. Ferguson, A. Long, and E. I. Wallick

- 1974 Dendrochronologic Calibration of the Radiocarbon Time Scale. *American Antiquity* 39(2):350–366.
- DeJarnette, David L., Edward Kurjack, and James Cambron
 - 1962 Stanfield-Worley Bluff Shelter Excavations. *Journal of Alabama Archaeology* 8(1–2):1– 124.

Delcourt, Hazel

1979 Late Quaternary Vegetation History of the Eastern Highland Rim and Adjacent Cumberland Plateau of Tennessee. *Ecological Monographs* 49(3):255–280.

Delcourt, Paul and Hazel Delcourt

1981 Vegetation Maps for Eastern North America: 40,000 Yr BP to the Present. *Geogotany* II:123–165, Plenum Press.

Dye, David

1977 A Model for Late Archaic Subsistence Systems in the Western Middle Tennessee Valley during the Bluff Creek Phase. *Tennessee Anthropologist* 2(1):63–80.

Edwards, Max, Joe Elder, and M.E. Springer

1974 *The Soils of the Nashville Basin*. Bulletin 499. University of Tennessee Agricultural Experiment Station, Knoxville.

Faulkner, Charles H. and J. B. Graham

1965 *Excavations in the Nickajack Reservoir: Season I.* Miscellaneous Paper No. 7. Tennessee Archaeological Society, Knoxville.

1966 *Westmoreland-Barber Site (40JI11), Nickajack Reservoir: Season* II. Report of Investigations No. 3. Department of Anthropology, University of Tennessee, Knoxville.

Faulkner, Charles H. and Major McCollough

- 1973 Introductory Report of the Normandy Reservoir Salvage Project: Environmental Setting, Typology, and Survey. Report of Investigations No. 11. Department of Anthropology, University of Tennessee, Knoxville.
- 1974 *Excavations and Testing, Normandy Reservoir Salvage Project: 1972 Seasons*. Report of Investigations No. 12, Department of Anthropology, University of Tennessee, Knoxville.

Fenneman, Nevin M.

1938 Physiography of Eastern United States. McGraw Hill, New York.

Ford, James, Philip Phillips, and William Haag

1955 *The Jaketown Site in West Central Mississippi*. Anthropological Papers, Vol. 45, Part 1. American Museum of Natural History, New York.

Ford, Richard I.

1979 Paleoethnobotany in American Archaeology. *In Advances in Archaeological Method and Theory*, vol. 2, edited by M. B. Schiffer, pp. 285–336. Academic Press, New York.

Fowler, Melvin

1959 *Summary Report of Modoc Rock Shelter*. Report of Investigations No.8, Illinois State Museum, Springfield.

Funhouser, William D. and William S. Webb

1930 *Rock shelters of Wolfe and Powell Counties, Kentucky*. Reports in Archaeology and Anthropology 1(4). University of Kentucky, Lexington.

Genoves, Santiago C.

1966 La Proporcionalid entre los huesos largos y su Relacion con la Estratura en Restos Mesoamericanos. Serie Antropologica No. 19. Universidad Nacional Autónoma de México, Instituto de Investigaciones Históricas, Mexico City.

Goad, Sharon I.

1980 Patterns of Late Archaic Exchange. *Tennessee Anthropologist* 5(1):1–16.

Guilday, John E.

1963 Cup-and-pin Game. *Pennsylvania Archaeologist* 33(4):159–163.

Hall, Eugene R. and Keith R. Kelson

1959 The Mammals of North America. Ronald Press, New York.

Hardeman, W.D., G. Swingle, R. Miller, E. Luther, D. Fullerton, C. Sykes, and R. Garman
1966 *Geologic Map of Tennessee, Central Sheet* (scale 1;250,000). Tennessee Department of
Conservation, Division of Geology, Nashville.

Hardesty, Donald L.

1977 Ecological Anthropology. John Wiley and Sons, New York,

Harrar, Ellwood S. and Jacob G. Harrar

1962 *Guide to Southern Trees*. 2nd ed. Dover Publications, New York.

Hershey, Robert and S. W. Mher

1963 *Limestone and dolomite Resources of Tennessee*. Bulletin 65. Tennessee Division of Geology, Nashville.

Hood, Victor and Major McCullough

1976 The Effects of Heat Treatment on Significant Silica Materials of the Middle Tennessee Region. In *Third Report of the Normandy Reservoir Salvage Project*, edited by M. McCollough and C. Faulkner, pp. 195–215. Report of Investigations No. 16. Department of Anthropology, University of Tennessee, Knoxville.

Hunt, Edward and I. Gleiser

1955 The Estimation of Age and Sex of Preadolescent Children from Bone and Teeth. *American Journal of Physical Anthropology* 13:479–487.

Kay, Marvin, Francis B. King, and C.K. Robinson

1980 Cucurbits from Phillips Spring: New Evidence and Interpretations. *American Antiquity* 45(4):806–822.

King, Frances and Russell Graham

1981 Effects of Ecological and Paleoecological Patterns on Subsistence and Paleoenvironmental Reconstructions. *American Antiquity* 46(1):128–142.

Kneberg, Madeline

- 1956 Some Important Projectile Points Found in the Tennessee Area. *Tennessee* Archaeologist 12(1):17–28.
- 1957 Chipped Stone Artifacts of the Tennessee Valley Area. *Tennessee Archaeologist* 13(1).

Lewis, Thomas M.N. and Madeline Kneberg

- 1947 *The Archaic Horizon in Western Tennessee*. Tennessee Anthropology Papers 2, The University of Tennessee Record, Extension Series, 23(4), Knoxville.
- 1959 The Archaic Culture in the Middle South. *American Antiquity* 25:161–183.
- 1960 The Aaron B. Clement Collection. *Tennessee Archaeologist* 16(1)49–52.

Lewis, Thomas M.N. and Madeline Knebert Lewis

1961 *Eva: An Archaic Site*. University of Tennessee Press, Knoxville.

Magennis, Ann L.

1977 Middle and Late Archiac Mortuary Patterning: An Example from the Western Tennessee Valley. MA thesis, Department of Anthropology, University of Tennessee, Knoxville.

Marquardt, William H. and Patty Jo Watson

1976 Excavation and Recovery of Biological Remains from Two Archaic Shell Middens in Western Kentucky. Paper presented at the 33rd Annual Meeting of the Southeastern Conference, Tuscaloosa.

Martin, Alexander and William Barkley

1961 *Seed Identification Manual*. University of California Press, Berkeley.

McCullough, Major and Charles H. Faulkner

- 1973 *Excavation of the Higgs and Doughty Sites, I-75 Salvage Archaeology*. Miscellaneous Papers No. 12, Tennessee Archaeological Society, Knoxville.
- 1976 *Third Report of the Normandy Reservoir Salvage Project*. Report of Investigations No. 16, Department of Anthropology, University of Tennessee, Knoxville.

Meighan, Clement

1970 Molluscs as Food Remains in Archaeological Sites. In *Science in Archaeology*, edited by D. Brothwell and E. Higgs, pp. 415–422. Praeger Publishers, New York.

Merchant, Virginia L. and Douglas H. Ublaker

1977 Skeletal Growth of the Protohistoric Arikara. *American Journal of Physical Anthropology* 46:61–72.

Minnis, Paul E.

1981 Seeds in Archaeological Sites: Sources and Some Interpretive Problems. *American Antiquity* 46(1):143–152.

Morse, Dan

- 1963a *Archaeological Survey of the Cordell Hull Reservoir*. Report submitted to the National Park Service. Manuscript on file, McClung Museum, University of Tennessee, Knoxville.
- 1963b The Robinson Shell Mound (40SM4). In Archaeological Investigations in the Cordell Hull Reservoir, Tennessee: 1963 Field Season, edited by Dan Morse, pp. 1–83. Report submitted to the National Park Service. Manuscript on file, McClung Museum, University of Tennessee, Knoxville.

1967 The Robinson Site and Shell Mound Archaic Culture in the Middle South. PhD dissertation, Department of Anthropology, University of Michigan, Ann Arbor.

Munson, Patrick J., Paul W. Parmalee, and Richard A. Yarnell

- 1971 Subsistence Ecology of Scoville, A Terminal Middle Woodland Village. *American Antiquity* 36(4):410–431
- Newell, H. Perry and Alex D. Krieger
 - 1949 *The George C. Davis Site, Cherokee County, Texas.* Memoirs of the Society for American Archaeology No. 5. Society for American Archaeology and the University of Texas, Menasha.

Panshin, Alexis J. and Carl De Zeeuw

1964 *Textbook of Wood Technology*, vol. 1. McGraw Hill, New York.

Parmalee, Paul W.

- 1963 A Prehistoric Occurrence of Porcupine in Alabama. *Journal of Mammalogy* 44(2):267–268.
- Parmalee, Paul W. and Walter Klippel
 - 1974 Freshwater Mussels as a Prehistoric Food Resource. *American Antiquity* 39:421–434.

Parmalee, Paul W. and John E. Guilday

1966 A Recent Record of Porcupine from Tennessee. *Journal of the Tennessee Academy of Science* 41(3):81–82.

Penny, James and Major McCollough

1976 The Normandy Lithic Resource Survey. In *Third Report of the Normandy Reservoir Salvage Project,* edited by Major McCullough and Charles Faulkner, pp. 141–194. Report of Investigations No. 16. Department of Anthropology, University of Tennessee, Knoxville.

Polhemus, James H. III

1963 Test Excavations at 40SM1, 40SM8, 40SM13, 40SM15, and 40JK10. In Archaeological Investigations in the Cordell Hull Reservoir, Tennessee: 1963 Field Season, edited by Dan Morse, pp. 84–154. Report submitted to the National Park Service. Manuscript on file, McClung Museum, University of Tennessee, Knoxville.

Radford, Albert E., Harry E. Ahles, and C. Ritchie Bell

1968 *Manual of the Vascular Flora of the Carolinas*. University of North Carolina Press, Chapel Hill.

Reed, Clyde F.

1971 *Common Weeds of the United States*. United States Department of Agriculture and Dover Publications, New York.

Shelford, Victor

1963 The Ecology of North America. University of Illinois Press, Urbana.

South, Stanley

1977 *Method and Theory in Historical Archaeology*. Academic Press, New York.

Springer, M.E. and J.A. Elder

1980 *Soils of Tennessee*. Bulletin 596, University of Tennessee Agricultural Experiment Station and United State Department of Agriculture Soil Conservation Service, Knoxville.

Struever, Stuart

1968 Flotation Techniques for the Recovery of Small-scale Archaeological Remains. *American Antiquity* 33:353–362.

Suhm, Dee Ann, Alex D. Krieger, and Edward B. Jelks

1954 *An Introductory Handbook of Texas Archaeology.* Bulletin of the Texas Archaeological Society, No. 25. Texas Archaeological Society, Austin.

Tennessee Division of Archaeology

1976 A Proposal Submitted to the Tennessee Department of Transportation for Funds for Archaeological Investigations on the State Route 53 Project, Jackson County. Document on file, Tennessee Division of Archaeology, Department of Conservation, Nashville.

Thornthwaite, C. Warren

1931 Climates of North America. *Geographical Review*, vol. 21.

Todd, T. Wingate

1920 Age Changes in the Public Bone I: The Male White Public. *American Journal of Physical Anthropology* 3:285–334.

Trotter, Mildred and Goldine C. Gleser

- 1952 Estimation of Stature from Long Bones of American Whites and Negroes. *American Journal of Physical Anthropology* 10:463–514.
- 1958 A Re-evaluation of Estimation of Stature Based on Measurements of Stature Taken during Life and of Long Bones after Death. *American Journal of Physical Anthropology* 16:79–123.

Warren, Robert E.

1975 Prehistoric Unionacean (Freshwater Mussel) Utilization at the Widows Creek Site (1JA305), Northeast Alabama. MA thesis, Department of Anthropology, University of Nebraska, Lincoln.

Waselkov, Gregory A.

1978 Evolution of Deer Hunting in the Eastern Woodlands. *Midcontinental Journal of Archaeology* 3(1):15–34.

Watson, Patty Jo

- 1976 In Pursuit of Prehistoric Subsistence: A Comparative Account of Some Contemporary Floatation Techniques. *Midcontinental Journal of Archaeology* 1(1):77–106.
- 1980 The Impact of Early Horticulture in the Upland Drainages of the Midwest and Midsouth. Paper presented at the School of American Research Advanced Seminar on the Origins of Plant Husbandry in North America.

Webb, William S.

- 1938 An Archaeological Survey of the Norris Basin in Eastern Tennessee. Bulletin 118. Bureau of American Ethnology, United States Government Printing Office, Washington.
- 1946 *Indian Knoll* (1974 edition by Howard Winters). University of Tennessee Press, Knoxville.

Webb, William S. and Raymond S. Baby

1957 *The Adena People– No 2.* The Ohio Historical Society, Columbus.

Webb, William S., and David L. DeJarnette

- 1942 An Archaeological Survey of the Pickwick Basin in the Adjacent Portions of the State of Alabama, Mississippi, and Tennessee. Bulletin 129. Bureau of American Ethnology, United States Government Printing Office, Washington.
- 1948 *The Flint River Site, MA 48*. Museum Paper 23, Alabama Museum of Natural History, University of Alabama.

White. Theodore E.

1953 A Method of Calculating the Dietary Percentage of Various Animals Utilized by Aboriginal Peoples. *American Antiquity* 18(4):396–398.

Williams, Samuel Cole

1928 Early Travels in the Tennessee Country. Watauga Press, Johnson City, Tennessee.

Winters, Howard D.

1969 *The Riverton Culture*. Illinois State Museum Reports of Investigations, No. 13, Springfield.

Wormington, H. Marie

1957 *Ancient Man in North America.* The Denver Museum of Natural History, Popular Series No. 4 Denver.

Yanovski, Elias

1936 *Food Plants of the North American Indians.* United States Department of Agriculture, Miscellaneous Publication No. 237, Washington, D.C.

Yarnell, Richard A.

- 1974 Plant Food and Cultivation of the Salts Cavers. In *Archaeology of the Mammoth Cave Area*, edited by P. J. Watson, pp. 113–122. Academic Press, New York.
- 1976 Early Plant Husbandry in Eastern North America. In *Cultural Change and Continuity,* edited by Charles Cleland, pp.265–273, Academic Press, New York.
- 1982 Problems of Interpretation of Archaeological Plant Remains of the Eastern Woodlands, Southeastern Archaeology 1(1):1–7

Yerkes, Richard

1981 The Potential of fish Utilization in Riverine Environments. *Midcontinental Journal of Archaeology* 6(2):207–217.

APPENDIX A: SUBSURFACE DISTURBANCES

Feature	Category	Diameter (m)	Depth (m)	Unit	Level
1	Basin	1.1 x (Int0.)	0.28	133R203	4
2	Basin	0.80 x 0.61	0.30	133R203	3
3	Pit	1.40 x 0.95	0.88	127R203	4
4	Pit	1.95 x 1.80	0.69	127R203/200	4
5	Pit	1.20 x 1.00	0.35	127R203	
6	Basin	0.90 x 0.80	0.19	133R203	4
7	Basin	0.96 x 0.86	0.09	133R200	4
8	Tree Fall/Stump	2.50 x 1.85	0.45	130R203	4
9	Pit	0.95 x (Int0.)	0.30	133R200	3⁄4
10	Fired Clay Deposit	0.45 x 0.35+	0.05 (Basin) 0.19	133R197	3⁄4
11	Basin	1.95 x 2.05+	0.26	133R197	3
12	Pit	2.00 x 2.55	?	136R230	3+
13	Pit	1.38 x 1.30	1.84	127R200	4
14	Pit	0.91 x 0.80	0.58	133R197	4
15	Basin	0.82 x 0.72	0.25	124R203	4
16	Pit	0.60 x (Int0.)	0.45	124R203	4
17	Pit	1.20 x 0.82+	0.41	133R194	3⁄4
18	Basin	1.00 x 1.00	0.14	130R200	4
19	Depression	1.15 x 0.92	0.10	130R200	4
20	Basin	0.90 x 0.70	0.11	130R200	4
21	Fired Clay Deposit	0.45 x 0.50	0.05	136R224	4
22	Pit	2.45 x 1.80	1.28	124R200	4
23	Linear Disturbance	1.80 x 0.40–1.00	0.66	124R200	4
24	Pit	1.25 x 0.90	1.65	133R230	7
25	Pit	1.75 x 1.75	0.50	133R224	3
26	Pit	0.69 x 0.68	0.29	133R224	3
27	Pit	1.95 x (Int0.)	0.71	139R230	10
28	Pit	0.95 x 0.96	0.34	130R224	3
29	Basin	0.76 x 1.04	0.24	130R224	3
30	Basin	0.55 x 0.50	0.05	130R224	2/3
31	Pit	1.65 x (Int0.)	0.39	121R200	3
32	Basin	0.59 x 0.64	0.06	133R221	3
33	Pit	1.50 x (Int0.)	0.50	124R230	2
34	Basin	1.40 x (Int0.)	0.25	130R221	2
35	Pit	0.90 x 0.84	0.56	130R221	2
35 36	Pit	0.90 x 0.84 0.90 x 1.20	0.30	130R221 130R221	2
30 37	Basin	0.90 x 1.20 0.70 x 0.80	0.19	124R221	2
38	Pit	0.95 x 0.85	0.34	124R221 124R221	2
39				124R221 124R221	2
39 40	Depression	1.17 x 0.87 1.18 x 0.90	0.17 0.72		2
	Pit Fired Class Dependent			124R221	
41	Fired Clay Deposit	0.95 x 0.57+	0.03	124R227	2
42A	Pit	0.92 x 0.85	0.28	124R227	2
42B	Basin	0.60 x 0.54	0.11	124R227	3
43A	Pit	1.20 x 1.17	0.30	124R227	3
43B	Basin	0.85 x 0.93+	0.08	124R227	2
44	Basin	0.25 x 0.23	0.10	124R221	2
45	Basin	0.85 x 0.70+	0.12	124R230	2
46	Pit	0.80 x 0.85	0.22	124R221	2
47	Pit	1.18 x 0.95	0.47	124R230	2
48	Basin	0.50 x 0.43	0.06	124R227	3

Feature	Category	Diameter (m)	Depth (m)	Unit	Leve
49	Pit	0.74 x 0.80+	0.27	121R221	3
50	Pit	1.40 x (Int0.)	0.49	121R221	2
51	Pit	0.50+ x 0.90+	0.34	121R221	2
52A	Pit	0.95 x 1.12	0.39	127R221	2
52B	Pit	0.98 x 0.65+	0.29	127R221	2
53	Pit	1.45 x 1.00	0.40	121R221	2
54	Pit	1.04 x 1.00	0.77	127R221	2
55	Pit	0.75 x 1.20+	0.60	127R221	2
56	Pit	0.95 x 0.65+	0.62	127R221	2
57	Pit	0.72 x 0.84	0.42	127R221	2
58	Basin	0.60 x 0.55	0.27	127R221	2
59	Pit	0.87 x 0.87	0.63	121R221	2
60	Pit	1.05 x 0.73	0.49	127R224	2
61	Basin	0.85 x 0.78	0.29	127R221	2
62	Basin	0.63 x 0.43	0.20	124/127R221	2
63	Pit	1.28 x 0.50+	0.80	127R221	2
64	Pit	0.86 x 0.78	0.37	127R221	2
65	Basin	0.85 x 0.90	0.10	124R230	3
66	Basin	0.72 x 0.66	0.19	124R221	2
67	Pit	0.78 x 0.72	0.46	121R221	2/3
68	Depression	0.71 x 0.45	0.11	124/127R221	2
69	Pit	0.78 x 0.80	0.26	124R230	3
70	Basin	0.53 x 0.55+	0.11	121R221	2
71	Basin	0.80 x 0.80	20	121/124R224	2
72	Basin	0.55+ x 0.45+	0.23	127R224	2
73	Pit	1.05 x 0.89	0.37	124R224	2
74	Basin	0.85 x 0.70	0.12	124R224	2
75	Pit	1.05 x 0.75	0.33	124R224	2
76	Pit	0.52 x 0.92	0.41	124R224	2
77	Pit	1.00×1.30	0.32	124R224	2
78	Basin	0.40+ x 0.50+	0.09	121R221	2
70 79	Pit	2.00 x 0.90	0.44	121R224	2
80	Basin	0.45 x 0.45	0.10	127R224	2
81	Pit	1.25 x 0.85	0.37	121R224	2
82	Pit	1.10 x Int0.	0.45	121R224	2
83	Basin	0.98 x (Int0.)	0.20	121R224 121R224	2
84	Basin	0.42 x 0.41	0.22	121R224 121R224	2
85	Pit	0.85 x 0.76	0.54	127R224	2
86	Pit	0.52+ x 0.40+	0.29	127R221	2
87A	Basin	0.50+ x 0.40+	0.29	127R224 127R224	2
87A 87B		0.40+ x 0.40+	0.23		2
88	Basin Basin	0.58 x 0.50	0.23	127R224	2
89	Basin	0.38 x 0.30 0.70 x 0.65	0.24	127R224 127R224	2
					2
90	Pit	1.05 x 1.00+	0.50	127R224	
91	Pit	0.98 x 0.85+	0.55	127R224	2
92	Pit	0.78 x 0.75+	0.20	121R221	2
93	Basin	0.72+ x 0.63	0.25	121R221	2
94	Pit	1.45 x 1.25	0.90	121R224	2
95	Basin	0.65 x 0.90	0.18	121R224	2
96	Basin	0.90 x 0.85	0.17	124R224	2
97	Basin	0.50 x 0.45	0.08	121R224	2
98	Pit	0.63 x 0.81	0.68	124R224	2
99	Basin	0.70 x 0.80	0.19	127R221	2
100	Pit	0.85 x 0.90	0.65	124R224	2
101	Basin	0.40+ x 0.50+	0.08	127R224	2
102	Pit	1.16 x 1.39	0.37	121R227	2
	Pit	0.94 x 0.87	0.35	121R230	2

Feature	Category	Diameter (m)	Depth (m)	Unit	Level
104	Pit	0.85 x 0.80+	0.35	124R224	2
105	Basin	0.58 x 0.50+	0.08	124R221/224	2
106	Basin	0.90 x 0.71	0.21	124R221/221	2
107	Pit	1.30 x 1.25	0.29	121R227	2
108	Pit	1.00 x 0.85+	0.35	121R230	2
109	Pit	0.79 x 0.78	0.35	121R230	2
110	Pit	0.90 x 0.89	0.53	112R224	2
111	Basin	0.90 x 0.75	0.25	118R224	2
112	(not assigned)				
113	Pit	0.87 x 0.95	0.48	118R230	2
114	Pit	1.02 x 0.94+	0.61	121R230	2
115	Basin	0.90 x 0.60+	0.21	121R227	2
116	Basin	0.53 x 0.31+	0.26	118R227	2
117	Pit	0.80 x 0.75	0.35	118R224/227	2
118	Pit	0.97 x 0.85	0.43	112/115R224	2
119	Pit	0.60+ x 0.60	0.47	127R227	2
120	Depression	0.90 x 0.55	0.20	127R227	2
121	Basin	0.65+ x 0.45+	0.18	115R224	2
122	Pit	0.80 x 0.65	0.28	118R224/227	2
123	Basin	1.35 x 1.00	0.12	115R224	2
124	Pit	1.10 x 1.05	0.78	115R224	2
125	Basin	0.95 x 0.55+	0.11	118R224	2
126	Basin	0.90+ x 0.80	0.20	118R224	2
127	Pit	0.83 x 1.05	0.55	118R230	2
128	Basin	1.04 x 0.90	0.23	121R227	2
129	Pit	1.00 x 0.95	1.30	118R224	2
130	Pit	1.45 x 1.81	0.35	115R224	2
131	Depression	1.05 x 0.90	0.12	118R230	2

APPENDIX B: FEATURE DATA BY CATEGORY

Fired Clay Deposits

Feature	Diameter (m)	Thickness (m)	
10	0.45 x 0.35+ (Int.)	0.05 (Fired area)	
		0.19 (Fire basin)	
21	0.45 x 0.50	0.05	
41	0.95 x 0.57+ (Int.)	0.03	
Range:	0.45–0.95 x 0.35–0.57		
Mean	0.6 x 0.05 (3)	0.08 (3)	
SD	0.29 x 0.11 (3)	0.07 (3)	

Midden Filled Pits

Feature	Diameter (m)	Depth (m)
4	1.95 x 1.80	0.69
13	1.38 x 1.30	1.84
22	2.45 x 1.80	1.28
24	1.25 x 0.90	1.65
25	1.75 x 1.75	0.50
26	0.69 x 0.68	0.29
31	1.65 x (Int.)	0.39
40	1.18 x 0.90	0.72
42A	0.92 x 0.85	0.28
49	0.74 x 0.80+ (Int.)	0.27
51	0.50 x 0.90+ (Int.)	0.34
54	1.04 x 1.00	0.77
55	0.75+ x 1.20+ (Int.)	0.60
57	0.72 x 0.84	0.42
60	1.05 x 0.73	0.49
63	1.28 x 0.50+	0.80
64	0.86 x 0.78	0.37
67	0.78 x 0.72	0.46
73	1.05 x 0.89	0.37
75	1.05 x 0.75	0.33
76	0.52 x 0.92	0.41
77	1.00+ x 1.30	0.32
81	1.25 x 0.85	0.37
92	0.78 x 0.75+	0.20 (-0.30) Burial -13
100	0.85 x 0.90	0.65
108	1.00 x 0.85+	0.35
109	0.79 x 0.78	0.35
113	0.87 x 0.95	0.48
117	0.80 x 0.75	0.35
118	0.97 x 0.85	0.43
Feature	Diameter (m)	Depth (m)
127	0.83 x 1.05	0.55
129	1.00 x .95	1.30
Range:	0.50-2.45 x 0.50-1.80	0.20-1.84
Mean:	1.05 (32) x 0.97 (31)	0.58 (32)

Feature	Diameter (m)	Depth (m)	
12	2.00 x 2.55	?	
14	0.91 x 0.80	0.58	
17	1.20 x .82+	0.41	
27	1.956 x (Int.)	0.71	
35	0.90 x 0.84	0.56	
36	0.90 x 1.20	0.30	
43A	1.20 x 1.17	0.30	
47	1.18 x .95	0.47	
50	1.40 x (Int.)	0.49	
53	1.45 x 1.00	0.40	
56	0.95 x 65+	0.62	
59	0.87 x 0.87	0.63	
79	2.00 x 0.90	0.44	
82	1.10 x (Int.)	0.45	
85	0.85 x /76	0.54	
86	0.52 x 40+	0.29	
90	1.05 x 1.00+	0.50	
91	0.98 x 0.85+	0.55	
94	1.45 x 1.25	0.90	
102	1.16 x 1.39	0.37	
103	0.94 x 0.87	0.35	
104	0.85 x 0.80+	0.35	
114	1.02 x 0.94+	0.61	
124	1.10 x 1.05	0.78	
130	1.45 x 1.81	0.35	
Range:	0.52-2.0 x 0.40-2.55	0.29-0.90	
Mean:	1.2 (25) x 1.0 (22)	0.50 (24)	
SD:	0.38 (25) x 0.44 (22)	0.16 (24)	

Rock and Shell Filled Pits

Feature	Diameter (m)	Depth (m)	
16	0.60 x (Int.)	0.45	
28	0.95 x 0.96	0.34	
33	1.50 x Int.	0.50	
38	0.95 x 0.85	0.34	
46	0.80 x 0.85	0.22	
52A	0.95 x 1.12	0.39	
52B	0.98 x 0.65+	0.29	
98	0.63 x 0.81	0.68	
107	1.30 x 1.25	0.29	
119	0.60 x 0.60+	0.47	
122	0.80 x 0.65	0.28	
69	0.78 x 0.80	0.26	
Range:	0.60–1.50 x 0.60–1.25	0.22-0.68	
Mean:	0.90 (12) x 0.85 (10)	0.38 (12)	
SD:	0.27 (12) x 0.21 (10)	0.13 (12)	

Shell-Filled Pits

Feature	Diameter (m)	Depth (m)	
3	1.40 x .95	0.88	
5	1.20 x 1.00	0.35	
9	0.95 x Int.	0.30	
110	0.90 x 0.89	0.53	
Range	0.90–1.40 x 0.89–1.00	0.30–0.88	

Mean:	1.11 (4) x .95 (4)	0.52 (4)	
SD:	0.20 (4) x 0.05 (3)	0.23 (4)	

Midden-filled Basins

Feature	Diameter (m)	Depth (m)	
30	0.55 x 0.50	0.05	
32	0.59 x 0.64	0.06	
37	0.70 x 0.80	0.19	
42B	0.60 x 0.54	0.11	
43B	0.85 x 0.93+	0.08	
71	0.80 x 0.80	0.20	
74	0.85 x 0.70	0.12	
80	0.45 x 0.45	0.10	
84	0.42 x 0.41	0.22	
87A	0.50+ x 0.40+	0.19	
87B	0.40+ x 0.40+	0.23	
88	0.58 x 0.50	0.24	
89	0.70 x 0.65	0.26	
96	0.90 x 0.85+	0.17	
99	0.70 x 0.80	0.19	
101	0.40+ x 0.50+	0.08	
106	0.90 x 0.71	0.21	
111	0.90 x 0.75	0.25	
115	0.90 x 0.60+	0.21	
116	0.53 x 0.31+	0.26	
125	0.95 x 0.55+	0.11	
Range:	0.40- 0.95 x 0.31-0.93	0.05-0.26	
Mean:	0.76 (16) x 0.69 (15)	0.18 (16)	
SD:	0.22 (16) x 0.21 (15)	0.07 (16)	

Rock Filled/Lined Basins

Feature	Diameter (m)	Depth (m)	
29	0.76 x 1.04	0.24	
45	0.86 x 0.70+	0.12	
48	0.50 x 0.43	0.06	
58	0.60 x 0.55	0.27	
61	0.85 x 0.78	0.29	
62	0.63 x 0.43	0.20	
65	0.85 x 0.90	0.10	
66	0.72 x 0.66	0.19	
70	0.53 x 0.55+	0.11	
83	0.98 x Int.	0.20	
93	0.72+ x 0.63	0.25	
95	0.65 x 0.90	0.18	
97	0.50 x 0.45+	0.08	
121	0.65+ x 0.45+	0.18	
123	1.35 x 1.00	0.12	
128	1.04 x 0.90	0.23	
Range:	0.50-1.35 x 0.43-1.04	0.06-0.29	
Mean:	0.076 (16) x 0.69 (15)	0.18 (16)	
SD:	0.22 (16) x 0.21 (15)	0.07 (16)	

Shell and Limestone Filled Basins

Feature	Diameter (m) Depth (m)		
34	1.40 x Int.	0.25	
44	0.25 x 0.23	0.10	
78	0.40+ x 0.50+	0.09	
105	0.58 x 0.50+	0.08	
126	0.90+ x 0.80	0.20	
Range:	0.25–1.40 x .23– 0.80	0.08-0.25	
Mean:	0.71 (5) x 0.51 (4)	0.14 (5)	
SD:	0.46 (5) x 0.23 (4)	0.08 (5)	

Shell Filled Basins

Feature	Diameter (m)	Depth (m)	m)	
1	1.10 x Int.	0.28		
2	0.80 x 0.61	0.30		
6	0.90 x 0.80	0.19		
7	0.96+ x 0.80	0.09		
11	1.95 x 2.05+	0.26		
15	0.82 x 0.72	0.25		
18	1.00 x 1.00	0.14		
20	0.90 x 0.70	0.11		
72	0.55+ x 0.45+	0.23		
Range:	0.55–1.95 x 0.45–2.05	0.09–0.28		
Mean:	0.89 (9) x 0.89 (8)	0.21 (9)		
SD:	0.49 (9) x 0.49 (8)	0.08 (9)		

