TN TDOT Department of Transportation

MULTIMODAL CORRIDOR FEASIBILITY STUDY

Public Workshop
June 20, 2017

Today's Agenda

1. Welcome \& Introductions
2. Recap Corridor Deficiencies \& Needs
3. Review Phase 1 Multimodal Solutions
4. Discuss Additional Solutions \& Priorities
5. Next Steps

TN

Project Schedule \& Public Workshops

Phase One - Existing \& Future Deficiencies

Public Workshops

- Monday, June 12 - Goodlettsville

Delmas Long Community Center, 200 Memorial Drive

- Tuesday, June 20 - Brentwood

Brentwood Library, 8109 Concord Road

- Thursday, June 22 - Spring Hill

Spring Hill City Hall, 199 Town Center Parkway

Corridor Deficiencies \& Needs

Deficiencies \& Needs

Deficiencies \& Needs - Growth and Development

		Population					Employment		

Deficiencies \& Needs - Growth and Development

TDOT
Department of
Transportation

Deficiencies \& Needs - Highways: Interstate Capacity

Deficiencies \& Needs - Highways: Arterial Capacity

TN

TDOT
Department of
Transportation

Deficiencies \& Needs - Highways: Interstate Travel Times

I-65 Travel Markets	Travel Time (min)			
	$\mathbf{2 0 1 0}$	$\mathbf{2 0 4 0}$	Change (min)	\% Change
Portland to Nashville Core	41	47	6	15%
Hendersonville to Nashville Core	25	32	7	28%
South Nashville to Nashville Core	16	30	14	88%
South Nashville to Franklin	22	37	15	68%
Brentwood to Franklin	11	22	11	100%
Franklin to Brentwood	10	21	11	110%
Franklin to Nashville Core	29	59	30	103%
Spring Hill to Nashville Core	36	64	28	78%
Spring Hill to Franklin	20	36	16	80%
Giles County to Franklin	56	69	13	23%

Source: Statewide Travel Demand Model

Deficiencies \& Needs - Highways: Freight

TDOT
Department of
Transportation

Deficiencies \& Needs - Highways: Safety

Hotspot Location Description (2013-2015)		Statewide Crash Rate	Segment Crash Rate	Segment v. Statewide
A	Exit 97: SR 174/Long Hollow Pike to Exit 92: SR 45/Old Hickory Blvd	0.512	$1.16-$ 2.248	$125-338 \%$
B	Exit 90: SR 155/US 41 to Exit 88: I-24 West	1.036	2.395	131%
C	Nashville Downtown: Exit 88: I-24 West to Exit 210: the I-65/I-40 Interchange	1.036	$2.145-$ 5.668	$107-447 \%$
D	Exit 74: SR 254 West/Old Hickory Blvd Interchange	0.512	2.622	412%
E	Exit 68: Cool Springs Blvd to Exit 59: SR 840	0.512	$1.312-$ 1.778	$155-246 \%$
F	Exit 53: SR 396/Saturn Pkwy Interchange	0.512	1.559	204%
G	Exit 46: US 412/SR 99 Interchange	0.512	1.098	114%
H	Exit 27: SR 129/Lynnville Highway Interchange	0.512	1.035	102%
I	Exit 22: SR 11/US 31A Interchange	0.512	2.459	380%
J	Exit 14: US 64/SR 15 Interchange	0.512	1.213	137%

Deficiencies \& Needs - Transit, Bike/Ped \& TDM

Commuter Mode Share				
Market	Mode			
	Single Occupancy Vehicle	Rideshare	Transit	Other Travel Mode (Bike, Ped, Tele)
Portland to Nashville Core	85.8\%	14.2\%	0.0\%	0.0\%
Hendersonville to Nashville Core	86.6\%	11.8\%	1.0\%	0.2\%
South Nashville to Nashville Core	85.8\%	10.6\%	1.6\%	1.8\%
South Nashville to Franklin	86.3\%	13.3\%	0.0\%	0.3\%
Brentwood to Franklin	89.4\%	10.4\%	0.6\%	0.0\%
Franklin to Brentwood	86.9\%	12.1\%	0.6\%	0.5\%
Franklin to Nashville Core	86.0\%	14.0\%	0.2\%	0.0\%
Spring Hill to Nashville Core	83.2\%	15.9\%	0.0\%	0.9\%
Spring Hill to Franklin	87.2\%	12.4\%	0.0\%	0.4\%
Giles to Franklin	76.4\%	23.6\%	0.0\%	0.0\%
Study Area	82.2\%	10.4\%	0.9\%	6.4\%
Tennessee	83.9\%	9.6\%	0.8\%	5.8\%
Nationwide	76.4\%	9.7\%	5.0\%	8.8\%