Depressions

Feature	Diameter (m)	Depth (m)	
19	1.15 x 0.92	0.10	
39	1.17 x 0.87	0.17	
68	0.71 x 0.45	0.11	
120	0.90 x 0.55	0.20	
131	1.05 x .90	0.12	
Mean:	0.80 (5) x 0.74 (5)	0.14 (5)	
SD:	0.40 (5) x 0.22 (5)	0.04 (5)	

Postholes

Posthole	Unit	Diameter (m)	Depth (m)	
1	133R224	0.25 x 0.25	0.13	
2	130R224	0.18 x 0.21	0.09	
3	127R224 (F-64)	0.18 x 0.20	0.08	
4	121R224	0.23 x 0.23	0.10	

APPENDIX C: METRIC ATTRIBUTES FOR HUMAN SKELETAL REMAINS

Burial 1

<u>Left radius</u>	
Maximum length	253.0 mm
<u>Right humerus</u>	
Maximum length	318.0 mm
Maximum diameter mid-shaft	24.4 mm
Minimum diameter mid-shaft	18.0 mm
Vertical diameter head	45.2 mm
Transverse diameter head	42.0 mm
Circumference of mid-shaft	66.2 mm
<u>Left femur</u>	
Maximum diameter	450.0 mm
A-P mid-shaft diameter	27.5 mm
M-L mid-shaft diameter	24.8 mm
Circumference of mid-shaft	78.0 mm
Maximum diameter of head	42.3 mm
Subtrochanteric A-P diameter	22.0 mm
Subtrochanteric M-L diameter	33.0 mm

Burial 2

<u>Right femur</u>	
Maximum diameter of head	37.0 mm

Burial 3

<u>Left humerus</u>	
Diaphysis length	147.5 mm

Burial 4

<u>Right radius</u>	
Length	233.0 mm
<u>Femur</u>	
Femoral head diameter	44.0 mm

Burial 5

<u>Cranium</u>	
Glabello-occipital	186.0 mm
Maximum width	138.0 mm
Basion-bregma	138.0 mm
Basion-nasion	107.0 mm
Mandible	
Mandibular symphysis height	34.0 mm
Mandibular body height	31.0 mm
Mandibular body length	86.5 mm
Mandibular body thickness	13.0 mm
Mandibular ramus height	62.0 mm

Burial 5 (continued) Maximum ramus breadth Minimum ramus breadth **Bigonial diameter** Bicondylar breadth Gonial angle Left clavicle Left humerus Maximum length Head diameter Maximum diameter mid-shaft Minimum diameter mid-shaft Least circumference of shaft Right femur Maximum length A-P diameter mid-shaft M-L diameter mid-shaft

Circumference of mid-shaft86.0 mmA-P diameter (subtrochantric)26.1 mmM-L diameter (subtrochantic)27.3 mmFemoral head diameter45.1 mm

Burial 6

Cr	<u>anium</u>	
	Glabello-occipital length	181.0 mm
	Glabello-occipital width	139.5 mm
	Basion–bregma height	137.0 mm
	Basion-nasion	95.0 mm
	Maximum bizgomatic diameter	131.5 mm
	Prosthion-nasion	@60.0 mm
	Basion-prosthion	@94.0 mm
	Mandibular symphysis height	33.5 mm
	Mandibular body height	35.1 mm
	Mandibular body length	76.0 mm
	Mandibular body thickness	13.0 mm
	Bicondylar diameter	@97.0 mm
	Gonial angle	@97°
Ri	<u>ght ulna</u>	
	Maximum length	259.0 mm
Ri	<u>ght radius</u>	
	Maximum length	241.0 mm
Le	<u>ft femur</u>	
	Maximum length	423.0 mm
	A-P mid-shaft diameter	24.0 mm
	M-L mid-shaft diameter	23.6 mm
	Subtrochantric A-P diameter	29.0 mm
	Subtrochantric M-L diameter	26.8 mm
	Maximum diameter of head	38.0 mm
	Circumference of mid-shaft	75.0 mm
Le	ft Clavicle	137.5 mm

Burial 7

Left	u	lna	

226.0 mm

48.0 mm

39.4 mm

111.0 mm

125.5 mm

326.0 mm

42.3 mm

20.5 mm

20.3 mm

72.0 mm

449.0 mm

28.6 mm

25.2 mm

111° 142.0 mm

Burial 8

Poor preservation; no metric attributes recorded

Burial 9

<u>Cranium</u>	
Glabello-occipital length	183.0 mm
Glabello-occipital width	139.0 mm
Maximum bizygomatic breadth	132.8 mm
Prosthion-nasion	70.5 mm
Nasal breadth	25.7 mm
<u>Mandible</u>	
Mandibular symphysis height	28.7 mm
Mandibular body height	25.5 mm
Mandibular body length	74.0 mm
Mandibular body thickness	14.0 mm
Mandibular ramus height	57.0 mm
Ramus maximum breadth	40.1 mm
Ramus Minimum breadth	33.1 mm
Bigonial diameter	96.3 mm
Bicondylar breadth	126.5 mm
Gonial angle	119°
<u>Left humerus</u>	
Maximum length	294.0 mm
Maximum diameter of mid-shaft	18.4 mm
Minimum diameter of mid-shaft	12.4 mm
Maximum diameter of head	36.9 mm
Least circumference of shaft	48.0 mm
<u>Right radius</u>	
Maximum length	223.0 mm
<u>Right femur</u>	
Maximum length	415.0 mm
A-P diameter of mid-shaft	21.2 mm
M-L diameter of mid-shaft	23.0 mm
Subtrochantric A-P diameter	29.1 mm
Subtrochantric M-L diameter	20.2 mm
Maximum diameter femoral head	37.4 mm
Circumference of mid-shaft	71.0 mm
Metrics Fetal	
Two humeri shafts (left)	29.9 mm and 27.7 mm
Two femora diaphysis	23.5 mm and 24.9 mm

Burial 10

<u>Cranium</u>	
Glabello-occipital length	189.0 mm
Glabello-occipital width	134.0 mm
Basion-bregma height	142.0 mm
Bason-nasion	101.0 mm
Basion-prosthion	100.1 mm
Maximum bizygomatic breadth	139.6 mm
Nasal breadth	26.4 mm
Mandible	
Mandibular symphysis height	41.5 mm
Mandibular body height	34.9 mm
Mandibular body length	77.0 mm
Mandibular body thickness	14.5 mm
Mandibular ramus height	64.0 mm

Ramus maximum breadth	40.9 mm
Ramus minimum breadth	36.3 mm
Bigonial breadth	110.7 mm
Bicondylar breadth	131.2 mm
Gonial angle	115.5°
Left humerus	
Maximum length	331.0 mm
Maximum diameter of mid-shaft	23.6 mm
Minimum diameter of mid-shaft Maximum diameter of head	17.4 mm 45.5 mm
Least circumference of shaft	45.5 mm
Left ulna	05.011111
Maximum length	271.0 mm
Right radius	_/ 10
Maximum length	257.0 mm
Right femur	
Maximum length	441.0 mm
A-P diameter of mid-shaft	29.2 mm
M-L diameter of mid-shaft	24.6 mm
Subtrochantric A-P diameter	24.4 mm
Subtrochantric M-L diameter	31.8 mm
Maximum diameter of head	42.7 mm
Circumference of mid-shaft	85.0 mm
<u>Right tibia</u>	441.0 mm
Maximum length A-P diameter at nutrient foramen	35.9 mm
M-L diameter at nutrient foramen	26.0 mm
D	
Burial 11	
Right femur diaphysis	87.5 mm
Left ulna diaphysis	67.8 mm
Left radius diaphyseal length	58.6 mm
Burial 12	
<u>Cranium</u>	
Glabello-occipital length	183.0 mm
Glabello-occipital width	131.0 mm
Mandible	27.0
Mandibular symphysis height	27.6 mm
Mandibular body height	31.7 mm 78.0 mm
Mandibular body length Mandibular body thickness	15.0 mm
Mandibular ramus height	53.0 mm
Ramus maximum breadth	45.4 mm
Ramus minimum breadth	35.0 mm
Bigonial diameter	100.0 mm
Bicondylar breadth	118.0 mm
Gonial angle	124°
Burial 13	
Cranium	
Glabello-occipital length	162.0 mm
Glabello-occipital width	124.0 mm
Maximum bizygomatic diameter	129.0 mm
Basion-nasion	85.9 mm
Left humerus diaphysis	

Left humerus diaphysis

Burial 13 (continued)

Maximum length	157.0 mm
Maximum diameter of mid-shaft	10.4 mm
Minimum diameter of mid-shaft	8.3 mm
Left radius diaphysis	
Maximum length	121.0 mm
<u>Right femur diaphysis</u>	
Maximum length	218.0 mm
A-P diameter mid-shaft	12.0 mm
M-L diameter of mid-shaft	12.5 mm
Subtrochantric M-L diameter	12.8 mm
Subtrochantric A-P diameter	12.1 mm
Maximum diameter of head	21.1 mm
Circumference of mid-shaft	39.0 mm
<u>Right tibia diaphysis</u>	
Maximum length	181.0 mm
A-P diameter at foramen	16.2 mm
M-L diameter at foramen	12.9 mm
<u>Right fibula</u>	
Maximum length	175.0 mm

Burial 14

<u>Cranium</u>	
Glabello-occipital length	176.0 mm
Glabello-occipital width	135.0 mm
Maximum bizygomatic diameter	131.0 mm
Prosthion-nasion	61.0 mm
Mandible	
Mandibular symphysis height	29.4 mm
Mandibular body height	23.6 mm
Mandibular body length	80.5 mm
Mandibular body thickness	14.8 mm
Mandibular ramus height	53.5 mm
Ramus maximum breadth	44.7 mm
Ramus minimum breadth	34.4 mm
Bigonial diameter	102.3 mm
Bicondylar breadth	128.5 mm
Gonial angle	116.5°
Right clavicle	
Maximum length	134.0 mm
<u>Left ulna</u>	
Maximum length	265.0 mm
Left radius	
Maximum length	253.0 mm
<u>Right femur</u>	
Maximum length	441.0 mm
A-P diameter mid-shaft	27.3 mm
M-L diameter mid-shaft	25.2 mm
Subtrochantric M-L diameter	26.1 mm
Subtrochantric A-P diameter	44.4 mm
Maximum diameter head	44.4 mm
Circumference of mid-shaft	80.0 mm

Burial 15

<u>Left ulna</u>	
Maximum length	246.0 mm

Burial 15 (continued)

Femur	
Femoral head diameter	38.9 mm
Fragmented portions of femur	
Length	390.0 mm

Burial 16

<u>Cranium</u>	
Glabello-occipital length	181.0 mm
Glabello-occipital width	142.0 mm
Maximum bizygomatic diameter	136.6 mm
Basion-bregma height	136.0 mm
Basion-nasion	103.0 mm
<u>Mandible</u>	
Mandibular symphysis height	34.1 mm
Mandibular body height	32.0 mm
Mandibular body length	87.0 mm
Mandibular body thickness	17.0 mm
Mandibular ramus height	61.0 mm
Ramus maximum breadth	44.0 mm
Ramus minimum breadth	37.2 mm
Bigonial diameter	104.1 mm
Bicondylar breadth	130.8 mm
Gonial angle	111°
<u>Left humerus</u>	
Maximum length	322.0 mm
Maximum diameter of mid-shaft	20.8 mm
Minimum diameter of mid-shaft	15.4 mm
Maximum diameter of head	41.9 mm
Least circumference of shaft	59.0 mm
<u>Left radius</u>	
Maximum length	256.0 mm
Right tibia	
Maximum length	@390.0 mm

Burial 17

Poor preservation; no metric attributes recorded.

APPENDIX D: CARBONIZED WOOD BY COUNT, CATEGORIZED BY HABITAT

											Feat	ture N	umber										
ТАХА	1	4	5	6	7	8	9	14	15	16	19	21	23	26	29	32	33	34	35	36	37	39	40
Acer sp.		1		1			1	7			1			7			3		4	5			
Arundinaria sp.												4							1				
Celtis occidentalis																	3						
Cercis canadensis			2																				
Diospyros virginiana															2								
Fraxinum sp.	2	4	7	2	7	2	2	16	11	5	12	7	5				12	3	4	5		1	17
Gleditsia triacanthos		2			3		3	6		1	3	4		5				1		2	6		9
Platanus occidentalis		2						1					1	2			2		1	1			
Salix sp.																							
Ulmus sp.							1												1	2			
Vitis sp.					2						1	3		5			1						
BOTTOMLAND SUBTOTAL	2	9	9	3	12	2	7	30	11	6	17	18	6	19	2	0	21	4	11	15	6	1	26
Fagus grandifolia				1					1	1								1					
Juglans sp.	1												1										
Liquidambar styraciflua																							
Oxydendrum arboreum																							
Prunus sp.	3			2		2		2	1				1					2	1	1			
Quercus (Red Group)	1		1	2		2	8	3			3			8	11	3	3	2	23	8	5	2	5
Quercus (White Group)	3			1					2	3	5	5			3				5				
Quercus sp.										1							1						
MESIC UPLAND SUBTOTAL	8	0	1	6	0	4	8	5	4	5	8	5	2	8	14	3	4	5	29	9	5	2	5
Carya sp.		2	7		2	1	2	1			1						3		4			1	8
Cornus florida		3	1		6			1		4		4		1					1		3		8
XERIC UPLAND SUBTOTAL		5	8		8	1	2	2	0	4	1	4	0	1	0	0	3	0	5	0	3	1	16
Carpinus caroliniana													1										
Pinus sp.	1																						
DISTURBED UPLAND SUBTOTAL	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Bark															5								
Diffuse Porous							1	1			2	2			1								1
Unidentifiable	15	1	10	3			7	15		4	8	15		5			23		20	10	6	5	
TOTAL	26	15	28	12	20	7	25	54	17	19	36	44	9	33	22	3	51	9	65	34	20	9	48

											Feat	ture N	umber										
	43	45	46	7	48	49	50	51	54	56	58	59	63	64	67	72	76	79	88	90	91	93	94
Acer sp.			2	2		1						2			3					2		2	1
Arundinaria sp.		3							2		1						3						1
Celtis occidentalis																						1	
Cercis canadensis																							
Diospyros virginiana																							
Fraxinum sp.	1	1						5	2	12			4		10	1	5	3	2	1	4	2	14
Gleditsia triacanthos			3	1	3	1		2	1	1	1	5	4	3	2	4	1	4		2			
Platanus occidentalis																				1			
Salix sp.									1														
Ulmus sp.			1	2			1																
Vitis sp.				1									2		1						1		
BOTTOMLAND SUBTOTAL	1	4	6	6	3	2	1	7	6	13	2	7	10	3	16	5	9	7	2	6	5	5	16
Fagus grandifolia	4	3	1										5										1
Juglans sp.																							
Liquidambar styraciflua																							
Oxydendrum arboreum																							
Prunus sp.			2						1					1		1							
Quercus (Red Group)	2	10	3	8		1	2	2	2		2	5	3	3		1	1	1	1	2		2	4
Quercus (White Group)																		3		1	1		
Quercus sp.																							
MESIC UPLAND SUBTOTAL	6	13	6	8	0	1	2	2	3	0	2	5	8	4	0	2	1	4	1	3	1	2	5
Carya sp.							2		1				2	1	1	3	5			3			
Cornus florida						2		3				1		3				6				1	
XERIC UPLAND SUBTOTAL	0	0	0	0	0	2	2	3	1	0	0	1	2	4	1	3	5	6	0	3	0	1	0
Carpinus caroliniana																							
Pinus sp.																							1
DISTURBED UPLAND SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bark						3															20		
Diffuse Porous			2		1							1					1	1					
Unidentifiable	3	10		6	5	1		5	3			5	20	3	3	2	7	4	3	3		12	8
TOTAL	10	27	14	20	9	9	5	17	13	13	4	19	40	14	20	12	23	22	6	15	26	20	30

								Fe	ature Nu	umber					
	102	103	105	106	108	111	113	116	117	118	120	124	127	127R197 L-3	103R203 L-3
Acer sp.		1			1	2	1					2	1		
Arundinaria sp.		4					1					1			
Celtis occidentalis															
Cercis canadensis															
Diospyros virginiana															
Fraxinum sp.	3	7	3		3	6	1		3	2	6	6	1	2	8
Gleditsia triacanthos				1			4	1		1	2	3	1	1	1
Platanus occidentalis															
Salix sp.															
Ulmus sp.							1								
Vitis sp.															
BOTTOMLAND SUBTOTAL	3	12	3	1	4	8	8	1	3	3	8	12	3	3	9
Fagus grandifolia		1													
Juglans sp.													1		
Liquidambar styraciflua															
Oxydendrum arboreum															
Prunus sp.			1				1		4				1		1
Quercus (Red Group)	3			1		6	2		3	7	2	1	6	4	1
Quercus (White Group)		2			1						2				
Quercus sp.			1												
MESIC UPLAND SUBTOTAL	3	3	2	1	1	6	3	0	7	7	4	1	8	4	2
Carya sp.	2		2		8	2	12	3	2				8	2	1
Cornus florida	1	1									2	1			
XERIC UPLAND SUBTOTAL	3	1	2	0	8	2	12	3	2	0	2	1	8	2	1
Carpinus caroliniana															
Pinus sp.	1						1								
DISTURBED UPLAND SUBTOTAL	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Bark															
Diffuse Porous											2	2			
Unidentifiable	4	3	1			10		10	4		3	10	4	2	6
TOTAL	14	19	8	2	13	26	24	14	16	10	19	26	23	12	18

				Fe	ature Number				
	133R230 L-2	136R230 L-2	136R230 L-3	136R231 L-2	136R231 L-5	136R321 L-7	136R231 L-8	136R231 L-10	TOTA
Acer sp.			5		1	4			64
Arundinaria sp.								1	25
Celtis occidentalis									4
Cercis canadensis									2
Diospyros virginiana									2
Fraxinum sp.	13	3	21	8	2	5	2	2	298
Gleditsia triacanthos	1	2	6	1	7	1	2	3	123
Platanus occidentalis	1								12
Salix sp.									
Ulmus sp.			1						10
Vitis sp.	1				2				20
BOTTOMLAND SUBTOTAL	16	5	33	9	12	10	4	6	55
Fagus grandifolia			5				1		25
Juglans sp.								3	
Liquidambar styraciflua							1		
Oxydendrum arboreum					3				3
Prunus sp.	3		4				3		38
Quercus (Red Group)	6		12	1	6	4	2	5	21
Quercus (White Group)	2		1		2	1			4
Quercus sp.									
MESIC UPLAND SUBTOTAL	11	0	22	1	11	6	7	8	33
Carya sp.	2		2		2	4	1		10
Cornus florida			5		2	1	1		6
XERIC UPLAND SUBTOTAL	2	0	7	0	4	5	2	0	16
Carpinus caroliniana			1						
Pinus sp.								1	
DISTURBED UPLAND SUBTOTAL	0	0	1	0	0	0	0	1	
Bark									2
Diffuse Porous			6		1			1	2
Unidentifiable	28	4	29	1	10	5	30	10	42
TOTAL	57	9	98	11	38	25	43	26	154

APPENDIX E: CARBONIZED NUTSHELL BY GRAM WEIGHT, CATEGORIZED BY HABITAT

Feature	Juglans cinerea	Juglans nigra	Juglans Sp.	Quercus Sp.	MESIC UPLAND SUBTOTAL	Carya Sp.	TOTAL GRAM WEIGHT
1		0.076	0.012		0.088	0.152	0.240
4				0.005	0.005	0.197	0.202
5	0.067	0.113	0.143		0.323	2.673	2.996
6		0.055			0.055	0.270	0.325
7	0.043	0.273		0.010	0.326	0.969	1.295
8			0.140	0.009	0.149	0.823	0.972
9			0.058		0.058	0.083	0.141
14		0.235		0.156	0.391	0.968	1.359
15			0.067	0.014	0.081	0.140	0.221
16			0.124	0.086	0.210	0.719	0.929
19		0.229	0.063	0.071	0.363	1.230	1.593
21	0.079	0.876	0.367	0.090	1.412	4.918	6.330
23						0.044	0.044
26		0.038		0.038	0.076	0.280	0.356
29				0.063	0.063	0.216	0.279
32		0.036			0.036	0.922	0.958
33			0.051	0.087	0.138	0.922	1.060
34				0.006	0.006	0.163	0.169
35	0.080	0.014		0.193	0.287	0.316	0.603
36		0.051		0.010	0.061	0.419	0.480
37		0.140	0.246	0.010	0.396	0.579	0.975
39		0.167	0.176	0.010	0.353	0.665	1.018
40	0.262	0.493		0.021	0.776	1.171	1.947
43		0.264	0.042	0.014	0.320	0.385	0.705
45		0.308		0.011	0.319	0.348	0.667
46		0.326	0.314		0.640	1.037	1.677
47	0.034	0.060		0.019	0.113	0.379	0.492
48		0.045	0.025	0.049	0.119	0.111	0.230
49		0.054			0.054	0.181	0.235
50				0.008	0.008	0.216	0.224
51			0.012	0.019	0.031	0.375	0.406
54	0.064	0.119		0.012	0.195	0.208	0.403
56		0.111		0.012	0.138	0.124	0.262
58						0.018	0.018
59				0.006	0.006	0.018	0.064
63			0.244	0.056	0.300	0.820	1.120
64		0.054		0.004	0.058	0.476	0.534
67		0.102		0.015	0.117	0.532	0.649
72			0.056		0.056	0.124	0.180
79		0.035	0.050	0.002	0.037	0.124	0.321
90		0.240		0.002	0.990	0.284	1.525
90 91		0.240	0.020	0.730	0.493	0.333	0.704
91 93		0.126	0.020	0.473	0.493	0.211	0.690
93 94		0.126		0.224	0.004	0.540	0.090
94 102				0.004	0.004		0.082
102		0.016			0.003	0.031	0.034
						0.244	
105		0.042		0.014	0.056	1.455	1.511
106		0.062			0.062	0.167	0.229

Feature	Juglans	Juglans nigra	Juglans Sp.	Quercus Sp.	MESIC UPLAND	Carya Sp.	TOTAL GRAM
	cinerea				SUBTOTAL		WEIGHT
108		0.028		0.002	0.030	0.562	0.592
111		0.026	0.014	0.051	0.091	2.064	2.155
113		0.013	0.247		0.260	0.687	0.947
116		0.116	0.051	0.003	0.170	0.666	0.836
117	0.035	0.031		0.036	0.102	0.576	0.678
118		0.035		0.004	0.039	0.079	0.118
120				0.003	0.003	0.738	0.741
122						0.055	0.055
124		0.067		0.022	0.089	0.329	0.418
127		0.091			0.091	0.529	0.620
127R127 L-3	0.045	0.174			0.219	0.540	0.759
130R203 L-3			0.007	0.013	0.020	0.066	0.086
136R230 L-3		0.102	0.103	0.337	0.542	1.770	2.312
133R230 L-2		0.190	0.051	0.126	0.367	2.300	2.667
136R230 L-2		0.070		0.002	0.072	0.089	0.161
136R231 L-2			0.049		0.049	0.207	0.256
136R231 L-5		0.060		0.063	0.123	0.674	0.797
136R231 L-7						0.125	0.125
136R231 L-8	0.034	0.078		0.078	0.190	0.473	0.663
136R231 L-10				0.012	0.012	0.006	0.018
TOTAL	0.743	5.841	2.682	3.341	12.607	40.091	52.698

= value corrected from original report edition

APPENDIX F: CARBONIZED SEEDS AND FRUITS BY WHOLE AND FRAGMENTARY SPECIMENS, CATEGORIZED BY HABITAT

											Feature	e Numb	er									
	1		4	ļ		6		7		3	9)		14	1	6		.9	21	-	2	3
	W*	F*	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F
Gleditsia Triacanthos																						
Prunus spp.																		3		1		
Tuber (fleshy)																						
BOTTOMLAND SUBTOTAL																		3	1			
Cyperus sp.																						
Galium sp.																						
Graminacae																						
Phytolacca americana				2										6								
Rhus sp					1																	
Rubus sp.																						
Xanthium																						
DISTURBED LAND			2	2		1								6								
SUBTOTAL																						
Amaranthus sp.																						
Asteracease seedhead																2	3	1				
Chenopodium sp.	2				1	1	1						6	19				2				2
Leguminosae																						
Phalaris Carolina													1				1					
Polygonum sp.																				3		
POTENTIAL CULTIGEN	2					2		1						26	2	2		7	3		2	2
SUBTOTAL																						
Cucurbitacease		3																				
Cucurbita sp.																						
Cucurbita pepo																						2
Cucurbita pepo peduncle																						
CULTIGEN SUBTOTAL	3																					
Flower bud/stem																						2
Unknown seed	3								1				1									
Unidentifiable seed/fruit												1					2					
TOTAL	8		2	2		3		1	1	1	1			33	2)	1	.2	4		6	5

											Featur	e Num	ber									
		6		29	3	2	33		34	ļ		7	39)		-0	4	5		46		47
	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F
Gleditsia Triacanthos																						
Prunus spp.																						
Tuber (fleshy)										1												
BOTTOMLAND SUBTOTAL									1													
Cyperus sp.																						
Galium sp.																						
Graminacae																					1	
Phytolacca americana					1																	
Rhus sp																						
Rubus sp.																						
Xanthium																						
DISTURBED LAND					1																	1
SUBTOTAL																						
Amaranthus sp.																						
Asteracease seedhead		1		2														4				
Chenopodium sp.		2		3				1							3	6			1	2	2	
Leguminosae																						
Phalaris Carolina			1																			
Polygonum sp.																						
POTENTIAL CULTIGEN		3		6			1									9	4	1		3		9
SUBTOTAL																						
Cucurbitacease																						
Cucurbita sp.												4				3						
Cucurbita pepo																						
Cucurbita pepo peduncle																						
CULTIGEN SUBTOTAL				2							4	1				3						
Flower bud/stem															1							
Unknown seed														1		1						
Unidentifiable seed/fruit												1										
TOTAL	3	3		8	1	L	1		1			5	1		1	4	4	1		3		9

										Fe	eature	Numbe	er									
	49	Э		51	58	3	59		63		6	4	6	7	7	2	8	8	9	0	9	91
	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F	W	F
Gleditsia Triacanthos																						
Prunus spp.																						
Tuber (fleshy)																						2
BOTTOMLAND SUBTOTAL																				3		2
Cyperus sp.																						
Galium sp.																						
Graminacae																						
Phytolacca americana																						
, Rhus sp																						
Rubus sp.																						
Xanthium																						
DISTURBED LAND																						
SUBTOTAL																						
Amaranthus sp.															1						1	
Asteracease seedhead								1		1		1										
Chenopodium sp.						1	1		3	1			1		5	2	2				3	72
Leguminosae						1																2
Phalaris Carolina																					1	
Polygonum sp.	1	5							1	1												3
POTENTIAL CULTIGEN	6				2		2		7		1		1		8	3	2	2			5	32
SUBTOTAL																						
Cucurbitacease					1									3		4						1
Cucurbita sp.		1		3						8				3		3						1
Cucurbita pepo								6														
Cucurbita pepo peduncle																						
CULTIGEN SUBTOTAL				3	1		6		8				6		7	,						2
Flower bud/stem														1		2			İ			1
Unknown seed								3	1	1												
Unidentifiable seed/fruit		1								4												8
TOTAL	8			3	3		11		21		1		8		1	7	2)	3	3	g	95

*W=whole F=Fragmentary

= value corrected from original report edition

APPENDIX G: PROVENIENCE OF SELECTED CHIPPED AND GROUND STONE IMPLEMENTS AND FAUNAL ELEMENTS

The following Appendix was prepared by Cridlebaugh for publication with the original Penitentiary Branch report, but not subsequently included in that publication. It is presented here as a scan of the original printed file. Several artifact categories included in this Appendix do not appear elsewhere in the report (e.g., Spalls, Projectile Point Category 0, and Crinoid Stems), and Biological Species names have not been updated from the original document.

```
<u>Level</u> <u>0</u> --(Surface Collection)
    Blarks
        1 Stage 2
              1111- C,
        1 Stage 4
              1111- 0,
    Spalls
        2
              1111- 0,1111- 0,
    Preforms
        1
           Stage 1
              1111- 0,
        3
            Stage 2
              1111- 0, 1111- 0, 1111- 0,
        1
            Stage 3
              1111- 0,
    Projectile prints
        1 Category 2
              1111- 2,
           Category 5
        1
              1111-21,
           Category 6
        1
             tegor,
1111- 7,
           Category
        1
              1111- 8,
           Category 8
        1
              1111- 1,
            Category 14
        3
              1111- 3,1111- 5,1111- 6,
           Category 16
        1
              1111-20,
            Category 17
        1
              1111- 9,
           Category 22
        1
              1111- 4,
    Preform/blank/bifacial fragments
        2 Indeterminate biface fragment
              1111- 0,1111- 0,
           Elank fragment
        1
              1111- 0,
    Projectile point fragments
       2 Distal
              1111- 0, 1111- 0,
```

LEVEL 0

```
Level 1
                                             LEVEL 1
    Blarks
        5
           Stage 1
              1008- 1,1008- 4,1012- 8,1084- 2,1105- 0,
        6
            Stage 2
              1008- 2, 1012- 3, 1012- 9, 1079- 2, 1092- 4, 1095- 1
        1
           Stage 3
              1079- 1,
    Knives
        1 Stemmed
             1038- 4.
    Scrapers
        1 Core scraper
             1042-13,
    Preforms
        4
           Stage 1
              1085- 1, 1085-11, 1092- 1, 1092- 5,
           Stage 2
        8
              1008-35,1038- 4,1072- 2,1072- 3,1079- 3,1085- 2
              1085- 3, 1085- 5,
        9
           Stage 3
              1000- 3, 10(8- 8, 1056- 3, 1058- 1, 1071- 5, 1072- 4
              1074- 3, 1080- 4, 1097- 6,
    Drills
           Indeterminate
        1
             1105- 0.
           On a finished tiface
        2
             1087- 5,1091- 3,
        1
           On a nodular flake
             1092-16,
    Projectile points
        2
          Category 0
           1005- 7,1072- 6,
Category 3
        2
              1072-12, 1082- 6,
        5
           Category 4
             1000- 2, 1005- 2, 1038- 7, 1091- 4, 1097- 2,
        3
          Category 5
             1083-11,1085- 6,1092-10,
        1
           Category 6
             1071- 2,
        5
           Category
             1012- 4,1038- 2,1080- 3,1091- 1,1092- 6,
```

```
Category 9
    1
         1080- 5,
       Category 11
    2
         1082- 2,1084- 5,
       Category 13
    3
         1000- 1, 1071- 7, 1082- 7,
       Category 14
    1
         1087-2,
    2
       Category 16
         1038- 8,1092- 7,
       Category 17
1071- 3,1071- 4,1072- 5,1072-77,1080- 1,1083- 8
   10
         1083-10,1085- 4,1087- 4,1092- 2,
    1
       Category 18
         1008- 3,
       Category 19
    1
         1072-79,
       Category 21
    1
         1085-10,
    3
       Category 23
         1008- 7,1012- 2,1092- 8,
       Category 25
    1
         1071- 6,
       Category 26
    2
         1072-11,1080- 7,
       Category 27
    1
         1097- 1,
       Category 28
    1
         1087-1.
Cores
       Subccnical
    4
         1084- 1, 1084- 6, 1092- 3, 1094- 1,
    3
       Amorphous
         1008- 9,1084- 3,1087- 3,
       Discoidal
    1
         1078-3.
Hammerstones
    1
         1083- 3,
Miscellaneous
      Ground stone pipe blank
    1
         1080- 0,
    1
       Drill prefcrm
          1078- 2,
       Crincid stem
    1
         1091- 5,
    1 Cobble chopper
          1083- 1,
```

```
Utilized flakes
       Bifacial thinning flake
    7
          1072- 1, 1072-10, 1074- 5, 1082- 4, 1083- 4, 1083-12
          1092- 9,
       Shatter fragment
    1
          1097-11,
Preform/blank/bifacial fragments
    5
       Indeterminate biface fragment
         1005- 4,1005- 4,1005-36,1008- 6,1095- 6,
    6
       Proximal pertien
         1000- 4,1008- 6,1012-26,1072- 7,1084- 4,1097- 9
    3
       Medial pcrticn
          1012- 1,1012- 5,1038- 1,
   13
       Distal portion
         1000- 2,1008- 2,1012- 6,1038- 3,1056- 2,1058- 5
         1071- 8,1085- 8,1085-12,1095- 3,1097- 4,1097- 7
         1097- 8,
    8
       Blank fragment
         1000- 1,1038- 6,1074- 1,1080- 8,1083- 6,1083- 7
         1083- 9, 1085- 9,
Projectile point fragments
   24 Distal
         1005- 5, 10(8-34, 1012- 7, 1038- 9, 1056- 1, 1058- 2
         1058- 5, 1058- 6, 1074- 3, 1074- 4, 1075- 2, 1078- 1
         1080- 1,1080- 6,1081- 1,1082- 1,1082- 3,1082- 5
         1083-18, 1085-13, 1087- 6, 1095- 2, 1095- 4, 1095- 5
       Medial
    2
         1075- 1, 1084- 7,
Indeterminate
  Elements Fragments
                        Cther
                  1
Indeterminate mammal
  Elements
           Fragments
                  3
                        Cther
Indeterminate large mannal
  Elements Fragments
                76
                        Cther
Homo sapiens
  Elements Fragments
                  1
                        Cther
<u>Odocileus virginianus</u>
  Elements Fragments
       1
                        Antler
       3
                        Dental
```

22	5	Other
<u>Cervus can</u> Elements 2	<u>adensis</u> Fragments	Cther
Procyon lo Elements 1	<u>tor</u> Fragments	Other
<u>Ursus amer</u> Elements 1	<u>icanus</u> Fragments	Dental
<u>Marmota mo</u> Elements 1	<u>nax</u> Fragments	Dental
Indetermin Elements	ate bird Fragments 1	Cther
	ate large b: Fragments 1	ird Cther
<u>Meleagris</u> Elements 1	gallopavc Fragments	Other
<u>Eutec jama</u> Elements 1	<u>icensis</u> Fragments	Cther
Ana sp. Elements 1	Fragments	Other
Indetermina Elements 2	ate turtle Fragments	Cther
<u>Trionyx sp</u> Elements 1		Other
Indetermina Elements	ate fish Fragments 1	Cther

```
Level 2
                                            LEVEL 2
    Blarks
        6
           Stage 1
              1001- 0,1001- 8,1006- 1,1006- 2,1066- 1,1077- 3
        5
            Stage 2
              1009-30, 1033- 2, 1033- 3, 1059- 4, 1059- 7,
        6
            Stage 3
              1009-13, 1019- 9, 1023- 7, 1033- 5, 1059- 2, 1089- 1
        3
           Stage 4
              1006- 3,1006- 9,1009-23,
    Knives
        1 Iriangular/rcunded base
              1023- 6,
    Chisels
           Chipped stone
        2
             1006- 9,1062- 1,
    Scrapers
        2
           Unifacial end and side scraper
             1006-23,1099- 1,
          Unifacial side scraper
        1
             1006-24.
    Axes
        2
              1033-49, 1110-18,
    Spalls
        1
             1059- 7,
    Preforms
        4
           Stage 1
              1009- 5,1023- 1,1029- 2,1059- 1,
           Stage 2
        6
             1001- 0, 1006- 7, 1023- 2, 1059- 3, 1089- 2, 1096- 0
        5
           Stage 3
             1006-11, 1009- 2, 1029- 1, 1059-13, 1109- 0,
    Drills
        3
          Indeterminate
              1006-32, 1009-38, 1109- 0,
           On a finished biface
        2
```

```
1009-10, 1013- 2,
```

```
Projectile points
       Category 0
    1
          1013- 4,
       Category 3
    3
          1013- 3,1013- 6,1062-22,
    1
        Category 5
          1062-2,
       Category 6
1009- 7,1066- 0,1089- 3,
    3
    3
       Category 8
          1009- 5,1062- 1,1103- 4,
    2
       Category 9
          1033- 4,1059-10,
    1
       Category 10
          1033- 1,
    1
       Category 11
          1023- 0,
    1
       Category 12
          1108- 0,
    3
       Category 13
          1001- 0,1009- 4,1019- 3,
    4
       Category 14
          1019- 2, 1019- €,1033- 2,1103- 5,
       Category 15
    1
          1019-10,
       Category 16
    1
          1009-17,
    3
       Category 17
          1009- 3,1098-50,1098-51,
       Category 18
1019- 1,1019- 8,1098-65,
    3
       Category 20
    1
          1077- 2,
       Category 22
    1
          1023- 5,
    2
       Category 25
          1013- 1, 1053- 1,
       Category 29
    2
          1013- 5, 1077- 1,
    2
       Category 32
          1006- 5, 1029- 4,
Cores
       Subconical
    4
          1009-16,1009-42,1019-11,1023-21,
    6
        Amorphous
          1001- 1,1001- 9,1006-28,1009- 1,1009-41,1062- 3
       Disccidal
    1
          1006-25,
```

```
Notched flakes
    1
       On a flake
          1006-17,
Miscellanecus
        Drill/graver
    1
          1009-10,
    2
        Drill preform
          1001- 5,1059- 5,
       Crinoid stem
    4
          1006- 1,1006- 2,1006- 3,1062- 4,
       Pitted cobble
    1
          1099-46,
       Limestone temp. sherd
    1
          1009-19,
    1
       Daub fragment
          1009-18.
Utilized flakes
       Decortication flake
    4
          1006-18,10(6-20,1009-12,1009-13,
    5
       Bifacial thinning flake
          1001- 2, 1006-16, 1009-21, 1013- 7, 1059-14,
Preform/blank/bifacial fragments
   12
       Indeterminate biface fragment
          1006- 4, 1006- 4, 1006- 5, 1006- 5, 1006-30, 1006-30
          1006-34, 1009-22, 1009-22, 1009-29, 1009-35, 1066-4
       Proximal pertien
    4
          1009-14, 1009-15, 1059-12, 1099-45,
    2
       Medial pcrticn
          1001- 3,1033- 5,
       Distal pcrticn
    8
          1006- 6, 1009-40, 1019- 4, 1023- 3, 1023- 4, 1033- 2
          1033- 3, 1059- 8,
      Blank fragment
    7
          1006-27, 1009-27, 1009-29, 1009-32, 1009-33, 1013-1
          1103- 3.
Projectile pcint fragments
       Distal
   22
          1001-10,1006-1,1006-10,1006-31,1006-33,1006-35
         1009- 6,1009- 8,1009-19,1009-31,1009-36,1009-37
          1019- 5, 1019- 7, 1033- 4, 1033- 6, 1053- 2, 1059- 9
          1059-16,1066- 2,1089- 4,1103- 2,
       Medial
    6
          1006- 8,1006-12,1006-28,1009- 9,1009-24,1059- 6
    4
       Proximal
          1006- 2, 1006- 3, 1009-15, 1062- 1,
```

	minate mamma ents Fragmen 1 90	nts
Elene	minate large nts Fragme 4 139	nts
H <u>cmc</u> sa Eleme	<u>riens</u> ents Fragmen 4	nts Other
<u>Odocile</u> Eleme 13	us <u>virginia</u> nts Fragmen 2 3 4 17	Dental
<u>Cervus</u> Eleme	<u>canadensis</u> nts Fragmen 3	nts Other
Procyon Eleme	<u>lotor</u> nts Fragmen 2	nts Cther
<u>Ursus</u> Fleme	<u>mericanus</u> nts Fragmen 2	nts Other
<u>Marmota</u> Elene	<u>monax</u> nts Fragmen 1	nts Dental
	minate bird nts Fragmen 10	nts Cther
<u>Meleagr</u> Eleme	is gallopavo nts Fragmen 8	c nts Other
	minate turt1 nts Fragmen 2 1	
Eleme	<u>ne carolina</u> nts Fragmer 2	nts Other

```
Indeterminate fish
      Elements Fragments
            1
                            Other
    Apledinctus grunniens
      Elements Fragments
           1
                            Cther
Level 3
                                            LEVEL 3
    Blarks
           Stage 1
        1
             1010-22,
        9
           Stage 2
              1002- 5,1007- 0,1024- 2,1030- 4,1030- 5,1030- 7
              1052- 9,1076- 1,1088-22,
        5
           Stage 3
              1002-16, 1021- 3, 1030- 8, 1052-14, 1052-15,
        4
           Stage 4
             1030- 2, 1088- 4, 1088- 5, 1088- 7,
        1
           Stage 5
             1088-30,
    Knives
           Stemmed
        1
             1088- 6,
        1
           Iriangular/rcunded base
             1088- 3,
        1
           Backed
             1021- 4,
    Chisels
        1 Chipped stone
             1021- 5,
    Adzes
        1
           Chipped stone
             1007- 6,
    Scrapers
           Unifacial side scraper
        2
             1002- 9, 1002-19,
        1
          Bifacial end scraper
             1088-17,
    Axes
        1
             1021-44,
```

```
Spalls
    1
         1021- 1,
Preforms
    8
       Stage 1
         1010- 4,1021- 2,1022- 7,1024- 7,1076- 2,1088- 9
          1088-19, 1088-27,
       Stage 2
    7
          1007- 3, 1010-45, 1022- 3, 1030- 4, 1076- 1, 1088- 8
          1088-36,
   19
       Stage 3
          1002- 0, 1007- 0, 1007- 4, 1010-11, 1010-13, 1010-35
          1010-48, 1014-37, 1022- 9, 1030- 1, 1047- 3, 1052- 1
          1052- 3,1088-13,1088-14,1088-20,1088-24,1088-41
         1093- 1,
Drills
       On a projectile print
    1
         1088-29,
       On a finished tiface
    2
         1002-18,1007-7,
Projectile points
    2
       Category 0
         1002- 4, 1002-29,
    4
       Category 3
         1052- 4, 1052- 7, 1076- 3, 1088-31,
       Category
                  4
    1
         1088-38,
                 5
    1
       Category
         1010-12,
    2
       Category 6
         1088- 4,1088-21,
    3
       Category 8
          1015- 1,1022- 8,1052- 2,
    1
                 9
       Category
          10 10 - 8,
    1
       Category 11
          1002-25,
    5
       Category 13
          1010-7,1022-4,1030-6,1088-10,1088-15,
    5
       Category 14
         1010-29,1021- 9,1030-10,1047- 5,1088-37,
    1
       Category 16
         1010-10,
    3
       Category 17
         1007-10,1010- 2,1088-26,
    1
       Category 18
          1014- 0,
```

```
2
       Category 19
          1002- 1,1088- 1,
    2
       Category 21
          1030- 2, 1088-12,
       Category 22
    1
          10 10- 9,
    2
       Category 23
          1010-26, 1021- 6,
    1
       Category 24
          1088-32,
    2
       Category 25
          1007- 8, 1088-25,
       Category 26
    1
          1002- 2,
    1
       Category 31
          1022- 2,
    1
      Category 32
          1007- 9,
    1
       Category 33
          1007- 0,
Cores
    2
       Subconical
          1030- 3, 1052-13,
    5
       Amerrheus
          1002- 6, 1007-12, 1010-37, 1024- 1, 1076- 7,
Hammerstones
    2
          1007-13, 1021- 1,
Notched flakes
    1 On a tiface
         1010-33,
Miscellaneous
    1
       Proj. pt./notched biface
          10 10-33,
       Limestone temp. sherd
    1
          10 10-19,
Utilized flakes
    2 Decortication flake
         1007-15,1052-11,
       Bifacial thinning flake
    5
          1010-30,1010-31,1024- 6,1030-11,1076- 4,
Preform/blark/bifacial fragments
       Indeterminate hiface fragment
    5
          1002- 8,1002- 8,1002-20,1007-18,1010-44,
```

```
7 Proximal pertion
         1007- 1,1030- 1,1030- 9,1047- 4,1052- 8,1088-18
         1088-33,
    4
       Medial pcrticn
         1022- 5, 1030-12, 1088-28, 1093- 2,
   10
       Distal pertien
         1010-15,1010-17,1010-38,1021- 7,1021- 8,1030- 5
         1030- 6, 1052- 5, 1052- 6, 1088- 6,
   11
       Blank fragment
         1002- 7, 1007- 5, 1007-20, 1010-14, 1010-35, 1010-41
         1015- 1,1030- 7,1030- 8,1030- 9,1052-10,
Projectile point fragments
   24
       Distal
         1002- 3,1002-21,1002-23,1007- 2,1007-16,1007-17
         1010- 3,1010-16,1010-24,1010-25,1010-37,1010-42
         1010-46, 1014- 0, 1022- 1, 1030- 3, 1047- 1, 1047- 2
         1088- 1,1088-11,1088-16,1088-23,1088-31,1088-40
       Medial
   12
         1002-17,1002-22,1002-26,1002-27,1007-0,1010-7
         1010- 8,1010-20,1010-23,1010-40,1022- 6,1047- 3
       Proximal
    2
         1002-24,1010-34,
Indeterminate mammal
  Elements Fragments
                70
       2
                        Other
Indeterminate large mammal
  Elements Fragments
              1332
                        Other
Indeterminate small mammal
  Elements Fragments
       7
                  1
                        Other
Hcmc sariens
  Elements Fragments
       1
                        Dental
       1
                        Cther
Odocileus virginianus
  Elements Fragments
      31
                        Antler
      35
                16
                        Dental
     432
                54
                        Other
Cervus canadensis
  Flements Fragments
       3
                 1
                        Dental
       8
                        Cther
```

<u>Mephitis merhitis</u> Elements Fragments 1	Dental
<u>Frocycn lotor</u> Elements Fragments 1 13	Dental Other
<u>Ursus americanus</u> Elements Fragments 1	Dental
<u>Urocyon cinereoargente</u> Elements Fragments 2	<u>us</u> Other
<u>Canis familiaris</u> Elements Fragments 1 2	Dental Cther
<u>Canis</u> sp. Elements Fragments 2	Other
<u>Erethizcn dcrsatum</u> Elements Fragments 1	Dental
<u>Castor canadensis</u> Elements Fragments 2	Cther
<u>Sciurus carolinensis</u> Elements Fragments 2	Other
<u>Marmota monax</u> Elements Fragments 1 2	Dental Other
<u>Tamias struatus</u> Elements Fragments 1	Cther
<u>Sylvilagus floridanus</u> Elements Fragments 1	Other

Sus scrofa Elements Fragments 1 Dental Indeterminate bird Elements Fragments 21 24 Other Indeterminate large bird Elements Fragments 9 Other Meleagris galloravc Elements Fragments 24 2 Cther Indeterminate turtle Elements Fragments 15 4 Other Crotalidae Elements Fragments 1 Cther Colubridae Elements Fragments 4 Other Chrysenys/Grapetmys sp. Elements Fragments 3 Other Terrapene carclina Elements Fragments 50 1 Cther Trionyx spiniferus Elements Fragments 12 4 Other Rana catesbeiana Elements Fragments 1 Cther Indeterminate fish Elements Fragments 16 Other Ictalurus punctatus Elements Fragments 1 Dental

Other Aplcdinctus grunniens Elements Fragments 5 Cther Indeterminate mussel Elements Fragments 10 Cther Anculosa sp. Elements Fragments 2 Cther Blanks

1026-2,

1026- 1,

4

1 Stage 3

Stage 1

Preforms 1

Level 4

LEVEL 4

1 Stage 2 1003- 1, Stage 3 1 1011-13, Drills 1 On a finished biface 1026- 0, Projectile points 1 Category 4 1049- 0, 2 Category 8 1026- 0, 1069- 0, 1 Category 13 1003- 5, 1 Category 17 1106- 0,

Hammerstones 1 1104- 1, Miscellaneous

1 Crincid stem 1049- 5,

```
Preform/blank/bifacial fragments
       Indeterminate biface fragment
    3
         1003- 6, 1003-36, 1037- 1,
    2
       Proximal pertien
         1003- 4, 1049-81,
    1
       Medial pcrticn
         1003- 3,
       Distal pertien
    3
         1011- 1, 1049- 1, 1049- 4,
    1 Blank fragment
         1003- 1,
Projectile pcint fragments
    3
       Distal
         1003- 2,1003- 7,1011- 2,
Indeterminate mammal
  Elements Fragments
                52
                       Other
Indeterminate large mammal
  Elements Fragments
                154
                       Other
Indeterminate medium mammal
  Elements Fragments
       1
                       Other
Indeterminate small mammal
  Elements Fragments
       1
                       Dental
Odocileus virginianus
  Elements Fragments
       2
                       Antler
       8
                 3
                       Dental
      49
                17
                       Cther
Procyon lotor
  Elements Fragments
       3
                       Other
Ursus americanus
  Elements Fragments
       1
                       Cther
Erethizon dorsatum
  Elements Fragments
       1
                       Other
```

Sciurus carolinensis Elements Fragments 2 Cther Marmota monax Elements Fragments 1 Dental Indeterminate bird Elements Fragments 11 Cther Indeterminate turtle Elements Fragments 16 Cther Colubridae Elements Fragments 1 Other Terrapene carclina Elements Fragments 17 1 Cther Trionyx spiniferus Elements Fragments 3 Other Indeterminate fish Elements Fragments 3 Cther Level 5 Blarks 3 Stage 1

```
3 Stage 1

1004- 5,1045- 4,1045- 5,

1 Stage 2

1046- 1,

1 Stage 3

1045- 1,

2 Stage 4

1045- 2,1045- 3,

Scrapers
```

1 Unifacial end and side scraper 1020- 2,

LEVEL 5

```
Spalls
    1
         1004-14,
Preforms
    2 Stage 1
         1046- 2,1046- 5,
    4
       Stage 3
         1004- 2,1046- 6,1046- 8,1102- 0,
Projectile prints
    1 Category 0
         1107- 0,
    1
       Category 22
         1004- 4,
    1
     Category 26
         1020-1,
COLES
    1
       Amerpheus
         1046- 3,
Hammerstcnes
    1
         1046- 9,
Freform/blank/bifacial fragments
    2 Indeterminate biface fragment
         1004- 3,1004- 3,
    1 Proximal pertien
         1045-2,
       Medial pcrticn
    1
         1046- 4,
    1 Elank fragment
         1045-3.
Indeterminate mammal
  Elements Fragments
                96
       1
                       Cther
Indeterminate large mammal
  Elements Fragments
               104
                      Cther
Indeterminate small mammal
  Elements Fragments
     1
                       Cther
Homo sapiens
  Elements Fragments
      1
                       Cther
```

Odocileus virginianus Flements Fragments 6 1 7 1 77 1 77 17	Antler Dental Other
<u>Cervus canadensis</u> Elements Fragments 3	Other
<u>Frecycn lotor</u> Elements Fragments 3	Dental
<u>Urocyon cinereoargenteu</u> Elements Fragments 1	0ther
<u>Castor canadensis</u> Elements Fragments 1 1	Dental Cther
Indeterminate bird Elements Fragments 6	Cther
<u>Meleagris galloravc</u> Elements Fragments 1	Other
Indeterminate turtle Elements Fragments 2	Cther
Crotalidae Elements Fragments 2	Other
<u>Terrapene carclina</u> Elements Fragments 6	Cther
<u>Trionyx spiniferus</u> Flements Fragments 2	Other
Indeterminate fish Elements Fragments 4	Cther

```
Moxcstoma sp.
      Elements Fragments
           1
                           Dental
Level 6
    Blarks
        1 Stage 2
             1065- 1,
    Preforms
        1 Stage 2
             1065- 3,
    Drills
        1 On a projectile print
             1060- 4.
    Projectile points
        1 Category 4
             1065- 6,
          Category 6
1065- 2,
        1
        1 Category 17
             1032- 9,
        1 Category 21
             1060- 1,
        1 Category 26
             1060- 3,
    Utilized flakes
        1 Eifacial thinning flake
             1032-67,
   Preform/blank/bifacial fragments
        2 Indeterminate biface fragment
             1032- 1,1032- 1,
        1 Listal portion
             1060-2,
    Projectile point fragments
        3 Distal
             1065- 0, 1065- 4, 1065- 5,
   Indeterminate
      Elements Fragments
           1
                           Cther
    Indeterminate mammal
      Elements Fragments
                    34
                           Cther
```

Indeterminate Elements Fr	
Liowence II	110 Cther
Indeterminate Elements Fi	
2	3 Cther
<u>Homo sapiens</u> Elements Fr	ragments
1	Cther
<u>Odocileus viro</u> Elements Fr	<u>ginianus</u>
1	10 Antler
12	6 Dental
52	8 Cther
52	o culei
Procyon lotor	
Elements Fr	agments
2	Other
and farmer and	
Castor canader	nsis
Elements Fr	agments Other
	Other
Indeterminate	bird
Elements Fr	agments
	4 Cther
	• 1
<u>Meleagris</u> gall Elements Fr	
Liements ri 4	Other
	0 0 1 0 1
Indetermina te	
Elements Fr	agments
	2 Cther
Torranene car	alina
<u>Terrapene caro</u> Elements Fr	a oments
7	Other
Tricnyx spinif	erus
Elements Fi	ragments Cther
1	Cther
Rana/Bufo sp.	
Elements Fr	agments
1	Other

```
Indeterminate fish
      Elements Fragments
                     9
                           Cther
    Moxostoma sp.
      Elements Fragments
           1
                           Other
Level 7
    Blanks
       1 Stage 4
             1048- 1,
    Spalls
        1
             1061-93,
    Preforms
        1 Stage 1
             1061-1,
        2
           Stage 3
             1040- 0,1061- 0,
    Drills
        1 Indeterminate
             1048- 3,
           On a bifacila thinning flake
        1
             1025- 2,
   Projectile prints
        2 Category 13
             1025- 0,1061-92,
        1 Category 20
             1061-94,
    Cores
        2
           Amerrhous
             1025- 1, 1061- 3,
    Preform/blank/bifacial fragments
        3 Indeterminate biface fragment
             1040-25, 1048- 2, 1048- 2,
           Proximal pertion
        1
             1048- 7,
   Indetermina te
      Elements Fragments
                           Cther
                     1
```

Indeterminate mammal Elements Fragments 1 41	Other
Indeterminate large man Elements Fragments 145	(Mal Cther
Odocileus virginianus Elements Fragments 7 13 5 6 68 9	Antler Dental Other
<u>Cervus canadensis</u> Elements Fragments 3	Other
<u>Urccycn cinereoargenter</u> Elements Fragments 1 1	<u>Dental</u>
<u>Marmota mcnax</u> Elements Fragments 1	Cther
Indeterminate bird Elements Fragments 11	Other
<u>Meleagris gallcravc</u> Elements Fragments 2	Cther
<u>Terrapene carclina</u> Elements Fragments 15	Other
Indeterminate fish Elements Fragments 2 2	Cther
<u>Moxostoma</u> sp. Elements Fragments 1 2	Dental Cther
<u>Ictalurus punctatus</u> Flements Fragments 1	Other

Aplodinotus grunniens Elements Fragments 2 Cther Anculosa sp. Elements Fragments 1 Other Level 8 Blanks 1 Stage 2 1036- 1, Stage 3 1 1050- 1, 1 Stage 5 1035- 1, Knives 1 Triangular/rcunded base 1057-2, Spalls 3 1050- 2,1057- 1,1057-97, Preforms 1 Stage 2 1057- 2, 1 Stage 3 1057- 1, Hammerstones 1 1035- 2, Miscellaneous 1 Abraded cobble 1057-3, Projectile point fragments 1 Distal 1057- 1, Medial 1 1035- 0, Indeterminate mammal Elements Fragments Dental 1 13 Other

Indeterminate large ma Elements Fragments	u u sl
190	Other
Indeterminate small man Elements Fragments	mmal
1	Other
<u>Odocileus virginianus</u>	
Elements Fragments 17	Antler
7 2	Dental
56 17	Cther
Corvus canadensis	
<u>Cervus canadensis</u> Elements Fragments	
3	Cther
Dreeven leter	
<u>Procycn lotor</u> Elements Fragments	
4	Other
<u>Ursus americanus</u> Elements Fragments	
1	Cther
<u>Urocyon cinereoargente</u> Elements Fragments	<u>us</u>
1	Other
<u>Marnota monax</u> Elements Fragments	
1	Dental
Indeterminate bird Elements Fragments	
Elements Flagments	Other
Meleagris gallcravc	
Elements Fragments 2 9	Cther
_	
Indeterminate turtle	
Elements Fragments 20	Other
Terrarene carclina	
Elements Fragments 15	Cther

```
Tricnyx spiniferus
      Elements Fragments
           3
                           Other
    Indeterminate fish
      Elements Fragments
           1
                     2
                           Cther
    Ictalurus sp.
      Elements Fragments
           2
                           Other
    Indeterminate mussel
      Elements Fragments
                     1
                           Cther
Level
      9
   Blarks
        1 Stage 3
             1055- 0,
```

```
Spalls
1
```

1055- 4,

```
Preforms

2 Stage 3

1034- 1,1034-10,

Projectile prints

1 Category 9

1055- 1,

1 Category 14

1034- 2,

1 Category 18

1034-44,

Preform/blank/bifacial fragments

1 Distal portion

1034- 3,
```

```
Indeterminate mammal
Elements Fragments
1 9 Cther
```

```
Indeterminate large mammal
Elements Fragments
266 Cther
```

196

	00							s												
						1	3					1	8	1			AI	t1	er	ŝ
					1	1	0										De	en t	al	e
					1	5	1						2	0			ot	: he	r	
	Ir	ı d	e	t	e	r I	n i	na	t	e	b	i	r	d						
		E	1	e	m	eı	nt	s		F	ra	10	m	e	nt	ts				
														6			Ct	the	r	
	Me	1	e	a	q1	c :	is	9	a	1	10) p	a	V	С					
	_	E	1	e	п	el	nt	s		F	Ia	q	m	e	n	ts				
							ŧ					1					Ct	he	r	
	CC	1	u	b	r	i	1 a	e												
		E	1	e	π	e	nt	2		F	Ia	0	m	e	n	ts				
							1						1000				ot	he	I	
	Te	r	ra	а	pe	eı	ne	0	a	r	c1	i	n	a						
		F	ī	e	me	21	t	S	-	F	r a	0	m	e	nt	s				
						11		-				1					Ct	he	r	
																			-	
	TI	i	0	n	v	x	S	pi	n	i	fe	I	u	s						
		F	1	e	me	er	it	S		F	ra	C	m	e	nt	ts				
		1		7			1			7							0t	he	г	
	In	d	e	t	e 1	C I	n i	na	t	e	f	i	S	h						
	~ •							S							nt	s				
								-		-			-	1			ct	he	r	
																			-	
	In	đ	e	t	eı		ni	n a	t	e	m	u	S	s	el	1				
								S												
			-					~		•		3		1			ot	he	r	
	<u>P</u>]	e	U	r	co	Ce	er	a	S	p										
		E	1	e	π	21	nt	S		F	ra	a	m	e	n t	ts				
		-					1			1)			ŕ		Ct	he	r	
																			201121	
Leve	1	1	С																	
	-	-	-																	
	B]	a	n i	k	S															
				22							100									

LEVEL 10

larks 1 Stage 2 1041- 0,

Scrapers 1 Unifacial side scraper 1063-1,

Axes 1 1063-85, Preform/blank/bifacial fragments 1 Distal portion 1063- 2, Indeterminate mammal Elements Fragments 11 2 Cther Indeterminate large mammal Elements Fragments 146 Cther Odocileus virginianus Elements Fragments 5 Dental 41 3 Cther Procyon lotor Elements Fragments 4 Other Indeterminate bird Elements Fragments 6 Cther <u>Meleagris gallopavc</u> Elements Fragments 2 Other Indeterminate turtle Elements Fragments 1 Cther Terrapene carclina Elements Fragments 11 Other Tricnyx spiniferus Elements Fragments Cther 2

LEVEL 11

Level 11

Blanks 2 Stage 2 1051- 4,1051- 6,

2 Stage 3 1051- 1, 1051- 5, Preforms 1 Stage 3 1051-3, Preform/blank/bifacial fragments 1 Distal portion 1051- 2, Projectile point fragments 1 Distal 1051- 7, Indeterminate large mammal Elements Fragments 111 Cther Odocileus virginianus Elements Fragments 1 Antler 3 1 Dental 18 8 Cther Cervus canadensis Elements Fragments 4 Dental 8 Other Indeterminate bird Elements Fragments 2 Cther Meleagris gallopavc Elements Fragments 1 Other Terrapene carclina Elements Fragments 2 3 Cther Level 20 Blanks Stage 1 4

Blarks 4 Stage 1 1039-3,1090-1,1100-4,1101-5, 5 Stage 2 1017-11,1017-12,1039-3,1090-17,1090-20, 5 Stage 3 1016-5,1017-1,1017-1,1039-6,1070-11,

```
2 Stage 4
         1070- 1,1090-16,
       Stage 5
    1
          1090-11,
Knives
    1
       Triangular/rcunded base
         1070- 6.
Adzes
       Chipped stone
    1
         1101- 0,
Spalls
    3
         10 17-16, 1031- 3, 1090-89,
Preforms
    5
       Stage 1
         1016- 8,1017- 4,1039- 2,1039- 8,1070- 2,
    9
       Stage 2
         1016- 4, 1017- 0, 1017- 3, 1028- 6, 1039- 7, 1039-14
         1090- 7,1101-14,1101-15,
   14
       Stage 3
         1016- 6,1017- 0,1017- 0,1017- 0,1017- 1,1017- 6
         1028- 2,1028- 7,1039-17,1070- 3,1090- 2,1090- 6
         1090-15, 1101-11,
Drills
    2
       Indeterminate
         1016- 7,1101- 7,
       On a finished biface
    1
         1039-18,
       On a rough tiface
    1
         1101- 6,
      On a bifacila thinning flake
    1
         1039- 9,
Projectile pcints
    3
       Category 0
         1017- 7,1017- 9,1090-13,
       Category 3
    1
         1039- 4,
    2
       Category 4
         1017-25, 1101-16,
    1
       Category 5
         1101-17,
       Category 6
    1
         1018- 0,
      Category 8
    3
         1068- 1, 1070- 9,1101- 0,
```

```
Category 9
    1
         1070- 7,
    2
       Category 13
         1039- 1, 1039-13,
    2
       Category 14
         1039- 2, 1039-12,
    1
       Category 15
         10 16- 2,
    4
       Category 17
         1017-17, 1070- 4, 1070- 5, 1101-19,
    2
       Category 18
         1090-18,1100- 0,
    1
       Category 22
         1028-13,
    1
       Category 26
         1017-10,
       Category 32
    1
         1039- 0,
Cores
    2
       Subccnical
         1017- 5,1017- 9,
    1
       Amorphous
         1100-2,
Hammerstones
   1
         10 16-12,
Notched flakes
    2 On a biface
         1017- 4,1101-12,
Miscellaneous
    1 Ground stone blank
         1016- 1,
Utilized flakes
    1 Decortication flake
         1039-19,
Preform/blank/bifacial fragments
      Indeterminate biface fragment
    2
         1016- 2,1016- 7,
    1
       Proximal pertion
         1090-22,
       Medial portion
    3
         1017- 8,1017-11,1090-21,
    7
       Distal portion
         1016-11,1031- 2,1039- 4,1039- 5,1090- 4,1090- 8
         1100- 1,
```

15 Blank fragment 1016- 3,1017- 7,1017- 8,1017-10,1017-13,1028- 8 1028- 9,1028-10,1028-11,1070-10,1070-12,1090- 3 1090-23, 1090-26, 1101- 4, Projectile point fragments 18 Distal 1017- 2, 1017- 3, 1017- 5, 1028- 7, 1028-12, 1039- 1 1039-15, 1039-16, 1070- 8, 1090- 5, 1090- 9, 1090-12 1090-14,1090-24,1101-8,1101-9,1101-10,1101-18 2 Medial 1017- 6,1100- 3, Indeterminate mammal Elements Fragments 23 2 Other Indeterminate large mammal Elements Fragments 121 Other Home sariens Elements Fragments 1 Other Odccileus virginianus Elements Fragments 1 Antler 2 Dental 57 8 Cther Cervus canadensis Elements Fragments 1 Cther Ursus americanus Elements Fragments 2 Other <u>Canis luris</u> Elements Fragments 1 Other Indeterminate bird Elements Fragments 3 12 Cther Meleagris gallopavc Elements Fragments 2 19 Other

Chrysemys sp. Elements Fragments 1 Cther Terrapene carclina Elements Fragments 3 1 Other Tricnyx spiniferus Elements Fragments 1 2 Cther Feature 1 Perforators 1 Category 1 3001- 0, Preforms 1 Stage 2 3001-2, Notched flakes 1 On a biface 3001- 1, Utilized flakes 1 Eifacial thinning flake 3001- 3, Preform/blank/bifacial fragments 1 Blank fragment 3001-5, Projectile point fragments 1 Medial 3001- 0, Indeterminate mammal Elements Fragments 58 Other Indeterminate large mammal Elements Fragments 4 Cther

> Indeterminate medium mammal Elements Fragments 1 Cther

Feature

1

Odocileus virginianus Elements Fragments 2 Dental 4 Cther Indeterminate turtle Elements Fragments 14 Cther Colubridae Elements Fragments 2 1 Other <u>Terrapene carclina</u> Elements Fragments 4 Cther Indeterminate mussel Elements Fragments 4 Other Feature 2 Feature 2 Axes 1 3002- 1, Projectile prints 1 Category 7 3002-3, Utilized flakes 1 Bifacial thinning flake 3002- 8, Preform/black/bifacial fragments Indeterminate biface fragment 5 3002- 0,3002- 0,3002- 0,3002- 5,3002- 5, 1 Distal pcrticn 3002- 2, Indeterminate mammal Elements Fragments 16 Other Odocileus virginianus Elements Fragments Cther 1

Indeterminate bird Elements Fragments 1 Cther Indeterminate turtle Elements Fragments 2 Other Terrapene carclina Elements Fragments Cther 1 Feature 3 Drills 1 Indeterminat ∈ 3003- 4, Projectile prints 1 Category 6 3003-3, Category 18 1 3003-2, Category 28 1 3003-1, Hammerstones 1 3003- 5, Utilized flakes 1 Bifacial thinning flake 3003-13, Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3003-0, Indeterminate mammal Elements Fragments 44 Other Indeterminate medium mammal Elements Fragments 3 Other Odocileus virginianus Elements Fragments 1 Dental 8 Other

Procyon lotor Elements Fragments 1 Cther <u>Canis familiaris</u> Elements Fragments 5 Cther Didelphus marsupialis Elements Fragments 1 Dental Indeterminate bird Elements Fragments 3 Cther Terrapene carclina Elements Fragments 9 Other Tricnyx spiniferus Elements Fragments 1 Cther 4 Feature Blarks 2 Stage 3 3004- 3,3004-13, Perforators 1 Category 2 3004- 0, Chisels 1 Chipped stone 3004-12, Preforms 1 Stage 1 3004-11, Stage 2 1 3004-19, 1 Stage 3 3004-12, Drills 1 On a finished biface 3004-10,

```
Projectile points
      Category 3
    1
         3004- 4,
       Category 5
    1
         3004- 0,
    1
       Category 21
         3004-16,
    1
      Category 29
         3004-20,
Miscellanecus
    1 Crinoid stem
         3004-21,
Utilized flakes
    1 Bifacial thinning flake
         3004-26,
Preform/blank/bifacial fragments
    2 Indeterminate biface fragment
         3004- 8,3004- 8,
       Proximal pertion
    1
         3004- 6,
       Medial pcrticn
    1
         3004-22,
     Distal pertien
    4
         3004- 5, 3004-14, 3004-15, 3004-18,
Projectile point fragments
    2 Distal
         3004- 1,3004- 7,
Indeterminate mammal
  Elements Fragments
                 1
                       Other
Indeterminate large mammal
  Elements Fragments
                65
                       Other
<u>Cdocileus virginianus</u>
  Elements Fragments
       2
                       Dental
      15
                 1
                       Other
Indeterminate bird
  Elements Fragments
                 4
                       Cther
```

Indeterminate turtle Elements Fragments	
7	Cther
<u>Terrapene carclina</u> Elements Fragments	
3	Other
Indeterminate fish	
Elements Fragments	
1	Cther
Ictalurus sp.	
Elements Fragments	

Other

Feature 5

1

Feature 5

Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3005- 0,3005-11, Medial pcrticn 1 3005- 5, Blank fragment 1 3005- 7, Projectile print fragments 2 Distal 3005- 4,3005- 6, Indeterminate mammal Elements Fragments 1 Other Indeterminate large mammal Elements Fragments 72 Other Indeterminate medium mammal Elements Fragments 1 Other <u>Cdocileus virginianus</u> Elements Fragments 1 Antler 16 5 Other Indeterminate bird

```
Indeterminate turtle
      Elements Fragments
                     5
                            Cther
    Terrapene carolina
      Elements Fragments
                     3
           1
                           Other
Feature
          6
                                           Feature
    Blarks
        1 Stage 3
             3006- 6,
    Preforms
        1
           Stage 2
             3006- 8,
           Stage 3
        1
             3006- 7,
    Projectile prints
        2
          Category 17
             3006- 2,3006- 5,
           Category 18
        1
             3006- 1,
    Notched flakes
        1 On a flake
             3006- 0,
    Preform/blark/bifacial fragments
        4
          Indeterminate biface fragment
             3006- 0, 3006-12, 3006-15, 3006-15,
          Distal pcrticn
        1
             3006- 4,
        2
          Blank fragment
             3006-10,3006-14,
    Projectile point fragments
        4 Distal
             3006- 0,3006- 3,3006- 4,3006-13,
           Proximal
        1
             3006- 0,
    Indeterminate mammal
      Elements Fragments
          17
                     3
                           Other
    Odocileus virginianus
      Elements Fragments
           5
                     1
                           Cther
```

6

Indeterminate bird Elements Fragments 1 Cther <u>Meleagris gallopayc</u> Flements Fragments 1 Other <u>Feature</u> 7 Projectile points 1 Category 5 3007-1, Cores 1 Subconical 3007-11,

> Utilized flakes 1 Bifacial thinning flake 3007-3,

Preform/blank/bifacial fragments 1 Elank fragment 3007-2,

Indeterminate mammal Elements Fragments 1 Other

Indeterminate large mammal Elements Fragments 23 Other

Odccileus virgirianus Elements Fragments 4 1 Other

Indeterminate bird Elements Fragments 2 Other

<u>Meleagris gallcravc</u> Elements Fragments 2 Cther

Indeterminate turtle Elements Fragments 9 Other

```
Terrapene carolina
      Elements Fragments
                    1
                          Cther
    Rana/Bufc sp.
      Elements Fragments
           1
                          Other
    Mcxcstcma sp.
      Elements Fragments
        1
                           Cther
    Ictalurus sp.
      Elements Fragments
           1
                          Other
Feature 8
    Elanks
        1 Stage 2
            3008-17,
    Perforators
       1 Category 2
            3008- 0,
    Adzes
       2 Ground stone
            3008- 5,3008- 5,
   Axes
        1
            3008- 0,
    Preforms
       2 Stage 2
             3008-14, 3008-19,
        1
          Stage 3
             3008- 9,
   Drills
```

```
    On a projectile pcint
3008-13,
    On a finished biface
3008-8,
```

```
Projectile points
1 Category 17
3008- 7,
```

Feature 8

```
211
```

```
Ccres
    2
       Subconical
         3008- 4,3008-27,
Hammerstones
    1
         3008- 6,
Utilized flakes
    5 Bifacial thinning flake
         3008- 0,3008- 0,3008-30,3008-32,3008-37,
Preform/blank/bifacial fragments
       Indeterminate biface fragment
    1
         3008- 0,
    1
      Medial pcrticn
         3008-15,
    3 Blank fragment
         3008-10, 3008-16, 3008-39,
Projectile pcint fragments
    3 Distal
         3008- 0,3008-20,3008-21,
    2
       Medial
         3008-25,3008-26,
Indeterminate large manual
  Elements Fragments
               202
                       Other
Indeterminate small mammal
  Elements Fragments
                 1
                       Other
Odocileus virginianus
  Elements Fragments
       5
                       Dental
      24
                 7
                       Other
Procycn lotor
  Elements Fragments
       2
                       Dental
       1
                       Other
Indeterminate bird
  Elements Fragments
                20
                       Cther
Corvus carax
  Elements Fragments
                 1
                       Cther
```

Meleagris gallcravc Elements Fragments Other 1 Indeterminate turtle Elements Fragments 18 Cther Terrapene carclina Elements Fragments 5 Other Indeterminate fish Elements Fragments Cther 4 9 Feature Preform/blank/bifacial fragments

1 Medial portion 3009-1,

Feature 10

<u>Feature 10</u>

Feature 9

Projectile prints 1 Category 4 3010-1,

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3010-3,

Feature 11

Feature 11

Blarks 1 Stage 2 3011-13, 1 Stage 3 3011-5,

Perforators 1 Category 1 3011-0,

Preforms 1 Stage 2 3011- 9,

```
Projectile points
       Category 17
    1
         3011- 1,
       Category 21
3011-2,
    1
Miscellaneous
    1 Ground stone fragment
         30 11-16,
      Bcatstone
    1
         3011-17,
Utilized flakes
    1 Bifacial thinning flake
         3011-12,
Preform/blank/bifacial fragments
    1 Proximal portion
         3011-6,
       Medial portion
    1
         3011-15,
       Listal portion
    3
         3011- 4,3011- 7,3011-11,
       Elank fragment
    1
         3011-14,
Projectile point fragments
       Medial
    1
         3011- 9,
Indeterminate large mammal
  Elements Fragments
               132
                        Cther
Indeterminate small mammal
  Elements Fragments
                        Cther
                  1
Homo sapiens
  Elements Fragments
       3
                        Cther
Odocileus virginianus
  Elements Fragments
                        Dental
       1
      13
                 1
                        Cther
Sciurus carolinensis
  Elements Fragments
                        Other
       1
```

Didelphus marsupialis Elements Fragments 1 Cther Indeterminate bird Elements Fragments 1 Other Meleagris gallcravc Elements Fragments 2 Cther Indeterminate turtle Elements Fragments 4 Other Terrapene carclina Elements Fragments 2 Cther Indeterminate fish Elements Fragments 1 Other Feature 12 Preforms 1 Stage 1 30 12- 4, Projectile prints 1 Category 21 3012- 1, Cores Amorphous 1 3012- 8, Discoidal 1 3012-7, Utilized flakes 1 Bifacial thinning flake 3012- 9, Projectile pcint fragments 1 Distal 3012-3, Indeterminate mammal Elements Fragments 14 Other

215

Indeterminate large ma Elements Fragments	
84 <u>Odocileus virginianus</u>	Cther
Elements Fragments 5 22 2	Antler Dental
21 6	Other
<u>Cervus canadensis</u> Elements Fragments 4 6	Dental Cther
<u>Procyon lotor</u> Elements Fragments 1 3	Dental Cther
<u>Canis</u> sp. Elements Fragments 2	Other
Indeterminate bird Elements Fragments 1	Cther
<u>Meleagris galloravc</u> Elements Fragments 1	Other
Indeterminate turtle Elements Fragments 27	Other
<u>Terrapene carclina</u> Elements Fragments 37	Cther
Indeterminate fish Elements Fragments 2	Cther
Catostomidae Elements Fragments 1	Other
<u>Ictalurus punctatus</u> Elements Fragments 5	Cther

Arlcdinctus grunniens Elements Fragments 1 Other Feature 13 Blanks 1 Stage 2 30 13-20, 1 Stage 4 3013- 6, Preforms 2 Stage 2 3013- 1, 3013- 3, 1 Stage 3 30 13-12, Drills 1 Indeterminate 3013-16, Projectile points 1 Category 0 3013-15, Category 8 3013-9,3013-13, 2 1 Category 13 3013- 5, 1 Category 22 30 13-10, Cores 1 Subconical 30 13-21, Notched flakes 1 On a biface 3013-14, Miscellaneous 1 Crincid stem 3013- 0, Utilized flakes 1 Bifacial thinning flake 3013-18,

```
Preform/blark/bifacial fragments
           Indeterminate biface fragment
        2
             30 13-19, 30 13-19,
           Medial pcrticn
        1
             3013- 2,
        1
           Distal portion
             3013- 7,
    Projectile pcint fragments
        2 Distal
             3013- 4,3013-11,
                                           Feature 14
Feature 14
    Axes
        1
            3014- 4,
    Preforms
        2 Stage 2
             3014- 1,3014- 2,
    CCIES
           Amorphous
        1
             3014- 6,
    Hammerstones
        1
             30 14- 5,
    Projectile pcint fragments
        1 Distal
             3014- 3,
    Indeterminate mammal
      Elements Fragments
                    63
                           Other
    Indeterminate large mammal
      Elements Fragments
                    22
                           Other
    Indeterminate medium mammal
      Elements Fragments
                           Dental
           1
                    13
                           Cther
    Odocileus virginianus
      Elements Fragments
                           Antler
           1
           6
                           Cther
```

Indeterminate bird Elements Fragments 3 Cther Indeterminate turtle Elements Fragments Other 1 Terrapene carclina Elements Fragments 1 Cther Trionyx spiniferus Elements Fragments 3 Other Rana/Eufc sp. Elements Fragments 1 Cther Indeterminate mussel Elements Fragments 1 Other Feature 15 Spalls 1 3015-2, Projectile points 1 Category 22 30 15- 1, Feature 16 Preforms 1 Stage 2 30 16- 2, Projectile pcints 1 Category 3 3016-1, Category 9 1 3016-3, Cores Disccidal 1 3016- 6,

219

Feature 15

Preform/blank/bifacial fragments Medial pcrticn 1 30 16-10, Distal portion 1 30 16- 4, Indeterminate large mammal Elements Fragments Dental 1 46 Cther Odocileus virginianus Elements Fragments 1 Antler 1 Dental 4 3 Other Marmota monax Elements Fragments 1 Dental Indeterminate bird Elements Fragments 4 Other Indeterminate turtle Elements Fragments 3 Cther Terrapene carclina Elements Fragments Other 3 Aplcdinctus grunniens Elements Fragments 1 Cther Feature 17 Preforms 1 Stage 3 3017-6, Projectile points

```
1 Category 3
3017-4,
1 Category 8
3017-5,
1 Category 9
3017-1,
```

Preform/blank/bifacial fragments 2 Indeterminate biface fragment 30 17-10, 30 17-18, Distal pcrticn 1 30 17- 2, Indeterminate mammal Elements Fragments 2 Cther Indeterminate large mammal Elements Fragments 61 Cther Odocileus virginianus Elements Fragments 1 Dental 3 Cther Urocyon cinereoargenteus Elements Fragments 1 Other Sylvilagus floridanus Elements Fragments 1 Dental Indeterminate bird Elements Fragments 4 Other Strix varia Elements Fragments 1 Cther Meleagris gallopavc Elements Fragments 1 Other Indeterminate turtle Elements Fragments 4 Other Crotalidae Elements Fragments 3 Cther Terrapene carolina Elements Fragments 1 Other

221

Indeterminate fish Elements Fragments Other 1 Feature 18 Feature 18 Preforms 1 Stage 3 3018- 4, Cores 1 Amorphous 30 18- 8, Utilized flakes Bifacial thinning flake 7 3018- 0,3018- 0,3018- 0,3018- 0,3018- 0,3018- 0 3018- 0, Preform/blank/bifacial fragments 1 Medial pcrticn 3018- 2, Projectile pcint fragments 1 Distal 3018-1, Indeterminate large mammal Elements Fragments 152 Other Indeterminate small mammal Elements Fragments 2 Other Odocileus virginianus Elements Fragments 2 2 Dental 7 2 Other Sciurus carclinensis Elements Fragments Dental 1 Sylvilagus floridanus Elements Fragments 1 Other Meleagris gallcrave Elements Fragments 2 Cther

Indeterminate turtle Elements Fragments 3 1 Cther Terrapene carolina Elements Fragments 3 Other Indeterminate fish Elements Fragments 3 Cther Feature 19 Preforms 1 Stage 3 3019-2, Projectile points 1 Category 22 3019- 1, Indeterminate mammal Elements Fragments 1 Other Indeterminate large mammal Elements Fragments 13 Other Odocileus virginianus Elements Fragments 3 Other Indeterminate bird Elements Fragments 2 Cther Indeterminate turtle Elements Fragments 4 Other Feature 20 Utilized flakes

Feature 19

Feature 20

Utilized flakes 1 Bifacial thinning flake 3020- 0,

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3020- 0, Blank fragment 1 3020- 1, Indetermina te Elements Fragments 1 Cther Indeterminate mammal Elements Fragments 19 Other Odocileus virginianus Elements Fragments 1 2 Cther Procycn lotor Elements Fragments 1 Other Scivrys carclinensis Elements Fragments 1 Dental Indeterminate bird Elements Fragments 5 Other Indeterminate fish Elements Fragments 2 Cther Indeterminate mammal Elements Fragments 10 Cther Odocileus virginianus Elements Fragments 2 Dental 1 1 Cther Blanks 1 Stage 3 3022-12,

Feature 21

Feature 21

Feature 22

```
Preforms
    2 Stage 1
         3022- 7,3022-11,
    3
      Stage 3
         3022- 2, 3022-21, 3022-27,
Drills
    1 On a finished biface
         3022-20,
      On a rough tiface
    1
         3022- 8,
Projectile points
    1 Category 3
         3022-16,
    1
       Category 13
         3022-19,
    1
       Category 19
         3022-17,
    1 Category 22
         3022- 3,
Miscellanecus
    1 Ground stone bead
         3022- 4,
      Limestone temp. sherd
    4
         3022-28, 3022-29, 3022-30, 3022-31,
Utilized flakes
    1 Bifacial thinning flake
         3022-29,
Preform/blank/bifacial fragments
    3 Distal portion
         3022-10, 3022-15, 3022-22,
Projectile point fragments
  6 Distal
         3022- 1,3022- 9,3022-14,3022-19,3022-23,3022-24
Indeterminate mammal
  Elements Fragments
                54
                       Cther
Indeterminate large mammal
  Elements Fragments
                17
                       Cther
Odocileus virginianus
  Elements Fragments
       6
                       Dental
```

11 Cther Sylvilagus floridanus Elements Fragments 2 Other Indeterminate bird Elements Fragments 5 Cther Meleagris gallopavc Elements Fragments 1 Other Indeterminate turtle Elements Fragments 11 Cther Terrapene carolina Elements Fragments 1 Other Rana catesbeiana Elements Fragments Cther 1 Feature 23 Blanks 1 Stage 1 3023-1, 1 Stage 2 3023- 2, 2 Stage 3 3023- 3,3023- 8, Preforms 2 Stage 3 3023- 4,3023-10, Projectile pcints 1 Category 0 3023-6, Category 9 1 3023-12, Category 21 3023- 7, 1 1 Category 33 3023- 9.

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3023-11, Projectile point fragments 1 Distal 3023- 5, Indeterminate mammal Elements Fragments 1 2 Other Indeterminate large mammal Elements Fragments 102 Other Odocileus virginianus Elements Fragments 1 Antler 8 Dental 20 2 Cther Indeterminate bird Elements Fragments 1 Other Meleagris gallopavc Elements Fragments 2 Cther Indeterminate turtle Elements Fragments 1 Cther Terrapene carolina Elements Fragments 7 3 Other Feature 24 Preforms 1 Stage 3 3024- 1,

Odocileus virginianus Elements Fragments 1 Other

Feature 25

Feature 25

Blanks 1 Stage 1 30 25-15, Projectile prints 1 Category 3 3025-4, Category 13 3025-9, 1 Category 17 1 3025-1, Category 19 1 3025-2, 1 Category 25 3025-3, COIES Subccnical 1 3025- 8, Blade 1 3025-14, Utilized flakes 1 Bifacial thinning flake 3025- 0, Projectile pcint fragments 1 Distal 3025- 0, Indeterminate mammal Elements Fragments 2 41 Other Indeterminate large mammal Elements Fragments 227 Other Odccileus virginianus Elements Fragments 3 11 Dental 82 11 Cther Mephitis mephitis Elements Fragments 1

Dental

Procycn loter Elements Fragments 1 Cther Ursus americanus Elements Fragments 1 Other Marmota monax Elements Fragments 1 Dental Indeterminate bird Elements Fragments 71 Other Meleagris gallcravc Elements Fragments 2 22 Cther Indeterminate turtle Elements Fragments 4 Other Crotalidae Elements Fragments 1 Cther Terrapene carolina Elements Fragments 4 Other Indeterminate fish Elements Fragments 2 Cther Catostomidae Elements Fragments Cther 1 Feature 26 Perforators 1 Category 1 3026- 0,

> Preforms 1 Stage 1 3026- 4.

1 Stage 3 3026-3, Drills 1 Indeterminate 3026- 1, 1 On a finished biface 3026- 2, Utilized flakes 1 Bifacial thinninc flake 3026- 0, Preform/blank/bifacial fragments 1 Proximal portion 3026-5, Projectile point fragments 1 Distal 3026- 0, Indeterminate mammal Elements Fragments 21 Cther Odocileus virginianus Elements Fragments 1 Dental 3 Other Erethizcn dcrsatum Elements Fragments 1 Dental Indeterminate bird Elements Fragments Other 3 Indeterminate turtle Elements Fragments 2 Cther Moxcstona sp. Elements Fragments 1 Other Feature 27

Feature 27

Elanks 2 Stage 1 3027- 4,3027-13,

1 Stage 2 3027-10, Preforms 1 Stage 1 3027- 9, 2 Stage 2 3027- 5, 3027-12, Drills 1 On a finished kiface 3027-8, Projectile points 1 Category 23 3027- 6, Ccres 1 Amorphous 3027-11, Hammerstones 1 30 27-14, Utilized flakes 1 Bifacial thinning flake 3027-7, Preform/blank/bifacial fragments 1 Elank fragment 3027-2, Projectile point fragments 1 Medial 3027- 3, Proximal 1 3027-18, Feature 28 Indeterminate large mammal Elements Fragments 8 Other Odocileus virginianus Elements Fragments 1 Antler Procyon lotor Elements Fragments 1 Other

Knives 1 Triangular/rcunded base 3029-1, Spalls 1

3029-2,

Indeterminate turtle Elements Fragments

2

1

Feature 29

Indeterminate fish

Elements Fragments

Preform/blank/bifacial fragments 1 Elank fragment 3029-3,

Indeterminate large mammal Elements Fragments 6 Other

Odocileus virginiants Elements Fragments 3 2 Cther

<u>Terrapene carolina</u> Elements Fragments 3 Other

Feature 30

Feature 30

Indeterminate large mammal Elements Fragments 1 Other

Feature 31

Feature 31

Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3031- 2,3031- 2,

Feature 33

Feature 33

- Feature 29

Other

Cther

```
Blarks
    1 Stage 2
        3033- 8,
Knives
    1
       Stemmed
         3033- 5,
       Iriangular/rcunded base
    1
         3033- 7,
Projectile prints
    1 Category 8
         3033-19,
       Category 16
    1
         3033-12,
Cores
    1 Amorphous
        3033-10,
Utilized flakes
    1 Decortication flake
         3033-17,
    2
      Bifacial thinning flake
         3033-11,3033-15,
Preform/blank/bifacial fragments
    4
      Indeterminate biface fragment
         3033-14,3033-14,3033-16,3033-16,
    1
       Distal portion
         3033- 9,
Projectile point fragments
    1 Distal
         3033- 1,
Indeterminate mammal
  Elements Fragments
                 1
                       Dental
                55
                       Other
Hcmc sariens
  Elements Fragments
       1
                       Other
Odocileus virginianus
 Elements Fragments
       2
                       Dental
       7
                 3
                       Other
```

Meleagris gallopavo Elements Fragments 1 Cther Indeterminate turtle Elements Fragments 2 Other Terrapene carclina Elements Fragments 3 Cther Trionyx spiniferus Elements Fragments 1 Other Rana catesbeiana Elements Fragments 1 Cther Rana/Bufo sp. Elements Fragments 5 2 Other

Feature 34

- Freforms 1 Stage 1 3034- 6, Stage 3 1 3034- 1, Projectile points 1 Category 17 3034- 4, Category 27 1 3034-14, Cores Amorphous 2 3034-11,3034-12, Utilized flakes Bifacial thinning flake 3
 - 3 Bifacial thinning flake 3034- 0,3034- 0,3034- 9,
 1 Shatter fragment 3034-16,

```
Preform/blank/bifacial fragments
        3
           Indeterminate biface fragment
              3034- 0,3034- 7,3034- 7,
        1
          Distal pcrticn
             3034- 2,
    Projectile pcint fragments
        4 Distal
              3034- 0,3034- 3,3034- 5,3034-13,
        1
           Medial
             30 34- 8,
    Indeterminate large mammal
      Elements Fragments
                     35
                            Cther
    Odocileus virginianus
      Elements Fragments
           3
                     1
                            Dental
           5
                      1
                            Other
    Indeterminate bird
      Elements Fragments
                     4
                            Cther
    Meleagris gallopavc
      Elements Fragments
           1
                            Other
    <u>Terrapene carclina</u>
      Elements Fragments
           7
                     1
                            Cther
    Moxostoma sp.
      Elements Fragments
           1
                            Other
Feature 35
                                           Feature 35
    Blanks
           Stage 1
        2
             3035- 7,3035- 8,
        3
           Stage 3
```

```
3035- 6,3035-10,3035-13,
1 Stage 4
3035- 3,
```

```
Scrapers
1 Unifacial end scraper
3035-30,
```

```
Preforms
    3
       Stage 2
         3035-13, 3035-14, 3035-14,
    3
       Stage 3
         3035-15,3035-16,3035-37,
Projectile points
    1 Category 14
         3035-19,
Ccres
    1
       Amorphous
         3035-31,
Miscellaneous
    1 Ground stone gorget
         3035- 4,
    1
      Perfcratcr/graver
         3035- 0,
Utilized flakes
    1 Decortication flake
         3035- 0,
      Eifacial thinning flake
    3
         3035- 0,3035-23,3035-42,
Preform/blank/bifacial fragments
      Medial portion
    1
         3035-38,
    2
       Distal portion
         3035- 9,3035-17,
       Blank fragment
    4
         3035-12,3035-18,3035-21,3035-36,
Projectile point fragments
    3 Distal
         3035- 5,3035-34,3035-35,
       Medial
    1
         3035-11,
Indeterminate mammal
 Elements Fragments
                18
                       Other
Odocileus virginianus
  Elements Fragments
      10
                       Cther
Indeterminate turtle
 Elements Fragments
                 8
                       Other
```

Chelydra serpentina Elements Fragments 1 Cther Terrapene carclina Elements Fragments 5 Other Tricnyx spiniferus Elements Fragments 2 Cther Indeterminate fish Elements Fragments 1 Other

Feature 36

Feature 36

Blanks 2 Stage 1 3036- 2,3036-11, Preforms 1 Stage 3 3036- 5, Projectile points 1 Category 14 3036- 6, 1 Category 33 3036- 4, Utilized flakes 1 Decortication flake 3036- 9. Preform/blank/bifacial fragments 1 Distal portion 3036-3, Indeterminate large mammal Elements Fragments 19 Other Indeterminate medium mammal Elements Fragments 1 Other Odocileus virginianus Elements Fragments 9

Cther

Cervus canadensis Elements Fragments 2 Other Marmota monax Elements Fragments Cther 1 Terrapene carolina Elements Fragments 2 3 Other Feature 37 Preform/blank/bifacial fragments 1 Blank fragment 3037- 0, Projectile point fragments 2 Distal 3037- 0,3037- 0, Indeterminate large mammal Elements Fragments 11 Other Moxcstoma sp. Elements Fragments 1 Cther Feature 38 Projectile points 1 Category 17 3038- 1, Hammerstcnes 1 3038-4,

> Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3038- 0,3038- 0, 1 Elank fragment 3038- 2,

Projectile point fragments 1 Distal 3038- 3,

Feature 38

Indeterminate large mammal Elements Fragments 17 Other

Odocileus virgirianus Elements Fragments 3 Cther

Indeterminate bird Elements Fragments 1 Other

<u>Terrapene carclina</u> Elements Fragments 1 2 Cther

Feature 39

Feature 39

Spalls 1 3039-2,

Projectile points 1 Category 21 3039-3,

Miscellanecus 1 Crinoid stem 3039-4,

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3039-5,

Indeterminate mammal Elements Fragments 13 Ot

Other

Odocileus virginiants Elements Fragments 1 Dental 2 Other

<u>Procycn lotor</u> Elements Fragments 1 Cther

Indeterminate turtle Elements Fragments 5 Other

```
Indeterminate fish
      Elements Fragments
                           Other
                     1
Feature 40
                                           Feature 40
    Blanks
        1 Stage 2
             3040-3,
    Preforms
        1 Stage 2
             3040- 9,
        2
           Stage 3
             3040-13, 3040-22,
   Projectile prints
        1 Category 11
             3040-5,
        1
          Category 22
             3040-17,
    Cores
        1
           Subconical
             3040-25,
        3
          Amorphous
             3040- 2,3040- 7,3040-19,
        1 Discoidal
             3040- 1,
    Notched flakes
        1 On a flake
             3040- 0.
   Utilized flakes
        1 Decortication flake
             3040-10,
        8 Bifacial thinning flake
             3040- 0, 3040- 0, 3040- 6, 3040-21, 3040-23, 3040-24
             3040-27, 3040-29,
   Preform/blank/bifacial fragments
        2 Indeterminate biface fragment
             3040-16, 3040-16,
          Proximal pertien
        2
             30 40 - 14, 30 40 - 15,
        2
           Blank fragment
             3040-18, 3040-30,
```

Projectile point fragments 3 Distal 3040- 0,3040- 0,3040- 8, Indeterminate large mammal Elements Fragments 35 Cther Odocileus virginianus Elements Fragments 3 Dental 22 1 Cther Castor canadensis Elements Fragments 1 Cther Indeterminate bird Elements Fragments 3 Other Terrapene carclina Elements Fragments 6 Cther Feature 41 Projectile points 1 Category 17 3041- 1, Blanks 1 Stage 1 3042-11, 1 Stage 2 3042- 2, Perforators 2 Category 1 3042- C,3042- 0, Projectile points 1 Category 13 3042-10, 1 Category 14 3042- 6, 1 Category 22 3042- 8,

Feature 41

Feature 42

1 Category 23 3042- 5, 1 Category 26 3042- 9, Cores 1 Amorphous 3042-13, Hammerstcnes 1 3042- 0, Utilized flakes Decortication flake 1 3042- 0, Bifacial thinning flake 1 3042-12, Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3042-15, Distal portion 1 3042-7, 1 Elank fragment 3042-3, Indeterminate mammal Elements Fragments 12 Other Indeterminate large mammal Elements Fragments 19 Other Odccileus virginiants Elements Fragments 3 4 Cther Lynx rufus Elements Fragments 1 Dental Indeterminate bird Elements Fragments 6 Cther Indeterminate turtle Elements Fragments 3 Cther

Chrysenys/Grapetmys sp. Elements Fragments 1 Other Terrarene carclina Elements Fragments 2

Cther

Feature 43

```
Feature 43
```

Perforators 1 Category 1 3043- 0, Category 2 1 3043- 0,

Preforms 1 Stage 1 3043- 3, 1 Stage 2 3043- 4,

Projectile pcints 1 Category 13 3043-5.

```
Utilized flakes
      Decortication flake
    2
         3043- 0,3043- 8,
       Bifacial thinning flake
    4
         3043- 0,3043- 0,3043- 0,3043- 0,
```

Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3043- 6,3043- 6,

Projectile point fragments 1 Distal 3043- 3,

Indeterminate mammal Elements Fragments 3 Other

Indeterminate large mammal Elements Fragments 30 Other

Home sariens Elements Fragments 2 Other

Odocileus virginianus Elements Fragments 2 Dental 1 3 1 Other Meleagris gallcravc Elements Fragments 3 Cther Indeterminate turtle Elements Fragments 1 Other Terrapene carolina Elements Fragments 2 Cther Feature 45 Indeterminate large mammal Elements Fragments 6 Cther Odocileus virginianus Elements Fragments 1 2 Other Feature 46 Elanks 1 Stage 4 3046- 1,

> Drills 1 On a finished biface 3046-2,

Projectile points 1 Category 21 3046-4,

Utilized flakes 1 Eifacial thinning flake 3046-0,

Projectile point fragments 2 Distal 3046- C,3046- 3, Feature 45

Indeterminate large mammal Elements Fragments 3 Cther Indeterminate bird Elements Fragments 1 Other Feature 47 Blanks 1 Stage 2 3047- 3, Stage 3 1 3047- 2, Preforms Indeterminate 1 3047-2, Stage 3 1 3047- 8, Drills 1 On a projectile pcint 3047-12, Projectile pcints 1 Category 3 3047-4, Category 18 3047-9, 1 Category 21 1 3047-5, Category 22 3047-7, 1 1 Category 25 3047- 6, Utilized flakes 1 Bifacial thinning flake 3047-10, Projectile point fragments 2 Distal 3047-11, 3047-14, Indetermina te Elements Fragments 1 Cther

Indeterminate large mammal Elements Fragments 33 Cther Odocileus virginianus Elements Fragments 1 Dental 5 Cther Marmota monax Elements Fragments 1 Dental Indeterminate bird Elements Fragments 4 Cther Meleagris gallopavc Elements Fragments 2 Other Feature 48 Miscellaneous 1 Crincid stem 3048- 5, Indeterminate large mammal Elements Fragments 2 Cther Odocileus virginianus Elements Fragments 1 Other Feature 49 Indeterminate large mammal Elements Fragments 15 Other Odocileus virginianus Elements Fragments Dental 1 6 Other Indeterminate turtle Elements Fragments Cther 1

Feature 48

<u>Terrapene carclina</u> Elements Fragments 1 Cther Indeterminate fish

Elements Fragments 1 Other

Feature 50

Feature 50

Scrapers 1 Unifacial end scraper 3050- 0,

Hammerstones 1

3050-1,

Indeterminate large mammal Elements Fragments 19 Other

Odccileus virginianus Elements Fragments 8 3 Cther

Indeterminate bird Elements Fragments 5 Other

<u>Meleagris galloravc</u> Elements Fragments 2 Cther

Feature 51

Feature 51

Projectile points 1 Category 17 3051- C,

Cores 1 Subconical 3051-2,

Projectile point fragments 2 Distal 3051- 4,3051- 5,

Indeterminate mammal Elements Fragments 31 Cther

Odocileus virginiants Elements Fragments 1 1 Antler 5 Cther Indeterminate bird Elements Fragments 2 Other Terrapene carclina Elements Fragments 2 Cther Chrysemys scripta Elements Fragments 1 Other Indeterminate fish Elements Fragments 1 Cther Feature 52 Blarks 1 Stage 2 3052-1, Preforms 1 Stage 1 3052- 5, Stage 3 1 3052- 8, Projectile prints 1 Category 14 3052-3, Projectile point fragments 2 Distal 3052- 6, 3052- 7, Indeterminate mammal Elements Fragments 3 Cther Indeterminate large mammal Elements Fragments 26 Cther

Odocileus virginianus Elements Fragments 8 Other Indeterminate bird Elements Fragments 4 Other Terrapene carclina Elements Fragments 1 Cther Trionyx spiniferus Elements Fragments 1

Other

Feature 53

Feature 53

Blanks 1 Stage 1 3053-20, Knives 1 Stemmed 3053-6, Projectile points 1 Category 4 3053- 5, Category 9 3053-7, 1 1 Category 13 3053- 2, 1 Category 15 3053- 8, Ccres Amorphous 1 3053-16, Utilized flakes 2 Eifacial thinning flake 3053- C,3053- O,

```
Preform/blank/bifacial fragments
      Proximal portion
    1
        3053- 9,
    1
      Distal portion
        3053-3,
```

2 Blank fragment 3053-21,3053-22, Projectile point fragments 5 Distal 3053- 3, 3053-10, 3053-11, 3053-14, 3053-19, 4 Medial 3053-12,3053-13,3053-15,3053-23, Indeterminate Elements Fragments 1 Other Indeterminate mammal Elements Fragments 9 Other Indeterminate large mammal Elements Fragments 118 Other <u>Odocileus virginianus</u> Elements Fragments 1 Antler 4 Dental 35 12 Cther Procycn lotor Elements Fragments 1 Other Marmota monax Elements Fragments 1 Dental 1 1 Other Meleagris gallcravc Elements Fragments 1 Cther Accipiter cooperii Elements Fragments 2 Other Terrapene carclina Elements Fragments 24 Cther Indeterminate fish Elements Fragments 1 Other

```
Moxostoma cf. carinatum
      Elements Fragments
          1
                           Dental
Feature 54
                                         Feature 54
   Blarks
        1 Stage 1
            3054-5,
    Knives
       1 Flake
             3054- 6,
   Preforms
        2 Stage 1
            3054- 3,3054- 4,
        1
          Stage 3
            3054- 9,
    Projectile points
       1 Category 24
            3054- 7,
   Cores
          Amorphous
        3
             3054- 0,3054- 1,3054-12,
    Miscellaneous
       1 Crincid stem
             3054-14,
    Utilized flakes
       1 Eifacial thinning flake
            3054- 0,
    Preform/blank/bifacial fragments
        1 Indeterminate biface fragment
            3054- 0,
         Medial portion
        1
            3054-2,
        1 Blank fragment
            3054-13,
   Projectile pcint fragments
        1 Distal
            3054- 8,
   Indeterminate mammal
     Elements Fragments
                   31
                          Other
```

```
251
```

Indeterminate large mammal Elements Fragments 48 Other Odocileus virgirianus Elements Fragments 4 Dental 28 16 Other Sylvilagus floridanus Elements Fragments 1 Dental Indeterminate bird Elements Fragments 1 Cther Indeterminate turtle Elements Fragments 3 Other Feature 55 Projectile points 1 Category 26 3055-1, Utilized flakes 1 Decortication flake 3055- C, Bifacial thinning flake 2 3055- C, 3055- C, Indeterminate mammal Elements Fragments 27 Cther Odocileus virginianus Elements Fragments 2 1 Other Cervus canadensis Elements Fragments 1 Other

> <u>Meleagris gallcravc</u> Elements Fragments 1 Cther

Terrapene carclina Elements Fragments 3 Other Feature 56 Indeterminate large mammal Elements Fragments Cther 2 Odocileus virginianus Elements Fragments 1 Cther Feature 57 Drills 1 On a finished tiface 3057-1, Miscellaneous 1 Perforator/denticulate 3057- 0, Utilized flakes 1 Bifacial thinning flake 3057-2, Indeterminate mammal Elements Fragments 3 Other Indeterminate large mammal Elements Fragments 1 Other Home sariens Elements Fragments 1 Other Odccileus virginianus Elements Fragments 1 Cther Indeterminate turtle Elements Fragments 1 Cther Trionyx spiniferus Elements Fragments 2 Other

Feature 57

Feature 58

Feature 59

Projectile points 1 Category 0 3058- 1, Projectile pcint fragments 1 Distal 3058-4, Indeterminate mammal Elements Fragments 8 Other Odocileus virginianus Elements Fragments 3 Cther Ursus americanus Elements Fragments 1 Other Meleagris gallcravc Elements Fragments 1 Oth er Terrapene carclina Elements Fragments 3 Cther Feature 59 Spalls 1 3059-4. Preforms 1 Stage 3 3059- 6, Miscellanecus 1 Denticulate 3059-0, Utilized flakes 1 Decortication flake 3059- 0, 1 Bifacial thinning flake 3059- 0,

Preform/blank/bifacial fragments 3 Indeterminate biface fragment 3059- 5,3059- 7,3059- 7, Medial portion 1 3059- 2, Distal pcrticn 1 3059- 5, Projectile point fragments 2 Distal 3059- 1,3059- 3, Indeterminate mammal Elements Fragments 1 Cther Indeterminate large mammal Elements Fragments 30 Cther Odocileus virginianus Elements Fragments 2 1 Other Meleagris gallcravc Elements Fragments 1 1 Cther Terrapene carolina Elements Fragments 1 Other Feature 60 Ferforators 1 Category 1 3060- 1, Indeterminate mammal Elements Fragments 1 Cther Indeterminate large mammal Elements Fragments 4 Cther Odocileus virginianus Elements Fragments 7 Other

Feature 61

Feature 61

Preforms 1 Stage 3 3061- 4, Projectile prints 1 Category 26 3061-3, Utilized flakes 1 Decortication flake 3061- 6, 1 Bifacial thinning flake 3061- 0, Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3061- 1, Projectile point fragments Distal 1 3061- 2, Proximal 1 3061- 5. Indeterminate large mammal Elements Fragments 6 Cther Odocileus virginianus Elements Fragments 2 Other Indeterminate bird Elements Fragments 5 Cther Meleagris gallopavc Elements Fragments 2 Other Indeterminate turtle Elements Fragments 1 Cther Feature 62

Feature 62

Indeterminate large mammal Elements Fragments 4 Cther

Odocileus virginianus Elements Fragments 1 Other Indeterminate bird Elements Fragments 2 Cther Feature 63 Blarks 1 Stage 2 3063- 5, Preforms 1 Stage 2 3063-3, Projectile points 1 Category 1 3063- 4, 1 Category 29 3063- 1, Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3063- 6,3063- 6, 1 Distal pcrticn 3063- 7, Indeterminate mammal Elements Fragments 16 Cther Odocileus virginianus Elements Fragments 1 Dental 2 2 Cther Canis familiaris Elements Fragments 2 Cther Sciurus carolinensis Elements Fragments 1 Dental Indeterminate bird Elements Fragments 1 Other

Indeterminate turtle Elements Fragments 3 Other Feature 64 Feature 64 Projectile pcints 1 Category 10 3064- 1, 1 Category 13 3064- 2, Projectile point fragments 1 Distal 3064-3, Indeterminate large mammal Elements Fragments 7 Other <u>Odocileus virginianus</u> Elements Fragments 3 Cther Indeterminate turtle Elements Fragments 2 Other Indeterminate large mammal Elements Fragments 4 Cther Utilized flakes 1 Decortication flake 3066-0, Odocileus virginianus Elements Fragments 2 1 Cther Indeterminate large mammal Elements Fragments Cther 2

Feature 66

Feature 68

Feature 65

Feature 65

Feature 66

Odocileus virginianus Elements Fragments 1 1 Dental Feature 69 Preforms 1 Stage 3 3069- 1, Indeterminate large mammal Elements Fragments 7 Other <u>Odocileus virginianus</u> Elements Fragments 1 Antler 2 1 Dental Meleagris gallcravc Elements Fragments 1 Cther Terrapene carolina Elements Fragments 1 Other Indeterminate mammal Elements Fragments 2 Other Indeterminate medium mammal Elements Fragments 1 Other Blanks 1 Stage 1 3071- 2. Indeterminate mammal Elements Fragments 2 Other

Indeterminate bird Elements Fragments 1 Cther

Feature 71

Feature 70

259

Feature 69

Feature 70

Terrapene carclina Flements Fragments 1 Other Feature 72 Indeterminate large mammal Elements Fragments 3 Other Odocileus virginianus Elements Fragments 3 Cther Feature 73 Preforms 1 Stage 1 3073-1, Projectile points 1 Category 8 3073-2, Projectile pcint fragments 1 Distal 3073- C, Indeterminate manmal Elements Fragments 1 Cther Indeterminate large mammal Elements Fragments 17 Cther Homo sapiens Elements Fragments 5 Cther Odocileus virginianus Elements Fragments 2 2 Other Terrapene carclina Elements Fragments 1 Cther Rana/Bufo sp. Elements Fragments 1 Other

Feature 73

Indeterminate fish Elements Fragments 2 Other Feature 74 Feature 74 Indeterminate large mammal Elements Fragments 2 Other Canis familiaris Elements Fragments 1 Other Feature 75 Indeterminate mammal Elements Fragments 1 Other Odocileus virginianus Elements Fragments 2 Cther Trionyx spiniferus Elements Fragments 1 Other Feature 76 Projectile points 1 Category 17 3076- 3, Miscellanecus 1 Ground stone blank 3076-2, Projectile point fragments 1 Proximal 3076- 4, Indeterminate large manmal Elements Fragments 28 Other Home sariens Elements Fragments 9 6 Other

Feature 76

Odocileus virginianus Elements Fragments 1 Dental 2 6 Other Procycn loter Elements Fragments 1 Cther Sylvilagus floridanus Elements Fragments 1 Other Indeterminate turtle Elements Fragments 2 Cther <u>Terrapene carolina</u> Elements Fragments 2 Other Rana/Eufc sp. Elements Fragments 8 Other Feature 77 Perforators 1 Category 1 3077- 3, Preforms 1 Stage 2 3077- 4, Projectile pcints 1 Category 20 3077- 6, 1 Category 25 3077-25, Ccres Subconical 1 3077- 1, Projectile point fragments 1 Medial 3077-3.

Feature 77

262

Indeterminate large mammal Elements Fragments 7 Cther Odocileus virginianus Elements Fragments 1 Dental 3 1 Cther Marmota mcnax Elements Fragments 1 Other Feature 78 Projectile points 2 Category 17 3078- 1, 3078- 2, Indeterminate large mammal Elements Fragments 2 Cther Odocileus virginianus Elements Fragments 2 Other Tricnyx spiniferus Elements Fragments 1 Cther Feature 79 Projectile pcints 1 Category 17 3079-3, Preform/blank/bifacial fragments 1 Elank fragment 3079- 1, Projectile point fragments 1 Distal 3079-2,

> Indeterminate large mammal Elements Fragments 11 Other

<u>78</u>

Feature

Odocileus virginianus Elements Fragments Cther 2 2 Meleagris gallopavc Elements Fragments 1 Other Feature 81 Adzes 1 Chipped stone 3081- 1, Spalls 1 3081- 2, Indeterminate large mammal Elements Fragments 22 Cther Odocileus virginianus Elements Fragments 1 Dental 7 1 Cther Indeterminate bird Elements Fragments 2 Cther Meleagris gallopavc Elements Fragments 1 Other Terrapene carclina Elements Fragments 8 Cther Ictalurus punctatus Elements Fragments 1 Other Feature 82

Feature 81

Feature 82

Elanks 1 Stage 3 3082- 2,

Knives 1 Contracted 3082- 1, Scrapers 1 Bifacial end scraper 3082- 4, Drills 1 On a finished biface 3082-0, Projectile point fragments 1 Medial 3082-5, Indeterminate large mammal Elements Fragments 3 Other Odocileus virginianus Elements Fragments 1 Cther Feature 83 Indeterminate large mammal Elements Fragments 3 Cther Indeterminate mammal Elements Fragments 2 Cther Indeterminate large mammal Elements Fragments 1 Cther Marmota monax Elements Fragments 1 Other Feature 85 Utilized flakes

1 Bifacial thinning flake 3085-0,

Feature 83

Feature 84

Feature 84

Feature 86

Indeterminate large mammal Elements Fragments 1

Cther

Odocileus virginianus Elements Fragments 1 Dental 5 Cther

Indeterminate turtle Elements Fragments 1 Cther

<u>lerrapene carolina</u> Elements Fragments 1

Other

Feature 87

Projectile points 1 Category 6 3087- 2,

Preform/blank/bifacial fragments 1 Distal portion 3087-1,

Indeterminate large mammal Elements Fragments 6 Other

Odocileus virginianus Elements Fragments 2 1 Cther

Terrapene carolina Elements Fragments 1 Other

Feature 88

Indeterminate large mammal Elements Fragments Other 2

Odocileus virginianus Elements Fragments Cther 1 1

Feature 87

Feature 89

Odocileus virginianus Elements Fragments 3 Other

Feature 90

Feature 90

Elanks 1 Stage 4 3090- 1, Perforators

1 Category 1 3090-0,

Drills 1 Indeterminate 3090- 3,

Utilized flakes 2 Eifacial thinning flake 3090- 0,3090- 4,

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3090-5,

Indeterminate large manual Elements Fragments 51 Other

<u>Cdocileus virginianus</u> Elements Fragments 2 Dental 12 6 Cther

<u>Cervus canadensis</u> Elements Fragments 1 De

Dental

<u>Marmota monax</u> Elements Fragments 1 0

Other

Indeterminate bird Elements Fragments 5 Cther

Terrapene carclina Elements Fragments Other 3 Feature 91 Feature 91 Indeterminate large mammal Elements Fragments 2 Other Terrarene carclina Elements Fragments 1 1 Cther Feature 92 Feature 92 Indeterminate mammal Elements Fragments 5 Cther Odocileus virginianus Elements Fragments 1 Other Ursus americanus Elements Fragments 2 Cther Rana/Bufo sp. Elements Fragments 1 Other Moxcstoma sp. Elements Fragments 1 Cther Feature 93 Feature 93 Projectile pcint fragments 1 Distal 3093-1, Indeterminate large manual Elements Fragments 4 Other Odocileus virginianus Elements Fragments Cther 1

268

Blarks 1 Stage 2 3094-16, Freforms 2 Stage 1 3094- 6,3094-15, Drills 1 Indeterminate 3094- 8, Projectile prints 1 Category 6 3094-7, Category 14 1 3094-10, Category 25 1 3094-3, 1 Category 26 3094-12, COLES 1 Amorphous 3094- 4, Utilized flakes 1 Bifacial thinning flake 3094- 0, Preform/blank/bifacial fragments 2 Proximal portion 3094- 9,3094-13, Projectile point fragments 1 Distal 3094-14, Indeterminate mammal Elements Fragments 7 Cther Indeterminate large mammal Elements Fragments 111 Cther Odocileus virginianus Elements Fragments 4 Dental

35 5 Cther Procyon lotor Elements Fragments 1 Dental Indeterminate bird Elements Fragments 8 Cther Indeterminate large bird Elements Fragments 3 Cther Meleagris gallopavc Elements Fragments 1 Other Indeterminate turtle Elements Fracments 1 Cther Terrapene carolina Elements Fragments 2 Other Tricnyx spiniferus Elements Fragments 1 Cther Feature 95 Miscellaneous 1 Crincid stem 3095- 5, Indeterminate large mammal Elements Fragments 2 Cther Odocileus virginianus Elements Fragments 1 Dental Feature 96

Feature 95

1

Feature 96

Projectile points 1 Category 19 3096- 4,

Preform/blank/bifacial fragments 1 Blank fragment 3096- C, Projectile pcint fragments 1 Distal 3096-2, Feature 98 Spalls 1 3098- 1, Preforms 1 Stage 2 3098- 4, Cores 1 Amcrthcus 3098- 2, Utilized flakes 1 Bifacial thinning flake 3098- 5, Preform/blank/bifacial fragments 1 Distal portion 3098- 3, Indeterminate mammal Elements Fragments 1 Other Indeterminate large mammal Elements Fragments 28 Other Odocileus virginianus Elements Fragments 1 Antler 2 Dental 9 12 Cther Bufo sp. Elements Fragments 3 Other Indeterminate fish Elements Fragments 2 Cther

Catcstomidae Elements Fragments 3 Other Feature 102 Blanks 1 Stage 1 3102- 9, Projectile prints 1 Category 16 3102-6, Cores 2 Amcrphcus 3102- 7, 3102- 8, Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3102- 0, 1 Medial pcrticn 3102- 5, Indeterminate large mammal Elements Fragments 46 Cther Odocileus virginianus Elements Fragments 18 Other Urocycn cinereoargenteus Elements Fragments 1 Cther Indeterminate bird Elements Fragments 8 Other Meleagris gallcravc Elements Fragments 1 Cther Terrapene carolina Elements Fragments 7 Other

Feature 105

Feature 103 Blanks 1 Stage 1 3103- 6, Stage 2 1 3103- 5. Preforms 1 Stage 3 3103-4. Projectile points 1 Category 8 3103-3, Miscellanecus 1 Ground stone blank 3103-3, Preform/blark/bifacial fragments 1 Distal portion 3103-2, Indeterminate large mammal Elements Fragments 13 Other Odocileus virginianus Elements Fragments 1 Dental 3 2 Other Mustela Viscn Elements Fragments 1 Dental Procyon lotor Elements Fragments 1 Other Meleagris gallcravc Elements Fragments 2 Cther Feature 105 <u>Terrapene carclina</u> Elements Fragments 1 Other

Feature 106

Indeterminate large mammal Elements Fragments 3 Other

Feature 107

Feature 107

Blanks 1 Stage 1 3107-6, Knives 1 Iriangular/rcunded base 3107- 4, Scrapers 1 Unifacial end and side scraper 3107- 5, Unifacial end scraper 1 3107- 7, Preforms 1 Stage 1 3107-2, Preform/blank/bifacial fragments 1 Proximal portion 3107- 3, Indeterminate Elements Fragments 1 Other Indeterminate mammal Elements Fragments 10 Other Indeterminate large mannal Elements Fragments 9 Other Odccileus virginianus Elements Fragments 2 Cther Indeterminate bird Elements Fragments 1 Other

Terrarene carolina Elements Fragments Cther 3 Feature 108 Perforators 1 Category 1 3108- 0, Preforms 1 Stage 3 3108- 5, Projectile prints 1 Category 13 3108-6, Category 23 3108-3,3108-7, 2 Projectile point fragments 2 Distal 3108- 2,3108- 8, Indeterminate large mammal Elements Fragments 1 Other Odocileus virginianus Elements Fragments 2 2 Cther Procyon lotor Elements Fragments 1 Other Meleagris gallcravc Elements Fragments 1 Cther Feature 109 Blanks 1 Stage 3 3109- 1,

> Preform/blank/bifacial fragments 2 Proximal portion 3109-2,3109-4,

Feature 109

Projectile pcint fragments 2 Distal 3109-3,3109-9,

Indeterminate mammal Elements Fragments 1 Other

Indeterminate large mammal Elements Fragments 11 Other

Odocileus virginianus Elements Fragments 4 1 Cther

Lepisosteus sp. Elements Fragments 1 Other

Feature 110

Feature 110

Elanks 1 Stage 3 3110- 3,

Perforators 1 Category 1 3110-1,

Drills 1 On a bifacila thinning flake 3110- 5, 1 On a nodular flake 3110- 4,

Utilized flakes 1 Eifacial thinning flake 3110-2,

Indeterminate large manmal Elements Fragments 16 Cther

Odocileus virginianus Elements Fragments 4 Cther

Indeterminate bird Elements Fragments 1 Other

Meleagris galloravo Elements Fragments 2 Cther Indeterminate turtle Elements Fragments 1 Other Feature 111 Indeterminate mammal Elements Fragments 1 4 Other Odocileus virginianus Elements Fragments 2 3 Cther Terrapene carolina Elements Fragments 1 Other Feature 113 Preforms 1 Stage 2 3113- 4, Stage 3 1 3113-2, Projectile points 1 Category 5 3113- 1, 1 Category 18 3113- 6, Indeterminate mammal Elements Fragments 2 Cther Indeterminate large mammal Elements Fragments 24 Cther Indeterminate small mammal Elements Fragments 1 Cther

> Odocileus virginianus Elements Fragments 1 Dental

Feature 111

Feature 113

277

2 1 Cther

<u>Terrapene carclina</u> Elements Fragments 7 1 Cther

Feature 114

Feature 114

Axes 1 3114- 1, Projectile points 1 Category 0 3114- 5, Category 6 1 3114-4, Category 8 1 3114- 9, Hammerstones 1 3114- 2, Utilized flakes 1 Bifacial thinning flake 3114- 0, Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3114- 7,3114- 7, 1 Proximal portion 3114- 0, Projectile point fragments 1 Distal 3114- 8, Indeterminate Elements Fragments 1 Cther Indeterminate large mammal Elements Fragments 29 Cther Odocileus virginianus Elements Fragments 1 Dental 4 4 Cther

Marmota monax Elements Fragments 2 Dental Indeterminate bird Elements Fragments 3 Cther Terrapene carolina Elements Fragments 1 3 Other Tricnyx spiniferus Elements Fragments 1 Cther Aplodinotus grunniens Elements Fragments 1 Other Feature 115 Preforms 1 Stage 3 3115- 1, Projectile pcints 1 Category 3 3115- 2, Hammerstones 1 3115-3, Preform/blank/bifacial fragments 2 Indeterminate biface fragment 3115- 0,3115- 0, Indeterminate mammal Elements Fragments 4 Other Odocileus virginianus Elements Fragments 2 Cther Indeterminate bird Elements Fragments 2 Other

Feature 117 Blanks 1 Stage 2 3117- 2, Spalls 1 3117- 1, Preforms 1 Stage 2 3117- 6, Projectile points 1 Category 21 3117- 5, Projectile pcint fragments 1 Distal 3117- 4, Indeterminate large mammal Elements Fragments 25 Other Odccileus virginianus Elements Fragments 2 1 Cther Indeterminate turtle Elements Fragments 1 Other Terrapene carclina Elements Fragments 1 Cther Ictalurus sp.

Elements Fragments 1 Other

Feature 118

Feature 118

Notched flakes 1 On a flake 3118- 2, Preform/blank/bifacial fragments 1 Medial portion 3118- 1,

Projectile print fragments 1 Medial 3118-3,

Indeterminate large mammal Elements Fragments 7 Other

Indeterminate small mammal Elements Fragments 1 Other

Indeterminate large bird Elements Fragments 1 Other

Feature 119

Indeterminate large mammal Elements Fragments 3 Other

Odocileus virginianus Elements Fragments 1 Dental 2 Other

Indeterminate fish Elements Fragments 1 Other

Feature 120

Blanks 1 Stage 2 3120- 1,

Indeterminate mammal Elements Fragments

1 Cther

Indeterminate large mammal Elements Fragments 5 Cther

Feature 119

Indeterminate medium mammal Elements Fragments 1 Cther <u>Cervus canadensis</u> Elements Fragments 1 Antler 1 Other Feature 121 Preforms 1 Stage 2 3121- 1, Preform/blank/bifacial fragments 1 Proximal pertien 3121- 2, Indeterminate mammal Elements Fragments 1 Cther Indeterminate large mammal Elements Fragments 1 Cther Indeterminate fish Elements Fragments 1 Other Feature 122 Projectile points 1 Category 22 3122- 2, Preform/blank/bifacial fragments 1 Proximal portion 3122- 1, Indeterminate large mammal Elements Fragments 5 Cther Feature 123 Preforms 1 Stage 2

3123- 5,

Feature 121

Feature 122

282

```
Projectile prints
        1 Category 17
             3123-4,
        1
           Category 30
             3123- 6,
    Cores
        1
           Amorphous
             3123- 7,
    Utilized flakes
        1 Eifacial thinning flake
             3123- 0,
    Projectile point fragments
        1 Distal
             3123- 1,
    Indeterminate large mammal
      Elements Fragments
                     5
                            Cther
    Odocileus virginianus
      Elements Fragments
           1
                            Dental
Feature 124
    Spalls
        1
             3124- 1,
    Preforms
        1 Stage 2
             3124- 0,
           Stage 3
        1
             3124- 4,
    Projectile prints
        1 Category 13
             3124- 3,
        1 Category 17
3124-5,
    Preform/blank/bifacial fragments
           Indeterminate biface fragment
        2
             3124- 0,3124- 0,
        1
          Distal portion
             3124-1,
```

Projectile pcint fragments 2 Distal 3124- 6,3124- 7, Indeterminate large mammal Elements Fragments 25 Other Odocileus virginianus Elements Fragments 1 Dental 4 2 Other Indeterminate bird Elements Fragments 7 Cther Meleagris gallopavo Elements Fragments 1 Other Terrarene carclina Elements Fragments 3 Other Tricnyx spiniferus Elements Fragments 1 Cther Feature 125 Projectile pcint fragments 1 Distal 3125- 1, Indeterminate large mammal Elements Fragments 5 Cther Odocileus virginianus Elements Fragments 1 Other Terrarene carclina Elements Fragments 1 Cther

Feature 125

Feature 126

Feature 127

Blarks 1 Stage 3 3127- 6, Projectile prints 1 Category 8 3127- 5, Category 14 3127-2, 1 Category 25 1 3127-10, Cores 1 Subconical 3127- 7, Projectile pcint fragments 3 Distal 3127- 3,3127- 4,3127- 9, Medial 1 3127- 8, Indeterminate large mammal Elements Fragments 19 Other Odocileus virginianus Elements Fragments 2 Dental 6 3 Other Procycn lotor Elements Fragments 4 Cther Indeterminate bird Elements Fragments 5 Other Meleagris galloravc Elements Fragments 1 Cther Terrapene carclina Elements Fragments 2 2 Other

Feature 128

Projectile points 1 Category 8 3128-2,

Utilized flakes 2 Bifacial thinning flake 3128- 0,3128- 0,

Preform/blank/bifacial fragments 1 Distal portion 3128- 1,

Indeterminate large mammal Elements Fragments 20 Cther

<u>Odocileus virginianus</u> Elements Fragments 1 Artler 4 2 Cther

Indeterminate bird Elements Fragments 1 Cther

Feature 129

Feature 129

Preforms 1 Stage 2 3129- 2,

Projectile points 1 Category 18 3129- 1,

Utilized flakes 1 Decortication flake 3129-3,

Preform/blank/bifacial fragments 1 Indeterminate biface fragment 3129-6,

Indeterminate large mammal Elements Fragments 20 Other

Indeterminate medium manmal Elements Fragments Other 3 Odocileus virginianus Elements Fragments 1 Antler 1 Dental 4 Cther Sciurus carolinensis Elements Fragments 1 Cther Indeterminate bird Elements Fragments 3 Other Terrarene carclina Elements Fragments 1 5 Cther Trionyx spiniferus Elements Fragments 1 Other Indeterminate amphibian Elements Fragments 1 Other Rana catesbeiana Elements Fragments 3 Cther Feature 130 Blarks 1 Stage 2 3130- 2, Utilized flakes 2 Bifacial thinning flake 3130- 0,3130- 0, Preform/blark/bifacial fragments 2 Indeterminate biface fragment 3130- 0,3130- 0, Indeterminate large mammal Elements Fragments 15 Cther

Odocileus virginianus Elements Fragments 1 Dental 3 Cther Sciurus carolinensis Elements Fragments 1 Dental Feature 131 Freforms 1 Stage 3 3131- 1, Preform/blark/bifacial fragments 1 Proximal portion 3131- 2, Indeterminate large mammal Elements Fragments 15 Cther Odocileus virginianus Elements Fragments 3 1 Other Indeterminate bird Elements Fragments 1 Cther Indeterminate turtle Elements Fragments 1 Other Feature 132 Elanks 1 Stage 3 3132- 0, Projectile pcints 1 Category 8 3132-7, Miscellanecus 1 Crinoid stem

3132- 0,

Feature 132

Utilized flakes 2 Bifacial thinning flake 3132- 0,3132- 0, Projectile point fragments 3 Distal 3132- 4,3132- 5,3132- 6, Indeterminate mammal Elements Fragments 31 Cther Odocileus virginianus Elements Fragments 1 Antler 1 Dental 11 2 Other Procycn lotor Elements Fragments 2 Cther Indeterminate bird Elements Fragments 1 Other Terrapene carclina Elements Fragments 3 Cther Trionyx spiniferus Elements Fragments 1 Other Indeterminate fish Elements Fragments 2 Cther Feature 149

Feature 149

Scrapers 1 Unifacial end and side scraper 3149-0,

Preforms 1 Stage 2 3149-5, Projectile prints 2 Category 17 3149- 0,3149- 3, 1 Category 29 3149- 1,

Utilized flakes 1 Bifacial thinning flake 3149- 0,

<u>Burial 1</u>

Burial 1

Projectile points 1 Category 17 4001- 1,

Burial 4

Burial 4

Indeterminate large mammal Elements Fragments 1 Other

Odocileus virginianus Elements Fragments 2 Cther

Indeterminate bird Elements Fragments 1 Other

Burial 5

<u>Burial 5</u>

Indeterminate large mammal Elements Fragments 13 Cther

<u>Odocileus virginianus</u> Elements Fragments 2 Dental 1 Cther

<u>Cervus canadensis</u> Elements Fragments

Cther

Indeterminate turtle Elements Fragments 1 Other

Buria	1	6	5														
1	Pro	oj∉ 1	e ct	ca Ca	ate	p e g 0 0	C	rj	1	1	6						
<u>Buria</u>	11	10	2														
1	Bla		(S 	S	ta d 4(ge D 1			0	,							
Buria	11	14	ŧ														
1	Ind I	let Ele								m					ma Cti		r
<u>c</u>	<u>) d c</u> 1		19 eme	eus ent 4	s	<u>zi</u>	I F	gi ra	n 9	im	an en 1	U t	5		Ot	he	r
<u>Buria</u>	1	15	2														
1	PIe			ns St	ta 9 4(je)1	5	3	1	,							
<u>Buria</u>	11	16	2														
I)r i			01		ւ) 1					he	đ	b	i	fa	ce	
I	nd H	let 31e												m	۳a	1	
									-		1				C ti	he	r

Bur.

Bur

Bur

<u>Odocileus virginianus</u> Elements Fragments 1 Dental 3 Cther

Crotalidae Elements Fragments Other 1

<u>Terrapene carolina</u> Elements Fragments 1 Cther Burial 6

Burial 10

Burial 14

Burial 16

Burial 15

APPENDIX H: VERTICAL DISTRIBUTION OF VERTEBRATE AND INVERTEBRATE REMAINS

							Level					
ТАХА	1	2	3	4	5	6	7	8	9	10	11	TOTAL
MAMMALIA-MAMMALS	42	867	855	328	128	99	114	116	90	54	52	2,786*
Homo sapiens, Human	1	31		3	1	1						37
Odocoileus virginianus, Deer	35	773	787	296	118	95	109	106	90	50	40	2,540*
Cervus canadensis, Elk	2	20	22		3		2	3			12	64
<i>Lynx rufus,</i> Bobcat		1										1
Mephitis mephitis, Striped skunk			2									2
<i>Mustela vison,</i> Mink		1										1
<i>Procyon lotor,</i> Raccoon		15	20	9	3	2		4		4		57
Ursus americanus, Black bear	3	5	2	1				1				12
Urocyon cinereoargenteus, Gray fox		1	2	1	1		2	1				8
Canis familiaris, Dog		3	3	5								11
Canis lupus, Gray wolf		1										1
Canis spp., Dog species			4									4
Erethizon dorsatum, Porcupine			2	1								3
Castor canadensis, Beaver		1	2		2	1						6
Sciurus carolinensis, Gray squirrel		3	2	5								10
Marmota monax, Woodchuck	1	10	5	2			1	1				20
<i>Tamias striatus,</i> Chipmunk			1									1
Sylvilagus floridanus, Rabbit		2	1	4								7
Didelphis marsupialis, Opossum				1								1
AVES-BIRDS	2	35	75	14	1	4	2	2	4	2	1	142
Corvus corax, Raven				1								1
<i>Strix varia,</i> Barred owl				1								1
<i>Meleagris gallopavo,</i> Turkey		33	75	12	1	4	2	2	4	2	1	136
Buteo jamaicensis, Red-tailed hawk	1											1
Accipiter cooperi, Cooper's hawk		2										2
Anas spp., Duck species	1											1
REPTILIA-REPTILES	2	201	121	80	10	8	15	18	16	13	5	489
Crotalidae, Venomous snake			2	3	2							7
Colubridae, Non-venomous snake			4	4					1			9
conditione, Non-ventinous shake			4	4					T			

							Level					
ТАХА	1	2	3	4	5	6	7	8	9	10	11	TOTAL
Chelydra serpentina, Snapping turtle		1										1
Chrysemys cf. scripta, Red-eared slider		2										2
Chrysemys/Graptemys spp., Painted/Map		1	27									28
turtle												
Terrapene Carolina, Box turtle	1	181	72	66	6	7	15	15	14	11	5	393
Trionyx spiniferus, Softshell turtle	1	16	16	7	2	1		3	1	2		49
AMPHIBIA-AMPHIBIANS		24	1	2								27
Rana catesbeiana, Bullfrog		4	1	1								6
Rana/ Bufo spp., Frog/toad		20		1								21
PISCES-FISHES		12	18	4	1	1	6	2				44
Aplodinotus grunniens, Drumfish		2	6	1			2					11
Ictalurus punctatus, Channel catfish		1	9	1			1	2				14
Ictaluridae sp., Catfish		1		1								2
Moxostoma cf. caranatum, River redhorse		1		1								2
Moxostoma spp., Redhorse species		3	3		1	1	3					11
Catostomidae, Sucker		3										3
Lepisosteidae spp., Garfish		1	1									1
TOTAL INDENTIFIED	46	1139	1070	428	140	112	137	138	110	69	58	3,488*
INDETERMINATE	86	1910	2114	1628	213	165	203	231	283	166	113	7,112
Large mammal fragments	77	1742	1913	1422	200	145	187	204	276	159	111	6,436
Medium mammal fragments	6	6		11								23
Small mammal fragments		2	8	5	1	5		1				22
Bird fragments	2	105	117	71	6	4	11	3	6	6	2	333
Reptile Fragments		41	55	103	2	2		20		1		224
Amphibian fragments		1		1								2
Fish fragments	1	13	21	15	4	9	5	3	1			72
TOTAL EXAMINED	132	3049	3184	2056	353	277	340	369	393	235	171	10,600*
MOLLUSCA-FRESHWATER MUSSELS		2096	3723	6241	1173	1805	1392	178	-	-	-	16,608
Amblema plicata, Threeridge		11	48	49	6	10	8	3				135
Cyclonaias tuberculata, Purple wartyback		80	133	218	43	76	44	13				607
<i>Elliptio dilatata,</i> Spike		298	508	1232	129	274	223	16				2680
Plethobasus cicatricosus, White wartyback		1										1
Plethobasus cyphus, Sheepnose		4	11	6	5	12	13					51
Pleurobema clava, Clubshell		60	167	144	21	17	27	1				437
Pleurobema cordatum, Ohio pigtoe		122	191	329	62	136	89	12				941
Pleurobema cordatum pgramidatum		247	405	769	180	223	160	19				2003
Pleurobema spp.		40	11	66	43		11					171
Quadrula cylindrical, Rabbitsfoot		1	10	14	4	2	4	1				36
Quadrula metanevra, Monkeyface		2	1	13	6	8		1				31
Quadrula cf. nodulata, Wartyback				1								1

	Level												
ТАХА	1	2	3	4	5	6	7	8	9	10	11	TOTAL	
Quadrula pustulosa, Pimpleback		20	54	108	27	11	28	3				251	
<i>Tritogonia verrucosa,</i> Pistolgrip				16	3	2	7					28	
Lasmigona costata, Flutedshell		1		1	1							4	
Actinonaias ligamentina carinata, Mucker		328	848	843	155	316	228	34				2752	
<i>Cyprogenia irrorata,</i> Fanshell		6	15	44	14	23	10	1				113	
Dromus dromas, Dromedary Pearlymussel		437	596	996	199	365	236	28				2857	
Epioblasma arcaeformis		120	195	364	61	68	58	2				868	
Epioblasma brevidens		39	40	78	14	8	20	5				204	
Epioblasma flexuosa		30	49	142	29	43	18	1				312	
Epioblasma haysiana, Acorn		1	3	10		3	14					31	
Epioblasma propinqua/sulcata		131	225	444	67	95	64	6				1032	
Epioblasma cincinnatiensis		1	2	9			1					13	
<i>Epioblasma triquetra,</i> Snuffbox		1	1	3								5	
<i>Lampsilis ovata,</i> Pocketbook		2	14	33	10	14	16	6				95	
Ligumia recta, Black sandshell		4	10	33	1	12	5	2				67	
Obliquaria reflexa, Threehorn wartyback				3		1		1				4	
<i>Obovaria retusa,</i> Ring Pink		8	46	49	29	14	14	3				163	
Obovaria subrotunda		8	18	13	9	13	30	4				95	
Ellipsaria lineolata, Butterfly			2	12		3						17	
Ptychobranchus fasciolaris, Kidneyshell		93	120	196	55	56	61	13				594	
<i>Truncilla truncata,</i> Deertoe				3			3					6	
Villosa cf. taeniata								3				3	
GRAND TOTAL	132	5145	6907	8297	1526	2082	1732	547	393	235	171	27,208*	

* Includes 41 pieces of Miscellaneous deer bone.

APPENDIX I: MINIMUM NUMBER OF INDIVIDUALS OF IDENTIFIED SPECIES FOR VERTEBRATE AND INVERTEBRATE REMAINS

						LEVEL						•
ТАХА	1	2	3	4	5	6	7	8	9	10	11	TOTAL
MAMMALIA	5	29	33	17	8	5	9	8	3	6	2	125
Odocoileus virginianus, Deer	2	13	16	6	3	2	6	3	3	4	1	59
Cervus canadensis, Elk	1	1	1		1		1	1			1	7
<i>Lynx rufus,</i> Bobcat		1										1
Mephitis mephitis, Striped skunk			2									2
<i>Mustela vison,</i> Mink		1										1
Procyon lotor, Raccoon		3	4	3	2	2		1		2		17
Ursus americanus, Black bear	1	1	1	1				1				5
Urocyon cinereoargenteus, Gray fox		1	2	1	1		1	1				7
Canis familiaris, Dog		1	1	1								3
Canis lupus, Gray wolf		1										1
Canis spp., Dog species												
Erethizon dorsatum, Porcupine			1	1								2
Castor canadensis, Beaver		1	1		1	1						4
Sciurus carolinensis, Gray squirrel		1	1	1								3
Marmota monax, Woodchuck	1	3	1	1			1	1				8
<i>Tamias striatus,</i> Chipmunk			1									1
<i>Sylvilagus floridanus</i> , Rabbit		1	1	1								3
Didelphis marsupialis, Opossum				1								1
AVES-BIRDS	2	3	4	4	1	1	1	1	1	1	1	20
Corvus corax, Raven				1								1
<i>Strix varia,</i> Barred owl				1								1
<i>Meleagris gallopavo,</i> Turkey		2	4	2	1	1	1	1	1	1	1	15
Buteo jamaicensis, Red-tailed hawk	1											1
Accipiter cooperi, Cooper's hawk		1										1
Anas spp., Duck species	1											1
REPTILIA-REPTILES	2	6	7	5	3	2	1	3	3	2	1	35
Crotalidae, Poisonous snake family			1	1	1							3
Colubridae, Non-poisonous snake family			1	1					1			3
Chelydra serpentina, Snapping turtle		1										1

	LEVEL	1	2	3	4	5	6	7	8	9	10	11	TOTAL
ТАХА													
Chrysemys cf. scripta, Red-eared slider			1	1									2
<i>Terrapene Carolina,</i> Box turtle		1	3	2	2	1	1	1	2	1	1	1	16
Trionyx spiniferus, Softshell turtle		1	1	2	1	1	1		1	1	1		10
AMPHIBIA-AMPHIBIANS			1	1	1								3
Rana catesbeiana, Bullfrog			1	1	1								3
PISCES-FISHES			5	4	3	1	1	3	1				18
Aplodinotus grunniens, Drumfish			1	2	1			1					5
Ictalurus punctatus, Channel catfish			1	1	1			1	1				5
Moxostoma cf. caranatum, River redhorse			1		1								2
Moxostoma spp., Redhorse species			1	1		1	1	1					5
Lepisosteidae spp., Garfish family			1										1
MOLLUSCA			1116	2051	3360	661	987	769	118				9062
Amblema plicata, Threeridge			6L	28R	26L	3L	7L	5R	3L				78
Cyclonaias tuberculata, Purple wartyback			44R	75L	114R	22R	47R	23R	9L				334
Elliptio dilatata, Spike			152L	275L	62IL	82R	159L	127R	9R				1425
Plethobasus cicatricosus, White wartyback			1R										1
Plethobasus cyphus, Sheepnose			3R	7R	4L	4L	8R	7R					33
Pleurobema clava, Clubshell			30L	84L	77L	12R	10R	16L	1L				230
Pleurobema cordatum, Ohio pigtoe			65R	100R	170R	36L	80L	48L	7R				506
Pleurobema cordatum pgramidatum			126R	221R	405L	91R	114R	85R	11L				1053
Pleurobema spp.			21L	8R	46R	25R		8R					108
Quadrula cylindrical, Rabbitsfoot			1L	8R	8L	3L	2L	2L	1R				25
Quadrula metanevra, Monkeyface			1L	1R	7R	4L	6L		1R				20
Quadrula cf. nodulata, Wartyback					1L								1
Quadrula pustulosa, Pimpleback			15L	31L	56L	14L	6R	19R	2R				143
Tritogonia verrucosa, Pistolgrip			1L		12L	2R	1L	4L					20
Lasmigona costata, Flutedshell			1R		1L	1L			1L				4
Actinonaias ligamentina carinata, Mucker			173L	443L	454L	86L	166L	120L	23L				1465
<i>Cyprogenia irrorata,</i> Fanshell			5R	10R	22L	8R	12L	6R	1L				64
Dromus dromas, Dromedary Pearlymussel			223L	304R	535R	103L	183L	123R	15L				1486
Epioblasma arcaeformis			62R	108R	184R	34R	36L	34R	2R				460
Epioblasma brevidens			21L	23L	42L	8R	5R	11R	3R				113
Epioblasma flexuosa			19L	28L	73L	18r	23L	10L	1L				172
Epioblasma haysiana, Acorn			1R	2L	5R		2L	10R					20
Epioblasma propinqua/sulcata			80L	177R	233R	39R	57R	36R	5L				627
Epioblasma cincinnatiensis			1R	2L	6L			1R					10
, Epioblasma triquetra, Snuffbox			1R	1L	2R								4
Lampsilis ovata, Pocketbook			2R	10R	22R	5L	8R	10L	6R				63
Ligumia recta, Black sandshell													

	LEVEL	1	2	3	4	5	6	7	8	9	10	11 TO	DTAL
ТАХА													
<i>Obliquaria reflexa,</i> Threehorn wartyback					2R		1R						3
Obovaria retusa, Ring Pink			5L	24L	31R	17L	8R	7L	2R				94
Obovaria subrotunda			4L	10R	7R	6R	8R	16R	2L				53
Ellipsaria lineolata, Butterfly				2R	6R								10
Ptychobranchus fasciolaris, Kidneyshell			48L	62L	166L	37L	29L	36L	9L			:	387
<i>Truncilla truncata,</i> Deertoe					3R			2L					5
Villosa cf. taeniata									3L				3

L = Left R = right

APPENDIX J: NUMBER OF PIECES, MNI, MEAT YIELDS, AND DIETARY RATIOS BY SPECIES AND LEVEL

Number of Pieces, MNI, Meat Yields, and Dietary Ratios by Species

ТАХА	NO. OF PIECES	MNI	MEAT YIELD (kg)	% PHYLUM	TOTAL % CLASS/PHYLUM
MAMMALIA-MAMMALS	2786	122	3591.5		93.3
Homo sapiens, Human	37	-	-	-	-
Odocoileus virginianus, Deer	2540	58	1973.1	54.9	51.3
Cervus Canadensis, Elk	64	7	945.0	26.3	24.55
<i>Lynx rufus,</i> Bobcat	1	1	4.5	0.1	0.1
Mephitis mephitis, Striped skunk	2	2	6.4	0.2	0.2
<i>Mustela vison,</i> Mink	1	1	0.6	Т	Т
Procyon lotor, Raccoon	57	17	127.2	3.5	3.3
Ursus americanus, Black bear	12	4	428.8	11.9	11.1
Urocyon cinereoargenteus, Gray fox	8	7	16.1	0.4	0.4
Canis familiaris, Domestic dog	11	3	-	-	-
Canis lupus, Gray wolf	1	1	-	?	?
Canis spp., Dog supp.	4	-	-	-	-
Erethizon dorsatum, Porcupine	3	2	12.0	0.3	0.3
Castor canadensis, Beaver	6	4	57.2	1.6	1.5
Sciurus carolinensis, Gray squirrel	10	3	1.2	Т	т
Marmota monax, Woodchuck	20	7	14.7	0.4	0.4
Tamias striatus, Chipmunk	1	1	-	-	-
Sylvilagus floridanus, Rabbit	7	3	1.8	Т	т
Didelphis marsupialis, Opossum	1	1	2.9	0.1	0.1
AVES-BIRDS	142	20	89.7		2.3
Corvus corax, Raven	1	1	1.9	2.1	Т
Strix varia, Barred owl	1	1	-	?	?
<i>Meleagris gallopavo,</i> Turkey	136	15	87.0	97.0	2.3
Buteo jamaicensis, Red-tailed hawk	1	1	-	?	?
Accipiter cooperi, Cooper's hawk	2	1	-	?	?
Anas spp., Duck spp.	1	1	0.8	0.9	т
RETILIA-REPTILES	489	33	12.1		0.3
Crotalidae, Poisonous snake family	7	3	?	?	?
Colubridae, Non-poisonouse snake family	9	3	?	?	?

Chrysemys f. scripto, Red-sared slider 2 2 0.2 1.7 Crysemys/Graptenys spp., Painted/Map turtle 28 - - - Terraper Carolina, Boxturtle 33 15 1.5 12.4 Trionys spin/jergus, Softhell turtle 49 9 8.1 66.9 0. Rana catesbeliana, Bullfrog 6 3 0.3 - - Rana catesbeliana, Bullfrog 6 3 0.3 - - Apladinatus granniens, Drumfish 11 6 10.9 50.2 0.0 Apladinatus granniens, Drumfish 11 6 10.9 50.2 0. Actaliurus punctatus, Channel catfish 14 5 4.5 20.7 0. Actaliurude, Catfish family 2 - - - - - Moostoma of, Internet River redhorse 1 0.9 4.1 - - - - Ubcotsonard of, Internet River redhorse 1 1 0.9 4.1 - - </th <th>ТАХА</th> <th>NO. OF PIECES</th> <th>MNI</th> <th>MEAT YIELD (Kgs)</th> <th>% CLASS/PHYLUM</th> <th>TOTAL % CLASS/PHYLUM</th>	ТАХА	NO. OF PIECES	MNI	MEAT YIELD (Kgs)	% CLASS/PHYLUM	TOTAL % CLASS/PHYLUM
Cryserry/Graptemys.spn. Painted/Map turtle 28 - - - Terrapper Consolina, Box turtle 39 15 1.5 1.2.4 Trionyx spinfergus, Softhell turtle 49 9 8.1 66.9 0.0 AMPHIBIANS 27 3 0.3 - - Rana catesbieline, Bulifrog 6 3 0.3 - - Rana catesbieline, Bulifrog 6 3 0.3 -	Chelydra serpentina, Snapping turtle	1	1	2.3	19.0	0.1
Terrapier Carolina, Borkuntle 393 15 1.5 12.4 Trionyx spinifergus, Softshell turtle 49 9 8.1 66.9 0. Rana catesbeliana, Bullfrag 6 3 0.3 - Rana catesbeliana, Bullfrag 6 3 0.3 - Ranafuld spp, Frag/toad spp. 21 - <t< td=""><td>Chrysemys cf. scripta, Red-eared slider</td><td>2</td><td>2</td><td>0.2</td><td>1.7</td><td>т</td></t<>	Chrysemys cf. scripta, Red-eared slider	2	2	0.2	1.7	т
Triony spinifergus, Softshell turtle 49 9 8.1 66.9 0. AMPHIBLANS 27 3 0.3 -	Crysemys/Graptemys spp., Painted/Map turtle	28	-	-	-	-
AMPPHIBIA-AMPHIBIA-AMPHIBIANS 27 3 0.3 - Rana disabelana, Bullfrog 6 3 0.3 - - Rana/Bulf spp,, Frag/toad spp. 21 - - - - PISCES-FISHES 44 18 21.7 0. - - Apdofnatus grunnies, Drumfish 11 6 10.9 50.2 0.0 Ictalurus punctatus, Channel catfish 14 5 4.5 20.7 0.0 Ictalurude, Catfish family 2 - - - - - Moxostom og p., Redhorse spp. 11 5 4.5 20.7 0.0 Catostonidoe, Sucker family 3 - - - - SUBTOTALS 3488 196 3715.3 96. 0002 134.5 3.0 0.1 0.0 0.1 0.0 Catostonidoe, Suplace, Three ridge 33 0.60 0.45 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 <td><i>Terrapene Carolina,</i> Box turtle</td> <td>393</td> <td>15</td> <td>1.5</td> <td>12.4</td> <td>т</td>	<i>Terrapene Carolina,</i> Box turtle	393	15	1.5	12.4	т
Rana catesbelana, Bulling 6 3 0.3 - Rana/Bufo spp., Frog/toad spp. 21 - - - PlocEs+FLHS 44 18 21.7 0. Aplodinatus grunniens, Drumfish 11 6 10.9 50.2 0. Ictaliurus gunciens, Drumfish 14 5 4.5 20.7 0. Ictaliurus gunciens, Drumfish 1 0.9 4.1 Moxastoma of, carinatum, Rive redhorse 2 1 0.9 4.1 Moxastoma spp., Redhorse spp. 11 5 4.5 20.7 0. Catostomidae, Sucker family 3 - - - - SUBTOTALS 3488 196 3715.3 96. 0.1 2.0 0.89 -	Trionyx spinifergus, Softshell turtle	49	9	8.1	66.9	0.2
Rand Puly ospp., Frog/toad spp. 21 - - PISCES-FISHES 44 18 21.7 0. PISCES-FISHES 44 18 21.7 0. Aplodinatus grunniens, Drumfish 11 6 10.9 \$0.2 0. Ictalirus punctatus, Channel catfish 14 5 4.5 20.7 0. Maxostoma cf. carinatum, River redhorse 2 1 0.9 4.1 0.0 Catastomidae, Sucker family 3 - - - - Usersonidae, Sucker family 3 - - - - SUBTOTALS 3488 196 3715.3 96. MOLLUSCA-FRESHWATER MUSSELS 16608 9062 134.54 3. Amblema plicato, Threeridge 135 78 1.20 0.89 - Cyclonais tubercultato, Purple wartyback 607 334 5.40 4.01 0.0 Plethobasus contraus, White-warty back 1 1 0.02 0.01 - <	AMPHIBIA-AMPHIBIANS	27	3	0.3	-	Т
PISCES-FISHES 44 18 21.7 0. Aplodinatus grunniens, Drumfish 11 6 10.9 50.2 0. Ictaliurus gunniens, Drumfish 14 5 4.5 20.7 0. Ictaliurus gunniens, Drumfish 14 5 4.5 20.7 0. Moxastoma cf. carinatum, River redhorse 2 1 0.9 4.1 Moastoma spp., Redhorse spp. 0. Moxastoma cp., Sarfish spp. 1 0.9 4.1 . . . SUBTOTALS 3488 196 3715.3 96. . . . MOLUSCA-FRESHWATER MUSSELS 16608 9062 134.54 . . . Ambiero pilicato, Threeridge 135 78 1.20 0.89 Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 <td>Rana catesbeiana, Bullfrog</td> <td>6</td> <td>3</td> <td>0.3</td> <td>-</td> <td>Т</td>	Rana catesbeiana, Bullfrog	6	3	0.3	-	Т
Aplodinatus grunniens, Drumfish 11 6 10.9 50.2 0. Ictalirus punctatus, Channel cattish 14 5 4.5 20.7 0. Ictalurius punctatus, Channel cattish 14 5 4.5 20.7 0. Moxastom of, carinatum, River redhorse 2 1 0.9 4.1	Rana/Bufo spp., Frog/toad spp.	21	-	-	-	Т
Ictalurus gunctatus, Channel catfish 14 5 4.5 20.7 0. Ictaluridae, Catfish family 2 - <t< td=""><td>PISCES-FISHES</td><td>44</td><td>18</td><td>21.7</td><td></td><td>0.6</td></t<>	PISCES-FISHES	44	18	21.7		0.6
Ictaluridae, Catfish family 2 - - - Moxostoma f, carinatum, River redhorse 2 1 0.9 4.1 Moxostoma f, carinatum, River redhorse 2 1 0.9 4.1 Moxostoma gsp., Redhorse spp. 11 5 4.5 20.7 0.0 Catostomidae, Sucker family 3 - - - - Lepisoteidae spp., Gaffish spp. 1 0.9 4.1 - - SUBTOTAL 3488 196 3715.3 96. -	Aplodinatus grunniens, Drumfish	11	6	10.9	50.2	0.3
Moxostoma cf. carinatum, River redhorse 2 1 0.9 4.1 Moxostoma spp., Redhorse spp. 11 5 4.5 20.7 0. Catostomidae, Sucker family 3 - - - - SUBTOTALS 3488 196 3715.3 96. 96. MOLLUSCA-RESHWATER MUSSELS 16608 9062 134.54 96. 97.4 0. Amblema plicata, Threeridge 135 78 1.20 0.89 9.	Ictaliurus punctatus, Channel catfish	14	5	4.5	20.7	0.1
Moxastama spp., Redhorse spp. 11 5 4.5 20.7 0. Catastamide, Sucker family 3 -	Ictaluridae, Catfish family	2	-	-	-	-
Catostomidae, Sucker family 3 -<	Moxostoma cf. carinatum, River redhorse	2	1	0.9	4.1	т
Lepisosteidae spp., Garfish spp. 1 1 0.9 4.1 SUBTOTALS 3488 196 3715.3 96. MOLLUSCA-FRESHWATER MUSSELS 16608 9062 134.54 3.1 Amblema plicata, Threeridge 135 78 1.20 0.89 Cyclonaias tuberculata, Purple wartyback 607 334 5.40 4.01 0.0 Elliptio dilatata, Spike 2680 1425 13.10 9.74 0.0 Pletrobasus cicatricosus, White-warty back 1 1 0.02 0.01 0.01 Pletrobasus ciphus, Sheepnose 51 33 0.60 0.45 0.01 0.01 Pleurobema cordatum pyramidatum 941 506 7.90 5.87 0.0 Pleurobema cordatum pyramidatum 941 506 7.90 5.87 0.0 Quadrula cylindrical, Rabitsfoot 36 25 0.30 0.22 0.01 Quadrula pyramidatum, Wartyback 21 1.43 1.50 1.11 0.01 0.001	Moxostoma spp., Redhorse spp.	11	5	4.5	20.7	0.1
SUBTOTALS 3488 196 3715.3 96. MOLLUSCA-FRESHWATER MUSSELS 16608 9062 134.54 3. Amblema plicata, Threeridge 135 78 1.20 0.89 3. Cyclonais tuberculata, Purple wartyback 607 334 5.40 4.01 0. Elliptio dilatata, Spike 2680 1425 13.10 9.74 0. Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 0. Pleurobema clava, Clubshell 437 230 1.60 1.19 0. Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0. Pleurobema spp. 171 108 1.70 1.26 0. 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 <td< td=""><td>Catostomidae, Sucker family</td><td>3</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	Catostomidae, Sucker family	3	-	-	-	-
MOLLUSCA-FRESHWATER MUSSELS 16608 9062 134.54 3. Amblema plicata, Threeridge 135 78 1.20 0.89 0.7 Cyclonaias tuberculata, Purple wartyback 607 334 5.40 4.01 0. Elliptio dilatata, Spike 2680 1425 13.10 9.74 0. Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 0. Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 0. Pletrobemas circosus, White-warty back 1 1 0.02 0.01 0. Pleurobema circosus, White-warty back 1 1 0.02 0.01 0. Pleurobema circosus, White-warty back 1 1 0.02 0.01 0. Pleurobema cordatum 941 506 7.90 5.87 0. 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0. 0. 0.11 Quadrula metamevra. Monkeyface 1	Lepisosteidae spp., Garfish spp.	1	1	0.9	4.1	т
Amblema plicata, Threeridge 135 78 1.20 0.89 Cyclonaias tuberculata, Purple wartyback 607 334 5.40 4.01 0. Elliptio dilata, Spike 2680 1425 13.10 9.74 0. Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 Plethobasus cyphus, Sheepnose 51 33 0.60 0.45 Pleurobema cordatum 941 506 7.90 5.87 0. Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 0. Quadrula outula cf. nodulata, Wartyback 1 1 0.01 0.01 0.01 Quadrula netamevra. Monkeyface 21 143 1.50 1.11 0.07 1.26 Quadrula outulas, Pimpleback 1 1 0.01 0.01 0.07 <td< td=""><td>SUBTOTALS</td><td>3488</td><td>196</td><td>3715.3</td><td></td><td>96.5</td></td<>	SUBTOTALS	3488	196	3715.3		96.5
Cyclonaios tuberculata, Purple wartyback 607 334 5.40 4.01 0.0 Elliptio dillatato, Spike 2680 1425 13.10 9.74 0.0 Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 0.02 Plethobasus cyphus, Sheepnose 51 33 0.60 0.45 0.02 Pleurobema clava, Clubshell 437 230 1.60 1.19 0.02 Pleurobema cordatum pyramidatum 941 506 7.90 5.87 0.0 Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0.0 Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 0.01 Quadrula cf. nodulata, Resplex 251 143 1.50 1.11 1.126 0.020 0.07 Quadrula no cnotata, Flutedshell	MOLLUSCA-FRESHWATER MUSSELS	16608	9062	134.54		3.5
Elliptio dilatata, Spike 2680 1425 13.10 9.74 0. Plethobasus ciatricosus, White-warty back 1 1 0.02 0.01 1 1 0.02 0.01 1 1 0.02 0.01 1 1 0.02 0.01 1 1 0.02 0.01 1 1 0.02 0.01 1 1 1 0.02 0.01 1 1 1 0.02 0.01 1 1 1 1 1 0 1 <t< td=""><td>Amblema plicata, Threeridge</td><td>135</td><td>78</td><td>1.20</td><td>0.89</td><td>Т</td></t<>	Amblema plicata, Threeridge	135	78	1.20	0.89	Т
Plethobasus cicatricosus, White-warty back 1 1 0.02 0.01 Plethobasus cyphus, Sheepnose 51 33 0.60 0.45 Pleurobema clava, Clubshell 437 230 1.60 1.19 Pleurobema cordatum 941 506 7.90 5.87 0.0 Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0.0 Pleurobema spp. 171 108 1.70 1.26 0.01 Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 0.01 Quadrula cylindrical, Nabitsfoot 31 20 1.70 1.26 0.00 0.01	Cyclonaias tuberculata, Purple wartyback	607	334	5.40	4.01	0.1
Plethobasus cyphus, Sheepnose 51 33 0.60 0.45 Pleurobema clava, Clubshell 437 230 1.60 1.19 Pleurobema cordatum 941 506 7.90 5.87 0. Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0. Pleurobema spp. 171 108 1.70 1.26 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.7 Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma flexuosa 31 202 0	Elliptio dilatata, Spike	2680	1425	13.10	9.74	0.3
Pleurobema clava, Clubshell 437 230 1.60 1.19 Pleurobema cordatum 941 506 7.90 5.87 0. Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0. Pleurobema spp. 171 108 1.70 1.26 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 Quadrula vylindrical, Rabbitsfoot 36 25 0.30 0.22 Quadrula netamevra. Monkeyface 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.9 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.74 Epioblasma arceformis 2857 1486 14.10 10.48 0. Epioblasma flexuosa 312 2172 1.50 1.11	Plethobasus cicatricosus, White-warty back	1	1	0.02	0.01	Т
Pleurobema cordatum 941 506 7.90 5.87 0. Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0. Pleurobema spp. 171 108 1.70 1.26 0. Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.01 Quadrula cylindrical, Wartyback 1 1 0.01 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 0.001 0.07 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.07 Epioblasma arcaeformis 868 460 3.60 2.68 0.0 0.74 Epioblasma flexuosa 312 172 1.50 1.11 1. 1.04 0.07	Plethobasus cyphus, Sheepnose	51	33	0.60	0.45	Т
Pleurobema cordatum pyramidatum 2003 1053 16.50 12.26 0.0 Pleurobema spp. 171 108 1.70 1.26 0.0 Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 0.00 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 0.00 Quadrula netamevra. Monkeyface 31 20 1.70 1.26 0.01 Quadrula pustulosa, Pimpleback 1 1 0.01 <td< td=""><td>Pleurobema clava, Clubshell</td><td>437</td><td>230</td><td>1.60</td><td>1.19</td><td>Т</td></td<>	Pleurobema clava, Clubshell	437	230	1.60	1.19	Т
Pleurobema spp. 171 108 1.70 1.26 Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0. Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. 0. Epioblasma flexuosa 312 172 1.50 1.11 1.11	Pleurobema cordatum	941	506	7.90	5.87	0.2
Quadrula cylindrical, Rabbitsfoot 36 25 0.30 0.22 Quadrula metamevra. Monkeyface 31 20 1.70 1.26 Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.74 Epioblasma arcaeformis 868 460 3.60 2.68 0.74 Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15	Pleurobema cordatum pyramidatum	2003	1053	16.50	12.26	0.4
Quadrula metamevra. Monkeyface 31 20 1.70 1.26 Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0. Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15	Pleurobema spp.	171	108	1.70	1.26	Т
Quadrula cf. nodulata, Wartyback 1 1 0.01 0.01 Quadrula pustulosa, Pimpleback 251 143 1.50 1.11 Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1.60 Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 1.60 1.048 0.60 Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0.60 0.74 Epioblasma brevidens 204 113 1.00 0.74 1.11 1.11 1.11 Epioblasma flexuosa 312 172 1.50 1.11 1.11	Quadrula cylindrical, Rabbitsfoot	36		0.30	0.22	Т
Quadrula pustulosa, Pimpleback2511431.501.11Tritogonia verrucosa, Pistolgrip28201.601.19Lasmigona costata, Flutedshell440.100.07Actinonaias ligamentina carinata, Mucker2752146543.2032.11Cyprogenia irrorata, Fanshell113640.400.30Dromus dromas, Dromedary Pearlymussel2857148614.1010.480.Epioblasma arcaeformis8684603.602.680.Epioblasma flexuosa3121721.501.11Epioblasma haysiana, Acorn31200.200.15	Quadrula metamevra. Monkeyface	31	20	1.70	1.26	Т
Tritogonia verrucosa, Pistolgrip 28 20 1.60 1.19 Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1.1 Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.5 Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0.5 Epioblasma arcaeformis 868 460 3.60 2.68 0.5 Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15	Quadrula cf. nodulata, Wartyback	1	1	0.01	0.01	Т
Lasmigona costata, Flutedshell 4 4 0.10 0.07 Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0.30 Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma flexuosa 204 113 1.00 0.74 Epioblasma haysiana, Acorn 31 20 0.20 0.15	Quadrula pustulosa, Pimpleback					Т
Actinonaias ligamentina carinata, Mucker 2752 1465 43.20 32.11 1. Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 0. Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma brevidens 204 113 1.00 0.74 Epioblasma flexuosa 31 20 0.20 0.15	<i>Tritogonia verrucosa,</i> Pistolgrip	28	20	1.60	1.19	т
Cyprogenia irrorata, Fanshell 113 64 0.40 0.30 Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma brevidens 204 113 1.00 0.74 Epioblasma flexuosa 31 20 0.20 0.15		4	4	0.10	0.07	Т
Dromus dromas, Dromedary Pearlymussel 2857 1486 14.10 10.48 0. Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma brevidens 204 113 1.00 0.74 Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15	Actinonaias ligamentina carinata, Mucker	2752	1465			1.1
Epioblasma arcaeformis 868 460 3.60 2.68 0. Epioblasma brevidens 204 113 1.00 0.74 1.11		113	64			Т
Epioblasma brevidens 204 113 1.00 0.74 Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15			1486	14.10	10.48	0.3
Epioblasma flexuosa 312 172 1.50 1.11 Epioblasma haysiana, Acorn 31 20 0.20 0.15		868			2.68	0.1
Epioblasma haysiana, Acorn 31 20 0.20 0.15	•		113	1.00	0.74	Т
				1.50		Т
<i>Epioblasma propinqua/sulcata</i> 1032 627 5.00 3.72 0.		31		0.20		Т
	Epioblasma propinqua/sulcata	1032	627	5.00	3.72	0.1

ТАХА	NO. OF PIECES	MNI	MEAT YIELD (Kgs)	% CLASS/PHYLUM	TOTAL % CLASS/PHYLUM
Epioblasma cincinnatiensis	13	10	0.10	0.07	Т
Epioblasma triquetra, Snuffbox	5	4	0.03	0.02	т
Lampsilis ovata, Pocketbox	95	63	3.30	2.45	Т
Ligumia recta, Black sandshell	67	42	0.80	0.59	т
Obliquaria reflexa, Three-horned wartyback	4	3	0.20	0.15	т
Obovaria retusa, Ring Pink	163	94	1.00	0.74	т
Obovaria subrotunda	95	53	0.40	0.30	т
Ellipsaria lineolata, Butterfly	17	10	0.10	0.07	т
Ptychobranchus fasciolaris, Kidneyshell	594	387	6.330	4.70	0.1
Truncilla truncata, Deertoe	6	5	0.03	0.02	т
Villosa cf. taeniata	3	3	0.02	0.01	т
GRAND TOTAL	20096	9258	3849.81	-	100.0

MNI=minimum number of individuals

T= Trace contribution

= value corrected from original report edition

Number of Pieces, MNI, Meat Yields,	and Dietary	y Ratios b	y Level
-------------------------------------	-------------	------------	---------

	Level Number																			
	18	2	3		4		5		6		7	,	8	3	9		1	0	1	1
Resource	MY*	%	MY	%	MY	%	MY	%	MY	%										
Deer	476.3	50.5	544.3	59.6	204.0	49.3	102.0	35.7	68.0	57.0	204.0	56.0	102.0	28.5	102.0	93.8	136.0	95.2	34.0	19.4
Elk	270.0	28.6	135.0	14.8			135.0	47.2			135.0	37.1	135.0	37.7					135.0	77.2
Bear	107.2	11.4	107.2	11.7	107.2	25.9							107.2	29.9						
Other mammal	51.5	5.5	64.4	7.1	36.8	8.9	31.6	11.0	29.3	24.6	4.4	1.2	4.4	1.2						
MAMMALS	905.0	90.5	850.9	93.2	348.0	84.0	268.6	93.9	97.3	81.6	343.4	94.3	348.6	97.3	102.0	93.8	136.0	95.2	169.0	96.6
(TOTAL)																				
Bird	12.4	1.3	23.2	2.5	13.5	3.3	5.8	2.0	5.8	4.9	5.8	1.6	5.8	1.6	5.8	5.3	5.8	4.1	5.8	3.3
Reptile	3.6	0.3	2.1	0.2	1.1	0.3	1.0	0.3	0.3	0.3	0.1	т	1.1	0.3	1.0	0.9	1.0	0.7	0.1	т
Amphibian	Т	Т	Т	Т	Т	Т														
Fish	6.3	0.7	0.6	0.6	3.6	0.9	0.9	0.3	0.9	0.8	3.6	1.0	0.9	0.3						
Mussel	15.3	1.6	3.4	3.4	47.9	11.6	9.8	3.4	14.2	11.9	11.1	3.0	1.8	0.5						
GRAND TOTAL	942.6	99.9	880.2	99.9	414.1	100	286.1	99.9	119.2	95.5	364.0	99.9	358.2	100.0	108.8	100	142.8	100.0	174.9	99.9

* Meat yield in kilograms <u>T Trace con</u>tribution of meat

= value corrected from original report edition

APPENDIX K: METRIC ATTRIBUTES FOR LITHIC IMPLEMENTS BY CATEGORY

	Length	Width	Thickness
Blank Stage 1 (<i>n=</i> 34)			
Range	55.0–154.0 mm	37.0–80.5 mm	17.00–60.0 mm
Mean	85.1 mm	51.5 mm	28.2 mm
SD	20.43 mm	9.62 mm	8.90 mm
Blank Stage 2 (<i>n=</i> 49)			
Range:	53.5–179.5 mm	32.0–74.5 mm	12.5–40.0 mm
Mean:	76.1 mm	46.6 mm	21.3 mm
SD:	19.25 mm (38)	8.90 mm (49)	5.64 mm (49)
Blank Stage 3 (<i>n=</i> 39)			
Range:	45.0–96.5 mm	21.5–80.0 mm	7.5–36.0 mm
Mean:	69.6 mm	42.2 mm	20.5 mm
SD:	13.99 mm (23)	10.62 mm (38)	5.86 mm (39)
Blank Stage 4 (<i>n=</i> 17)			
Range:	59.0–97.0 mm	30.5–55.0 mm	13.0–30.5 mm
Mean:	80.8 mm	42.6 mm	20.3 mm
SD:	12.51 mm (12)	6.44 mm (16)	4.28 mm (17)
Blank Stage 5 (<i>n=</i> 3)			
Range:	54.0–67.0 mm	28.5–31.0 mm	11.5–17.0 mm
Mean:	60.5 mm	30.2 mm	14.3 mm
SD:	9.19 mm (2)	1.44 mm (3)	2.75 mm (3)

Preforms

	Length	Width	Thickness
Preform Stage 1 (<i>n</i> =41)			
Range:	48.0–94.0 mm	30.0–50.0 mm	95.5–21.0 mm
Mean:	71.9 mm	40.3 mm	15.6 mm
SD:	13.59 mm (14)	4.49 mm (39)	2.89 mm (41)
Preform Stage 2 (<i>n</i> =64)			
Range:	50.5–83.0 mm	17.0–44.0 mm	8.5 -22.0 mm
Mean:	66.8 mm	34.5 mm	13.0 mm
SD:	9.42 mm (16)	5.25 mm (64)	2.76 mm (64)
Preform Stage 3 (<i>n</i> =93)			
Range:	40.5–121.5 mm	16.0–45.0 mm	5.5–18.5 mm
Mean:	57.4 mm	28.9 mm	10.1 mm
SD:	14.10 mm (30)	5.35 mm (91)	2.22 mm (93)

Projectile Points/Knives

Category 1: Auriculate Base

	(n:	=1)	
	Blade Length	Width	Thickness
Mean:			
	Haft Length	Width	Thickness

Mean:	9.5 mm	25.0 mm	4.0 mm
	Base Depth		
	4.5 mm		
	Category 2: Corner Notched, Pror	ninent Barbs, Expanded Base(<i>n</i> =	=1)
	Blade Length	Width	Thickness
Mean:		31.0 mm	6.5 mm
mean	Stem Length	Width	Thickness
Mean:	8.5 mm		2.5 mm
		Neck Width	2.0
		17.5 mm	
		17.5 11111	
	Category 3: Deep Side Notcl	hed, Rectangular Stem(n=17)	
	Blade Length	Width	Thickness
Range:	28.0–67.0 mm	18.5–27.0 mm	5.5–9.5 mm
Mean:	47.5 mm	24.0 mm	7.8 mm
SD:	11.88 mm (11)	2.43 mm (14)	1.27 mm (14)
	Stem Length	Width	Thickness
Range:	8.0–14.0 mm	19.5–28.0 mm	3.0–5.5 mm
Mean:	10.9 mm	23.3 mm	4.5 mm
SD:	1.84 mm (17)	2.43 mm (16)	0.72 mm (17)
		Neck Width	
Range:		13.0–21.0 mm	
Mean:		17.4 mm	
SD:		2.37 mm (17)	
	Category 4: Side Notched, Expand	ed Stem, Tapered Shoulders(n=	12)
	Blade Length	Width	Thickness
Range:	38.0–63.5 mm	20.0–30.0 mm	6.0–10.0 mm
Mean:	47.9 mm	24.0 mm	7.9 mm
SD:	8.24 mm (9)	2.80 mm	7.9 mm
	Stem Length	Width	Thickness
Range:	7.5–14.0 mm	18.5–27.5 mm	3.0–6.0 mm
Mean:	10.7 mm	22.6 mm	4.1 mm
SD:	2.10 mm (12)	2.76 mm (9)	1.00 mm (12)
		Neck Width	
Range:		14.0–19.0 mm	
Mean:		17.1 mm	
SD:		1.82 mm (11)	
-			
		d Stem, Side Notched(n=12)	
5	Blade Length	Width	Thickness
Range:	38.0–60.0 mm	22.0–29.5 mm	7510.0 mm
Mean:	51.4 mm	25.6 mm	9.4 mm
SD:	6.96 mm (9)	2.36 mm (12)	0.67 mm (12)
	Stem Length	Width	Thickness
Range:	9.5–19.5 mm	20.5–27.5 mm	3.5–8.2 mm
Mean:	11.8 mm	24.5 mm	5.8 mm
SD:	2.66 mm (12)	2.66 mm (12)	1.23 mm (12)
		Neck Width	
Range:		16.0–21.5 mm	
Mean:		19.0 mm	
SD:		1.88 m (12)	

	Blade Length	Short Expanded Stem(n=13) Width	Thickness
Range:	50.0–80.0 mm	22.5–32.0 mm	7511.5 mm
Mean:	57.8 mm	22.3–32.0 mm	9.1 mm
SD:			
3D:	16.35 mm (8)	2.93 mm (12)	1.28 mm (12)
-	Stem Length	Width	Thickness
Range:	8514.0 mm	21.5–30.5 mm	4.0–5.5 mm
Mean:	11.0 mm	26.9 mm	4.7 mm
SD:	1.69 mm (13)	2.83 mm (11)	0.52 mm (13
		Neck Width	
Range:		17.0–24.0 mm	
Mean:		21.9 mm	
S.D:		1.83 mm (13)	
	Category 7: Undifferent	iated Side Notched(<i>n=</i> 2)	
	Blade Length	Width	Thickness
Range:	62.0–62.0 mm	30.0–31.5 mm	8.0–8.0 mm
Mean:	62.0 mm	30.8 mm	8.0 mm
SD:	(1)	1.06 mm (2)	0.00 mm (2)
50.	Stem Length	Width	Thickness
Deves	-	22.0–28.0 mm	
Range:	15.0–17.0 mm		5.5–5.5 mm
Mean:	16.0 mm	25.0 mm	5.5 mm
SD:	1.41 mm (2)	4.24 mm (2)	(1)
-		Neck Width	
Range:		22.0–25.4 mm	
-			
Mean:		23.7 mm	
-		23.7 mm 2.40 mm (2)	
Mean: SD:	8: Side Notched, Deeply Incurvate	2.40 mm (2)	Blade(<i>n</i> =28)
Mean: SD:	8: Side Notched, Deeply Incurvate Blade Length	2.40 mm (2)	Blade(n=28) Thickness
Mean: SD: Category		2.40 mm (2) Expanded Stem, Medium-Small	Thickness
Mean: SD:	Blade Length	2.40 mm (2) Expanded Stem, Medium-Small Width	Thickness
Mean: SD: Category Range: Mean:	Blade Length 34.0–61.5 mm 47.3 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2I.9 mm	Thickness 6.5–11.5 mm 8.6 mm
Mean: SD: Category Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20)	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2I.9 mm 2.99 mm (27)	Thickness 6.5–11.5 mm 8.6 mm I.22 mm (28)
Mean: SD: Category Range: Mean: SD:	Blade Length 34.0–61.5mm 47.3mm 7.13mm (20) Stem Length	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2I.9 mm 2.99 mm (27) Width	Thickness 6.5–11.5 mm 8.6 mm I.22 mm (28) Thickness
Mean: SD: Category Range: Mean: SD: Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2l.9 mm 2.99 mm (27) Width 18.0–26.0 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm
Mean: SD: Category Range: Mean: SD: Range: Mean:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2l.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm
Mean: SD: Category Range: Mean: SD: Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2I.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25)	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2I.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2l.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28)	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) e(<i>n</i> =10)
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) Expanded Stem, Small Blad Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28 e(<i>n</i> =10) Thickness
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28)	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28 e(<i>n</i> =10) Thickness
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) Expanded Stem, Small Blad Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28 e(<i>n</i> =10) Thickness
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28 e(<i>n</i> =10) Thickness 4.5–9.0 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8)	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) e(<i>n</i> =10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9)
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) e(<i>n</i> =10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) e(<i>n</i> =10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm 9.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm 18.6 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) (e(n=10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm 4.2 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Range: Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm 18.6 mm 1.29 mm (8)	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) (e(n=10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm 4.2 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm 9.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm 18.6 mm 1.29 mm (8) Neck Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) (e(n=10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm 4.2 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm 9.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm 18.6 mm 1.29 mm (8) Neck Width 11.5–18.5 mm	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) e(<i>n</i> =10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm
Mean: SD: Category Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 34.0–61.5 mm 47.3 mm 7.13 mm (20) Stem Length 7.0–15.0 mm 10.7 mm 1.98 mm (28) gory 9: Shallow Side Notched, Incur Blade Length 29.0–50.0 mm 38.3 mm 6.83 mm (8) Stem Length 7.0–11.5 mm 9.0 mm	2.40 mm (2) Expanded Stem, Medium-Small Width 16.0–29.0 mm 21.9 mm 2.99 mm (27) Width 18.0–26.0 mm 22.3 mm 2.01 mm (25) Neck Width 13.5–20.5 mm 17.4 mm 1.62 mm (28) rvate Expanded Stem, Small Blad Width 15.5–20.5 mm 17.7 mm 2.02 mm (10) Width 17.5–21.0 mm 18.6 mm 1.29 mm (8) Neck Width	Thickness 6.5–11.5 mm 8.6 mm 1.22 mm (28) Thickness 3.0–6.0 mm 4.4 mm 0.72 mm (28) (e(n=10) Thickness 4.5–9.0 mm 7.8 mm 1.54 mm (9) Thickness 3.0–5.5 mm 4.2 mm

	Blade Length	ed Corner/Side Notched(n=2) Width	Thickness
Range:	52.5–55.5 mm	26.0–26.0 mm	7.0–8.5 mm
Mean:	54.0 mm	26.0 mm	7.8 mm
SD:	2.12 mm (2)	0.00 mm (2)	1.06 mm (2)
50.	Stem Length	Width	Thickness
Range:	11.0–11.5 mm	21.0–21.0 mm	5.0–5.0 mm
Mean:	11.3 mm	21.0 mm	5.0 mm
SD:	0.35 mm (2)	(1)	0.00 mm (2)
3D.	0.33 11111 (2)	Neck Width	0.00 mm (2)
Damaa			
Range:		19.0–20.0 mm	
Mean:		19.5 mm	
SD:		0.71 mm (2)	
	Category 11: Corner Removed, N	larrow Stem. Notched Base (<i>n=</i> 5)
	Blade Length	Width	Thickness
Range:	43.0–53.0 mm	23.0–28.0 mm	6.5–8.0 mm
Mean:	48.1 mm	25.5 mm	7.4 mm
SD:	4.33 mm (4)	2.04 mm (4)	0.65 mm (5)
-	Stem Length	Width	Thickness
Range:	7.0–8.5 mm	11.5–11.5 mm	2.5–5.0 mm
Mean:	8.1 mm	11.5 mm	4.1 mm
S.D:	0.65 mm (5)	0.00 mm (2)	0.96 mm (5)
0.2.		Neck Width	0.00
Range:		12.0–13.5 mm	
Mean:		12.6 mm	
SD:		0.65 mm (5)	
	Category 12: Corner Removed, Wic	de, Long Stem, Incurvate Base (n:	=1)
	Blade Length	Width	Thickness
Mean:	66.5 mm	31.5 mm	7.5 mm
	Stem Length	Width	Thickness
Mean:	15.0 mm	26.0 mm	4.5 mm
		Neck Width	
Mean:		23.5 mm	
Catego	ory 13: Short Straight to Weakly Ex		
	Blade Length	Width	Thickness
Range:	48.0–83.0 mm	22.5–34.0 mm	8.0–12.0 mm
Mean:	66.2 mm	27.6 mm	9.5 mm
SD:	9.53 mm (12)	2.70 mm (24)	1.14 mm (25
	Stem Length	Width	Thickness

iviedit.	00.2 [[][]]	27.0 11111	9.5 mm	
 SD:	9.53 mm (12)	2.70 mm (24)	1.14 mm (25)	
	Stem Length	Width	Thickness	
Range:	7.0–13.5 mm	12.3–17.5 mm	4.0–7.0 mm	
Mean:	9.4 mm	15.2 mm	5.4 mm	
S.D:	1.67 mm (24)	1.29 mm	5.4 mm	
	Neck Width			
Range:	12.5–18.0 mm			
Mean:	14.9 mm			
SD:	1.41 mm (24)			

	Blade Length	ed Stem, Asymmetrical Blade (<i>n</i> - Width	, Thickness
Range:	48.3–66.5 mm	25.0–36.5 mm	6.5–12.5 mm
Mean:	58.2 mm	30.2 mm	9.6 mm
SD:	9.42 mm (4)	2.82 mm (22)	1.52 mm (21
55.	Stem Length	Width	Thickness
Range:	6.5–13.0 mm	17.0-23.0	3.0–6.0 mm
Mean:	9.1 mm	19.8 mm	4.5 mm
SD:	1.59 mm (2))	1.97 mm (15)	0.69 mm (22
50.	1.55 ((2))	Neck Width	0.05 mm (22
Range:		16.0–21.5 mm	
Mean:		17.9 mm	
	Category 15: Corner Removed, B		
_	Blade Length	Width	Thickness
Range:		37.0–32.5 mm	7.5–11.5 mm
Mean:		39.8 mm	9.8 mm
SD:		3.89 mm (2)	2.08 mm (3)
	Stem Length	Width	Thickness
Range:	10.5–12.0 mm	17.5–24.0 mm	4.0–6.5 mm
Mean:	11.5 mm	20.7 mm	5.3 mm
SD:	0.87 mm (3)	3.25 mm (3)	1.26 mm (3)
-		Neck Width	
Range:		17.0–21.0 mm	
Mean: SD:		19.0 mm	
50.		2.0 mm (3)	
Categor	y 16: Inversely Tapered Shoulders, Blade Length	Short Narrow Weakly Expanded Width	Stem (<i>n=</i> 8) Thickness
Range:	38.5–52.0 mm	22.0–30.5 mm	7.0–11.0 mm
Mean:	44.1 mm	22.0–30.3 mm	8.6 mm
SD:	5.68 mm (4)	2.57 mm (8)	1.37 mm (8)
50.	Stem Length	Width	Thickness
	Stelli Lengtii		
Dango	$7.0_{-10.0}$ mm	12 0_17 0 mm	
Range:	7.0–10.0 mm	13.0–17.0 mm	3.3–6.3
Mean:	8.5 mm	14.9 mm	3.3–6.3 5.1 mm
-		14.9 mm 1.33 mm (8)	3.3–6.3 5.1 mm
Mean: SD:	8.5 mm	14.9 mm 1.33 mm (8) Neck Width	3.3–6.3 5.1 mm
Mean: SD: Range:	8.5 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm	3.3–6.3 5.1 mm
Mean: SD: Range: Mean:	8.5 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm	3.3–6.3 5.1 mm
Mean: SD: Range: Mean: S.D:	8.5 mm 1.07 mm (8)	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8)	3.3–6.3 5.1 mm 1.04 mm (8)
Mean: SD: Range: Mean: S.D:	8.5 mm 1.07 mm (8) 17: Barbed Shoulder, Wide Expande	14.9 mm <u>1.33 mm (8)</u> Neck Width 11.0–14.5 mm 12.9 mm <u>1.25 mm (8)</u> ed Deeply Notched Stem, Straigh	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n=</i> 41)
Mean: SD: Range: Mean: S.D: Category 1	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness
Mean: SD: Range: Mean: S.D: Category 1 Range:	8.5 mm 1.07 mm (8) L7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean:	8.5 mm 1.07 mm (8) L7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm
Mean: SD: Range: Mean: S.D: Category 1 Range:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21)	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39)	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range: Mean: SD:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm 10.9 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm 18.8 mm	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm 4.9 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm 18.8 mm 3.6 mm (38)	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm 4.9 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range: Mean: SD:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm 10.9 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm 18.8 mm 3.6 mm (38) Neck Width	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range: Mean: SD: Range: Range: Range:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm 10.9 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm 18.8 mm 3.6 mm (38) Neck Width 10.0–17.0 mm	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm 4.9 mm
Mean: SD: Range: Mean: S.D: Category 1 Range: Mean: SD: Range: Mean: SD:	8.5 mm 1.07 mm (8) 1.7: Barbed Shoulder, Wide Expande Blade Length 39.0–86.5 mm 51.2 mm 10.70 mm (21) Stem Length 7.5–14.5 mm 10.9 mm	14.9 mm 1.33 mm (8) Neck Width 11.0–14.5 mm 12.9 mm 1.25 mm (8) ed Deeply Notched Stem, Straigh Width 24.5–36.0 mm 28.9 mm 3.04 mm (39) Width 12.5–23.0 mm 18.8 mm 3.6 mm (38) Neck Width	3.3–6.3 5.1 mm 1.04 mm (8) t Base (<i>n</i> =41) Thickness 6.0–11.5 mm 8.3 mm 1.28 mm (40 Thickness 3.5–6.0 mm 4.9 mm

Category 18: Sm	all Horizontal Shoulder, Wide Expa	anded Deeply Notched Stem, Inc	urvate Base (<i>n=</i> 13)
	Blade Length	Width	Thickness
Range:	40.0–64.0 mm	19.5–29.5 mm	6.0–11.0 mm
Mean:	50.5 mm	25.7 mm	8.3 mm
SD:	8.64 mm (7)	2.97 mm (11)	1.39 mm (12)
	Stem Length	Width	Thickness
Range:	7.5–13.0 mm	16.0–25.0 mm	3.5–7.0 mm
Mean:	10.1 mm	20.0 mm	4.7 mm
SD:	1.64 mm (13)	2.51 mm (12)	0.95 mm (13)
		Neck Width	
Range:		11.5–19.0 mm	
Mean:		15.8 mm	
SD:		2.13 mm (13)	

	Category 19: Tapered Shoulde	ers; Long, Expanded Stem (n=7)	
	Blade Length	Width	Thickness
Range:	73.5 mm	19.5–30.0 mm	7.5–10.0 mm
Mean:	73.5 mm	24.6 mm	9.0 mm
SD:	(1)	3.32 mm (7)	1.05 mm (6)
	Stem Length	Width	Thickness
Range:	8513.5 mm	13.5–22.5 mm	4.0–7.5 mm
Mean:	11.4 mm	16.8 mm	5.8 mm
SD:	1.82 mm (7)	2.93 mm	1.19 mm (7)
		Neck Width	
Range:	11.0–15.0 mm		
Mean:		12.7 mm	
SD:		1.25 mm (7)	

Category 20: Corner Removed, Narrow, Weakly Expanded Stem (*n*=3)

	Blade Length	Width	Thickness
Range:	57.0–65.0 mm	21.0–29.5 mm	9.5–11.5 mm
Mean:	61.7 mm	24.7 mm	10.7 mm
SD:	4.16 mm (3)	4.37 mm (3)	1.08 mm (3)
	Stem Length	Width	Thickness
Range:	10.0–12.0 mm	12.5–12.5 mm	5.0–7.0 mm
Mean:	10.8 mm	12.5 mm	5.7 mm
SD:	1.04 mm (3)	0.00 mm (2)	1.15 mm (3)
		Neck Width	
Range:		8512.0 mm	
Mean:		10.2 mm	
SD:		1.76 mm (3)	

	Category 21: Corner Removed, Expanded Stem, Straight Base (n=12)			
	Blade Length	Width	Thickness	
Range:	51.0–62.0 mm	25.0–33.5 mm	7.5–14.5 mm	
Mean:	57.6 mm	28.3 mm	10.0 mm	
SD:	5.01 mm (6)	2.43 mm (12)	1.86 mm (12)	
	Stem Length	Width	Thickness	
Range:	7.0–12.5 mm	15.5–21.5 mm	4.0–6.0 mm	
Mean:	9.7 mm	19.7 mm	4.9 mm	
SD:	1.60 mm (12)	1.82 mm (11)	0.64 mm (11)	
	Neck Width			
Range:	14.0–18.0 mm			
Mean:	16.0 mm			
SD:	1.07 mm (12)			

	Blade Length	Notched, Expanded Stem (n=13) Width	Thickness
Range:	45.0–66.0 mm	18.5–29.5 mm	6.0–10.0 mm
Mean:	53.9 mm	24.3 mm	8.3 mm
SD:	10.59 mm (4)	3.36 mm (10)	1.23 mm (13
-	Stem Length	Width	Thickness
Range:	8.5–14.5 mm	18.5–27.0 mm	3.0–7.0 mm
Mean:	11.0 mm	21.8 mm	5.0 mm
SD:	1.69 mm (13)	2.52 mm (11)	0.98 (13)
	Neck Width		· · ·
Range:	8.5–22.0 mm		
Mean:	15.8 mm		
SD:	3.52 mm (13)		
Category	23: Corner Notched, Expanded Ste	m. Straight-Incurvate Base, Smal	l Blade (<i>n=</i> 9)
	Blade Length	Width	Thickness
Range:	35.0–49.5 mm	19.0–26.0 mm	5.5–8.5 mm
Mean:	42.8 mm	22.4 mm	7.5 mm
SD:	4.87 mm (8)	2.93 mm (9)	0.94 mm (9)
-	Stem Length	Width	Thickness
Range:	7510.5 mm	14.0–18.0 mm	4.5–7.0 mm
Mean:	8.8 mm	16.1 mm	5.1 mm
SD:	1.03 mm (9)	1.49 mm (6)	0.77 mm (9)
		Neck Width	
Range:		12.0–15.0 mm	
Mean:		13.4 mm	
SD:		1.07 mm (9)	
SD:	egory 24. Small Corner/Side Notche		e (n=2)
SD:	egory 24: Small Corner/Side Notche Blade Length	ed, Expanded Stem, Straight Base	
SD: Cate	Blade Length	ed, Expanded Stem, Straight Base Width	Thickness
SD: Cate Range:	Blade Length 50.0 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm	Thickness 6.5–8.0 mm
SD: Cate Range: Mean:	Blade Length 50.0 mm 50.0 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm	Thickness 6.5–8.0 mm 7.3 mm
SD: Cate Range:	Blade Length 50.0 mm 50.0 mm (1)	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2)
SD: Cato Range: Mean: SD:	Blade Length 50.0mm 50.0mm (1) Stem Length	ed, Expanded Stem, Straight Base Width 20.0–20.5mm 20.3mm 0.35mm (2) Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness
SD: Cate Range: Mean: SD: Range:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5mm 20.3mm 0.35mm (2) Width 15.5–16.5mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm
SD: Cate Range: Mean: SD: Range: Mean:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm
SD: Cate Range: Mean: SD: Range:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm
SD: Cate Range: Mean: SD: Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm
SD: Cate Range: Mean: SD: Range: Mean:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Range:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2)
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2)	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm
SD: Catu Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm
SD: Catu Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4)	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8)
SD: Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4) Stem Length	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7) Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8) Thickness
SD: Cate Range: Mean: SD: Range: Mean: SD: Cate Range: Range: Mean: SD: Cate Range: Ra	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 9.5 mm 0.00 mm (2) Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4) Stem Length 9.0–12.0 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7) Width 19.0–23.0 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8) Thickness 4.0–9.0 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 0.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4) Stem Length 9.0–12.0 mm 10.6 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7) Width 19.0–23.0 mm 21.8 mm	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8) Thickness 4.0–9.0 mm 5.4 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 0.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4) Stem Length 9.0–12.0 mm 10.6 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7) Width 19.0–23.0 mm 21.8 mm 1.43 mm (7)	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8) Thickness 4.0–9.0 mm 5.4 mm
SD: Cate Range: Mean: SD: Range: Mean: SD: Cate Range: Mean: SD: Cate Range: Mean: SD:	Blade Length 50.0 mm 50.0 mm (1) Stem Length 9,5–9.5 mm 0.5 mm 0.00 mm (2) egory 25: Corner Notched, Expande Blade Length 41.5–55.0 mm 48.4 mm 6.12 mm (4) Stem Length 9.0–12.0 mm 10.6 mm	ed, Expanded Stem, Straight Base Width 20.0–20.5 mm 20.3 mm 0.35 mm (2) Width 15.5–16.5 mm 16.0 mm 0.71 mm (2) Neck Width 12.5–14.0 mm 13.3 mm 1.06 mm (2) ed Stem, Excurvate-Straight Base Width 23.0–27.0 mm 24.9 mm 1.31 mm (7) Width 19.0–23.0 mm 21.8 mm 1.43 mm (7) Neck Width	Thickness 6.5–8.0 mm 7.3 mm 1.06 mm (2) Thickness 2.5–4.0 mm 3.3 mm 1.06 mm (2) (<i>n</i> =10) Thickness 8.0–10.0 mm 8.5 mm 0.76 mm (8) Thickness 4.0–9.0 mm 5.4 mm

	Blade Length	nding Stem, Narrow Elongate Bla Width	Thickness
Range:	41.5–62.5 mm	16.5–22.0 mm	6.5–10.0 mm
Mean:	54.5 mm	18.9 mm	8.3 mm
SD:	8.94 mm (5)	1.89 mm (10)	1.58 mm (8)
	Stem Length	Width	Thickness
Range:	7.5–13.5 mm	14.5–17.5 mm	3.5–6.0 mm
Mean:	10.2 mm	16.3 mm	4.4 mm
SD:	2.07 mm (10)	0.99 mm (7)	0.89 mm (9)
		Neck Width	
Range:		12.0–15.5 mm	
Mean:		14.1 mm	
SD:		1.13 mm (10)	
	Category 27: Corner Rem	oved, Straight Stem (<i>n=</i> 2)	
	Blade Length	Width	Thickness
Range:	35.0 mm	21.5–24.0 mm	7.0–7.5 mm
Mean:	35.0 mm	22.8 mm	7.3 mm
SD:	(1)	1.77 mm (2)	0.35 mm (2)
	Stem Length	Width	Thickness
Range:	8.0–10.0 mm	17.5–18.0 mm	4.0–4.5 mm
Mean:	9.0 mm	17.8 mm	4.3 mm
SD:	1.41 mm (2)	0.35 mm (2)	0.35 mm (2)
		Neck Width	
Range:		16.0–17.0 mm	
Mean:		16.5 mm	
SD:		0.71 mm (2)	
30.		- ()	
-	ann 29. Corner Demoured Straight		$\left n \left(n - 2 \right) \right $
-	gory 28: Corner Removed, Straight	/Contracted Stem, Elongate Blad	
Cate	Blade Length	/Contracted Stem, Elongate Blad Width	Thickness
Cate Range:	Blade Length 82.0–94.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm	Thickness 9.0–11.5 mm
Cate Range: Mean:	Blade Length 82.0–94.0 mm 88.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm	Thickness 9.0–11.5 mm 10.3 mm
Cate Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2)	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2)
Cate Range: Mean: SD:	Blade Length 82.0–94.0mm 88.0mm 8.49mm (2) Stem Length	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness
Cate Range: Mean: SD: Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm
Cate Range: Mean: SD: Range: Mean:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 18.5 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm
Cate Range: Mean: SD: Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 18.5 mm 1.41 mm (2)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm
Cate Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 18.5 mm 1.41 mm (2) Neck Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm
Cate Range: Mean: SD: Range: Mean: SD: Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 18.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm
Cate Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 18.5 mm 1.41 mm (2) Neck Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 2.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2)	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2)
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 2.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2)
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 2.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2) =5) Thickness
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Range:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3)	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4)
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 5.3 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm 9.6 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm 16.0 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm 5.4 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.8.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Inded Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm 16.0 mm 1.73 mm (3)	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm 9.6 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Mided Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm 16.0 mm 1.73 mm (3) Neck Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm 5.4 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm 9.6 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.8.5 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Midth 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm 16.0 mm 1.73 mm (3) Neck Width 13.0–18.0 mm	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm 5.4 mm
Cate Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD: Range: Mean: SD:	Blade Length 82.0–94.0 mm 88.0 mm 8.49 mm (2) Stem Length 10.0–13.0 mm 11.5 mm 2.12 mm (2) Category 29: Corner Removed, Rou Blade Length 4.60–83.0 mm 60.8 mm 19.56 mm (3) Stem Length 8.0–12.0 mm 9.6 mm	/Contracted Stem, Elongate Blad Width 23.5–27.0 mm 25.3 mm 2.47 mm (2) Width 17.5–19.5 mm 1.85 mm 1.41 mm (2) Neck Width 19.0–19.5 mm 19.3 mm 0.35 mm (2) Mided Stem, Barbed Shoulders (<i>n</i> Width 28.0–35.0 mm 31.0 mm 2.96 mm (4) Width 15.0–18.0 mm 16.0 mm 1.73 mm (3) Neck Width	Thickness 9.0–11.5 mm 10.3 mm 1.77 mm (2) Thickness 5.0–5.5 mm 0.35 mm (2) =5) Thickness 6.5–9.0 mm 8.1 mm 1.18 mm (4) Thickness 4.0–7.0 mm 5.4 mm

	Blade Length	Width	Thickness
Mean:			
	Stem Length	Width	Thickness
Mean:	15.0 mm	20.0 mm	9.5 mm
		Neck Width	
Mean:		20.0 mm	
	Category 31: Corner Removed, Ex	xpanded Stem, Small Blade (n=1	L)
	Blade Length	Width	Thickness
Mean:	46.5 mm	22.0 mm	14.0 mm
	Stem Length	Width	Thicknes
Mean:	7.5 mm	15.5 mm	5.0 mm
		Neck Width	
Mean:		14.0 mm	
	Category 32: Corner Removed, Wig	de Expanded Rounded Stem (<i>n</i> :	=1)
	Blade Length	Width	Thicknes
Mean:	51.0 mm	37.5 mm	7.5 mm
	Stem Length	Width	Thicknes
Mean:	18.0 mm	23.0 mm	8.0 mm
		Neck Width	
Mean:		17.5 mm	

Knives

	Category	v 1 (<i>n</i> =6)	
	Length	Width	Thickness
Range:	63.0–91.5 mm	23.5–40.5 mm	9.0–16.5 mm
Mean:	77.5 mm	30.5 mm	12.3 mm
SD:	13.05 mm (4)	7.04 mm (5)	2.66 mm (6)
	Stem Length	Width	Thickness
Range:	10.0–175. mm	29.0–37.0 mm	5.0–13.5 mm
Mean:	14.5 mm	34.0 mm	8.9 mm
SD:	3.18 mm (5)	4.36 mm (3)	3.71 mm (5)
		Neck Width	
Range:		22.0–31.0 mm	
Mean:		26.5 mm	
SD:		6.36 mm (2)	
	Category		
	Length	Width	Thickness
Range:	53.0–107.0 mm	30.0–47.0 mm	8.0–24.0 mm
Mean:	78.7 mm	36.9 mm	13.1 mm
SD:	20.62 mm (7)	6.66 mm (7)	5.25 mm (7)
	Category		
	Length	Width	Thickness
	62.5 mm	33.5 mm	11.5 mm
	Category	v 4 (n=1)	
	Length	Width	Thickness
	74.0 mm (Broken)	33.5 mm	16.0 mm

 Category 5 (n=1)		
Length	Width	Thickness
 63.5 mm (Broken)	21.5 mm	7.0 mm

Scrapers

	Length	Width	Thickness
Category 1 (n=2)	71.0 mm	26.5 mm	9.5 mm
	81.5 mm	36.0 mm	18.0 mm
Category 2 (n=3)			
Range:	41.5–47.0 mm	29.5–42.0 mm	6.0–17.5 mm
Mean:	44.3 mm	35.8 mm	10.8 mm
SD:	2.75 mm (3)	8.84 mm (2)	5.97 mm (3)
Category 3 (n=3)			
Range:	37.0–47.5 mm	28.0–39.0 mm	5.5–12.5 mm
Mean:	42.3 mm	32.8 mm	9.3 mm
SD:	7.42 mm (2)	5.62 mm (3)	3.55 mm (3)
Category 4 (n=1)	58.0 mm	35.5 mm	14.0 mm
Category 5 (n=4)			
Range:	26.0–42.5 mm	18.5–31.0 mm	9.5–12.5 mm
Mean:	34.0 mm	24.5 mm	10.5 mm
SD:	9.25 mm (4)	5.31 mm (4)	1.35 mm (4)
Category 6 (n=1)	52.0 mm	38.5 mm	11.5 mm
Category 7 (n=4)	51.0 mm	37.5 mm	7.5 mm

Drills

	Stemmed Drill,	Category 1 (n=4)	
	Length	Width	Thickness
Range:	44.5–50.0 mm	18.0–34.5 mm	6.5–13.5 mm
Mean:	47.3 mm	27.3 mm	8.9 mm
SD:	3.89 mm (2)	7.19 mm (4)	3.20 mm (4)
	Bit Length		Thickness
Range:	19.0–34.0 mm		5.5–8.5 mm
Mean:	26.5 mm		6.5 mm
SD:	10.61 mm (2)		1.35 mm (4)
	Expanded Triangular to Rounde	ed Based Drill, Category 2 (n=11)	
	Length	Width	Thickness
Range:	63.5–65.0 mm	19.0–36.0 mm	9.5–19.5 mm
Mean:	64.5 mm	26.4 mm	11.7 mm
SD:	0.87 mm (3)	5.51 mm (10)	1.58 mm (10)
	Bit Length		Thickness
Range:	25.0–36.5 mm		5.0–10.0 mm
Mean:	29. mm		7.3 mm
SD:	4.35 mm (5)		1.85 mm (11)
	Rough, Chunky Bifacia	I Drill, Category 3 (n=2)	
	Length	Width	Thickness
Range:	57.5 mm	27.0–37.0 mm	12.0–22.0 mm
Mean:	57.5 mm	32.3 mm	17.0 mm
SD:	(1)	6.72 mm (2)	7.07 mm (2)
	Bit Length		Thickness
Range:	39.5 mm		5.5–9.5 mm
Mean:	39.5 mm		7.5 mm
SD:	(1)		2.83 mm (2)

	Length	Width	Thickness
Range:	55.5–69.0 mm	14.5–19.0 mm	8.5–13.0 mm
Mean:	61.8 mm	16.4 mm	11.4 mm
SD:	5.58 mm (4)	1.85 mm (5)	1.75 mm (5)
	Flake Drill, Cate	egory 5 (<i>n=</i> 3)	
	Length	Width	Thickness
Range:	39.0–54.0 mm	22.5–33.0 mm	4.5–11.0 mm
Mean:	47.0 mm	27.5 mm	7.3 mm
SD:	7.55 mm (3)	5.27 mm (3)	3.33 mm (3)
	Bit Length		Thickness
Range:	20.0–26.5 m		4.0–8.0 mm
Mean:	23.8 mm		5.8 mm
SD:	3.40 mm (3)		2.02 mm (3)
	Modified Nodule Dri		
	Length	Width	Thickness
Range:	38.5 mm	17.0–26.5 mm	11.0–17.0 mm
Mean:	38.5 mm	21.8 mm	14.0 mm
SD:	(1)	6.72 mm (2)	
	Bit Length		Thickness
Range:	17.0 mm		4.5–8.5 mm
Mean:	17.0 mm		6.5 mm
SD:	(1)		2.83 mm (2)
	Drill Prefor	rms (<i>n=</i> 3)	
Specimen 1059–5	Length	Width	Thickness
	48.5 mm	36.5 mm	8.0 mm
	Projection Length		Thickness
	18.0 mm		5.5 mm
Specimen 1001–5	Length	Width	Thickness
	56.6 mm	32.5 mm	7.5 mm
	Projection Length		Thickness
	17.5 mm		5.5 mm
Specimen 1078–2	Length	Width	Thickness
	73.5 mm	37.0 mm	21.0 mm
	Projection Length		Thickness
	30.0+ mm (Broken)		7.0 mm

Perforators

	Category	/ 1 (<i>n</i> =11)	
	Length	Width	Thickness
Range:	20.0–50.0 mm	13.5–30.0 mm	2.5–11.0 mm
Mean:	29.9 mm	21.4 mm	5.6 mm
SD:	8.79 mm (11)	5.08 mm (11)	2.50 mm (11)
			Bit Thickness
Range:			5.0–22.5 mm
Mean:			12.2 mm
SD:			5.46 mm (10)
	Categor	y 2 (<i>n</i> =3)	
	Length	Width	Thickness
Range:	25.5–33.0 mm	13.0–25.0 mm	2.5–2.5 mm

Mean:	28.5 mm	197. mm	3.8 mm
SD:	3.97 mm (3)	6.11 mm (3)	1.53 mm (3)
			Bit Thickness
Range:			5.5–12.0 mm
Mean:			9.0 mm
SD:			3.28 mm (3)
	Denticul	ate (<i>n=</i> 1)	
	Length	Width	Thickness
	21.5 mm	185 m	3.5 m
	Perforator/De	nticulate (<i>n=</i> 1)	
Projection Length	Length	Width	Thickness
8.0 mm	37.0 mm	23.0 mm	9.0 mm
	Perforator/	Graver (<i>n=</i> 1)	
Perforator Length	Length	Width	Thickness
Broken	34.0 mm	29.0 mm	1.53 mm (3 Bit Thickness 5.5–12.0 mm 3.28 mm (3 Thickness 3.5 m Thickness 9.0 mm
	Drill/Gra	ver (<i>n=</i> 1)	
Drill Bit Thickness	Length	Width	Thickness
6.0 mm	Broken	20.5 mm	20.5. mm

n=4	Length	Width	Thickness
Range:	89.5–104.5 mm	41.0–47.0 mm	17.5–25.0 mm
Mean:	97.3 mm	44.0 mm	21.4 mm
SD:	6.13 mm (4)	2.74 mm (4)	3.47 mm (4)

Adzes

	Categor	ry 1 (<i>n</i> =2)		
	Length	Width	Thickness	
Range:	76.0–79.0 mm	46.5–50.0 mm	17.0–27.0 mm	
Mean:	77.5 mm	48.3 mm	22.0 mm	
SD:	2.12 mm (2)	2.47 mm (2)	7.07 mm (2)	
	Categor	y 2 (<i>n=</i> 2)		
	Length	Width	Thickness	
Pango	121.0 mm	67.0–78.0 mm	19.5–24.5 mm	
Range:	-			
Mean:	121.0 mm	72.5 mm	22.0 mm	
SD:	(1)	7.78 mm (2)	3.54 mm (2)	

Chipped Stone Digging Implements

n=7	Length	Width	Thickness		
Range:	131.5–197.0 mm	83.0–148.00 mm	8.0–29.0 mm		
Mean:	155.6 mm	111.1 mm	18.2 mm		
SD:	23.61 mm (7)	14.52 mm (17)	5.60 mm (17)		
		Neck Width	Notch Length		
Range:		59.5–101.5 mm	18.0–32.5 mm		
Mean:		83.8 mm	27.1 mm		
SD:		15.49 mm (8)	5.40 mm (6)		

Blades			
<i>n=</i> 45	Length	Width	Thickness
Range:	19.0–51.0 mm	9.0–30.5 mm	2.0–10.0 mm
Mean:	34.3 mm	15.9 mm	4.8 mm
SD:	7.85 mm (45)	4.8 mm (45)	1.99 mm (45)
	Platform Length	Width	Angle
Range:	3.5–16.0 mm	1.0–9.0 mm	55–90°
Mean:	9.13 mm	3.8 mm	76.5°
SD:	3.25 mm (45)	1.81 mm (45) 8.45° (44)	
Grooved Axe			
n=12	Length	Width	Thickness
Range:	116.5–173.5 mm	94.5–120.0 mm	45.0–64.0 mm
Mean:	145.0 mm	107.6 mm	55.0 mm
SD:	40.31 mm (2)	11.99 mm (6)	7.58 mm (6)
	-0.31 mm (2)	Neck Width	Groove Width
Bango:		73.0–117.5 mm	33.5–38.0 mm
Range:		89.9 mm	33.5–38.0 mm
Mean: SD:		18.3 mm (5)	1.59 mm (6)
30.		18.5 1111 (5)	1.59 IIIII (0)
Abraded Cobble			
	Length	Width	
	185.0 mm (Broken)	132.5 mm	
Ground Stone Gorget Hole Diameter (center) 6.0 mm	185.0 mm (Broken) Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm		Width 44.0 mm
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm	Length	
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm	Length	
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm	Length 55.0 mm	44.0 mm
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length	Length 55.0 mm Width	44.0 mm Hole Diameters
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length	Length 55.0 mm Width	44.0 mm Hole Diameters
Hole Diameter (center) 6.0 mm	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm	Length 55.0 mm Width 14.5 mm	44.0 mm Hole Diameters 12.0–12.5 mm
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length	Length 55.0 mm Width 14.5 mm Width	44.0 mm Hole Diameters 12.0–12.5 mm Thickness
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken	Length 55.0 mm Width 14.5 mm Width 38.0 mm	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm
	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length	Length 55.0 mm Width 14.5 mm Width	44.0 mm Hole Diameters 12.0–12.5 mm Thickness
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone Tubular Pipe Blank	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken	Length 55.0 mm Width 14.5 mm Width 38.0 mm Mid-Diameter	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm Diameter of Ends
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone Tubular Pipe Blank	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken Length 141.0 mm	Length 55.0 mm Width 14.5 mm Width 38.0 mm Mid-Diameter 60.0 mm	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm Diameter of Ends 36.5 mm and 38.5 mm
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone Tubular Pipe Blank Gorget Blanks	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken Length 141.0 mm	Length 55.0 mm Width 14.5 mm Width 38.0 mm Mid-Diameter 60.0 mm	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm Diameter of Ends 36.5 mm and 38.5 mm Thickness
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone Tubular Pipe Blank Gorget Blanks Specimen 1	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken Length 141.0 mm	Length 55.0 mm Width 14.5 mm Width 38.0 mm Mid-Diameter 60.0 mm Width 78.0 mm	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm Diameter of Ends 36.5 mm and 38.5 mm Thickness 12.5 mm
Hole Diameter (center) 6.0 mm Ground Limestone Bead Boatstone Tubular Pipe Blank Gorget Blanks	Hole Diameters (outer perimeters) 10.0 mm and 11.5 mm Length 19.5 mm Length Broken Length 141.0 mm	Length 55.0 mm Width 14.5 mm Width 38.0 mm Mid-Diameter 60.0 mm	44.0 mm Hole Diameters 12.0–12.5 mm Thickness 29.0 mm Diameter of Ends 36.5 mm and 38.5 mm Thickness

APPENDIX L: BLADE ATTRIBUTES

Category Number	Length (mm)	Width (mm)	Thickness (mm)	Platform Width (mm)	Platform Length (mm)	Platform Angle (deg)	Platform Treatment Edge	Platform Surface	Cross-section	Bulb of Force	Eraillure	Compression Rings	Termination
F-43	28.0	13.0	5.0	2.5	7.5	90	C;R	Flat	1	Р	-	+	0
F-54	36.5	16.0	5.0	2.0	8.0	83	R	F;CX	1	Р	+	-	0
F-93	50.0	20.0	9.5	7.0	14.5	75	A;R	F	1	Μ	+	-	0
F-54	32.0	20.0	7.0	9.0	13.5	82	R	F;CX	1	Р	-	-	0
F-8	38.0	21.0	6.5	2.0	11.0	89	CX	F;CX	1	Р	+	+	0
F-40	51.0	30.5	10.0	5.0	11.0	83	R	F;CX	1	М	-	-	0
F-34	41.0	15.0	4.0	2.5	9.0	73	A;R	F	1	М	+	-	0
F-27	39.0	20.0	6.0	4.0	10.0	80	A;R	F	1	М	+	-	0
F-100/104	38.0	18.0	6.5	6.5	13.5	75	-	F;CX	2	М	+	-	0
F-27	41.5	16.0	4.0	1.0	4.5	85	C;R	С	1	М	+	-	0
F-35	45.5	18.5	6.0	4.0	8.5	70	A;R	F	2	Р	+	+	F
F-53	37.5	21.0	4.5	4.0	13.5	80	A:R	F	1	Р	+	+	F
F-54	35.0	13.0	3.0	3.5	6.5	75	F	CX	1	М	+	+	F
F-46	29.5	9.0	2.0	1.5	4.5	87	C;R		1	М	+	+P	F
F-6	33.5	20.5	4.0	5.0	11.0	75	R	F;CX	1	W	-	+	F
F-91	32.5	13.0	2.5	3.0	7.5	65	А	F;CX	2	М	+	+	F
F-54	47.0	22.0	6.5	6.0	13.5	60	R	F;CX	1	М	+	+	н
F-35	42.5	15.5	4.5	4.5	10.0	80	А	F	1	М	+	-	н
F-85	29.0	14.0	4.0	1.5	5.0	86	R;A		1	М	+	+	н
F-25	34.0	18.0	8.0	4.5	16.0	56	F;A	F;CX	1	М	+	-	н
F-35	33.5	15.0	3.5	1.5	3.5	80	A;R	-	1	W	+	+	F
F-40	38.0	19.0	4.5	6.0	11.5	74	R	F;CX	2	М	+	-	S

Category Numbe	i. Length (mm)	Width (mm)	Thickness (mm)	Platform Width (mm)	Platform Length (mm)	Platform Angle (deg)	Platform Treatment Edge	Platform Surface	Cross-section	Bulb of Force	Eraillure	Compression Rings	Termination
F-94b	43.0	18.0	4.0	1.5	4.5	75	A;R	-	2	W	+	+	F
F-35	35.0	15.0	3.5	2.5	7.5	70	R	СХ	1	W	+	+	F
F-123	41.0	13.0	4.5	5.5	10.5	55	А		1	М	+	-	F
F-43	22.5	14.0	3.5	5.0	14.5	77	A;R	Flake rem.	1	М	-	+	0
F-58	29.0	17.0	3.5	2.0	12.0	82	А	u	1	М	+	-	0
F-102	32.0	17.0	5.0	4.5	8.5	70	Broke		1	Bk.	Bk.	Bk.	0
F-128	38.5	13.0	5.5	6.0	10.5	80	F	CX	1	W	-	+	0
F-100/104	35.0	17.0	5.0	5.0	9.0	88	F;R	F	1	М	-	-	0
F-108	28.0	14.5	4.5	2.0	5.0	80	-	F	2	М	+	-	S
F-113	34.0	14.0	6.0	2.5	4.5	70	A;R	F	1	W	+	+	Н
F-94	40.5	20.5	7.5	6.5	11.0	60	CX	CX	1	М	+	+	Н
F-11	24.0	15.0	3.0	4.5	10.0	80	R	CX	2	М	+	-	Н
F-35	33.0	14.0	3.4	3.0	7.5	78	R	F;CX	1	М	-	-	0
F-8	40.0	15.5	8.5	6.0	10.0	-	Cx	CX	1	М	+	-	0
F-27	42.0	20.5	9.0	3.5	12.5	80	A;R	F	1	М	+	+	0
F-16	24.5	14.0	4.0	3.5	13.0	70	R	F	1	М	+	+	Н
F-34	32.5	11.5	2.5	2.0	8.0	81	R	F	1	М	+	+	Н
F-39	20.5	9.0	2.0	4.0	8.5	85	R	F;C	1	М	+	-	F
F-35	24.0	11.0	3.0	2.5	5.5	82	A;R	F	1	М	+	+	F
F-8	23.0	11.5	4.0	2.0	6.5	65	R	S	1	W	-	+	F
F-73	19.0	9.5	3.0	3.5	7.5	80	R	F	1	М	-	-	0
F-26	26.0	10.0	2.5	2.5	6.0	75	R	F;CX	1	М	-	-	0
F-35	22.5	11.5	2.5	2.5	5.0	80	R	F;CX	1	М	+	-	0
Key:	+ Present - Absent		R Reduc CX Corte		N W Weak	M Moderate	F Feat	0 Outrepassé		S Step			
	C Crushed		P Promi			Abrasion	r redi	H Hinge					

APPENDIX M: DEBITAGE CATEGORIES AND QUANTIFICATION

Feature	Bifacial Thinning Flake <3 cm	Bifacial Thinning Flake > 3cm	Decortication Flake	Flat Flake	Shatter Flake	Core Flake	Modified Nodule	Modified Nodule Frag.
1	44	10	5			2		11
2	81	42	15	1	4	3	12	24
3	34	10	4	2	1	-	2	14
4	33	3	-	-	-	3	19	6
5	54	29	7	-	7	-	12	10
6	503	251	33	14	9	1	39	123
7	37	-	-	-	-	-	11	7
8	164	170	42	8	43	5	-	72
9	2	-	-	-	-	-	-	-
10	1	-	-	-	-	-	-	-
11	59	34	11	-	3	3	3	31
12	3	10	4			2		16
13	1	5	4				3	6
14	99	44	12	4	4	1	24	24
15	7	2	2				1	
16	39	17	18	4	1	5	19	21
17	69	30	15	7		2	14	40
18	96	33	34	6	14	2	-	23
19	13	2	5	-	4	-	3	-
20	39	9	13	3	7	-	-	6
22	-	4					2	
23		2						3
24	11	6	2	2			3	8
25	78	73	28	9	2	2	40	44
26	36	21	2			-	2	10
27	22	18	3				7	16
28	23	19	3				13	9
29 30	1	5	3					
30 31	1							2
32	1							4
33	T	1	2					4
33 34	289	76	37	15	_	1	20	53
34 35	1393	339	112	70	37	3	43	100
36	37	24	112	70	57	J	43	14
37	11	5	2	_	_	_	-	6
38	16	13	2				4	0
39	47	13	14	3		1	7	10
40	70	62	21	5		2	18	41
42	108	38	32			-	29	39
43	160	64	45	12		1	25	45
46	100	14	10	2		-	23	-5
47	1	-	10	-				Ũ
49&67	28	7	4					8
51	28	14	2			1	6	7
52	-	-	-	-	-	-	-	3
53	147	114	33	9	-	-	20	61
33								

Feature	Bifacial Thinning Flake <3 cm	Bifacial Thinning Flake >3 cm	Decortication Flake	Flat Flake	Shatter Flake	Core Flake	Modified Nodule	Modified Nodule Frag
55	40	9	6	2			7	9
56	21	9	1					I.
57	94	40	22				10	23
58	16	5	-	1	_	_	-	2
59	50	32	6	T			17	14
60	5	1	-				5	3
61	31	28		1				
			4	1			7	6
62	2	1	2				22	
63	38	43	8				22	13
64	45	16	11	1			5	17
66	10	2	-					-
68	4	-	1					2
69	-	1	1	-	-	-	-	
70	7						5	
71	3	6	1				1	2
72	2	2	1				3	1
73	68	13						15
74	5	7	1	1				2
76	40	20	3				7	16
77	28	16	6			1	4	10
78	-	5					4	í
79	2	-						
81	-	1					1	
82	1	13					2	-
83	-	2		1			1	-
85	4	5	5	T			7	2
85 90	130	98	32		4	2	16	34
90 91			52	-	4			54
	5	5				1	4	
92	3	-				1	1	
93	6	7						10
94	28	60	11		2	2	38	32
95	-	3						-
97	-	4						1
98	22	19	1				1	-
100&104	81	53	16	2	1		37	22
102	37	38	9	4		2	12	16
103	13	5	5		1		5	8
105	1	1						-
106	3	9	3				3	
107	15	15	3	1			10	I.
108	21	12	5		3		9	8
109	14	6	2					
110	17	16	2				3	ļ
111	32	15	4	3			11	8
113	27	19	2	1				<u>c</u>
114	83	31	- 8	-	6	1	23	3
115	19	12	4	6	0	1	4	
115 116	3		4	U			4	
		-	1					
117	-	3	-	-	-	-	-	
118	22	13	4		3		-	
119	-	-	-	-	1	-	3	
120	4	4						
121	3	5	1				5	
122	-	2	-	-	-	-	-	
123	9	3					4	2

Feature	Bifacial Thinning Flake <3 cm	Bifacial Thinning Flake >3 cm	Decortication Flake	Flat Flake	Shatter Flake	Core Flake	Modified Nodule	Modified Nodule Frag.
124	24	29	2				14	7
125	-	1						1
126	1	1	1					
127	51	36	7	2	3	1	29	16
128	9	11	4				5	6
129	15	11	3				8	16
130	25	23	8	2	2	1	24	17
131	5	4	-	1	1		2	3
TOTAL	5,288	2,558	838	216	163	52	815	1,432

Grand Total: 11,342

= value corrected from original report edition