Source: US Census Bureau

Deficiencies \& Needs - Highways: Safety

Hotspot Location Description (2013-2015)		Statewide Crash Rate	Segment Crash Rate	Segment v. Statewide
A	Exit 97: SR 174/Long Hollow Pike to Exit 92: SR 45/Old Hickory Blvd	0.512	$1.16-$ 2.248	$125-338 \%$
B	Exit 90: SR 155/US 41 to Exit 88: I-24 West	1.036	2.395	131%
C	Nashville Downtown: Exit 88: I-24 West to Exit 210: the I-65/I-40 Interchange	1.036	$2.145-$ 5.668	$107-447 \%$
D	Exit 74: SR 254 West/Old Hickory Blvd Interchange	0.512	2.622	412%
E	Exit 68: Cool Springs Blvd to Exit 59: SR 840	0.512	$1.312-$ 1.778	$155-246 \%$
F	Exit 53: SR 396/Saturn Pkwy Interchange	0.512	1.559	204%
G	Exit 46: US 412/SR 99 Interchange	0.512	1.098	114%
H	Exit 27: SR 129/Lynnville Highway Interchange	0.512	1.035	102%
I	Exit 22: SR 11/US 31A Interchange	0.512	2.459	380%
J	Exit 14: US 64/SR 15 Interchange	0.512	1.213	137%

Deficiencies \& Needs - Transit, Bike/Ped, TDM \& ITS

- Transit, Bike/Ped, \& TDM

Existing regional transit services are largely peak period and peak direction, limiting access to employment centers

Bicycle and pedestrian facilities are needed for all ages and abilities to/from major activity centers and transit

HOV lanes on I-65 experience high violation rates

- System Management \& Operations

ITS devices are in place on I-65 as part of TDOT Smartway system, with planned north and south expansion

There are numerous additional ITS application opportunities in the I-65 corridor - for freeway, arterials, and transit

TN

Multimodal Solutions - Phase 1

Multimodal Solutions - Phase 1

- 61 Highway, Freight and Safety Projects
- 27 Transit Projects
- 40 Bike/Ped Projects
- 19 ITS Projects
- TDM Coordinated and Expanded Services
- Other Potential Strategies and Solutions

Multimodal Solutions - Highways: Interstate Capacity

Multimodal Solutions - Highways: Arterial Capacity

Multimodal Solutions - Highways: Interstate Travel Times

I-65 Travel Markets	Travel Time (min)		
	$\mathbf{2 0 1 0}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 4 0}$ Phase 1
Portland to Nashville Core	41	47	46
Hendersonville to Nashville Core	25	32	31
South Nashville to Nashville Core	16	30	29
South Nashville to Franklin	22	37	36
Brentwood to Franklin	11	22	20
Franklin to Brentwood	10	21	17
Franklin to Nashville Core	29	59	53
Spring Hill to Nashville Core	36	64	62
Spring Hill to Franklin	20	36	29
Giles County to Franklin	56	69	63

Source: Statewide Travel Demand Model

Interchange Improvements

No.	Interchange	Daily Delay Savings (hrs.)	Crash Modification Factor
1	Exit 98: US-31W	7.4	0.7
2	Exit 97: SR-174 (Long Hollow Pike)	60.1	0.7
3	Exit 85: Rosa Parks Blvd	265.1	0.8
4	Exit 81: Wedgewood Ave	112.8	--
5	Exit 74: SR-254 (Old Hickory Blvd)	286.9	--
6	Exit 71: SR-253 (Concord Rd)	183.3	--
7	Exit 65: SR-96 (Murfreesboro Rd)	219.2	--.7
8	Exit 53: SR-396 (Saturn Pkwy)	--	0.656
9	Exit 46: SR-99/US-412	--	--
10	Exit 27: SR-129 (Lynnville Hwy)	--	0.656
11	Exit 22: SR-11/US-31A	--	0.656
12	Exit 14: SR-15/US-64	--	-

Deficiencies \& Needs - Regional Transit

TDOT
Department of
Transportation

Multimodal Solutions - Regional Transit

Regional Transit Station Area Development Densities								
2040 Trend Totals	2040 Phase 1 Totals							
Station Areas	Total Population	Total Employment	Total People + Jobs	People + Jobs Density	Total Population	Total Employment	Total People + Jobs	People + Jobs Density
Urban Center	3,284	17,928	21,212	24	26,400	26,400	52,800	6
Urban Neighborhood	3,183	5,937	9,120	15	17,584	7,536	25,120	40
Suburban Center	4,050	7,675	11,725	9	15,072	10,048	25,120	20
Total	$\mathbf{1 0 , 5 1 7}$	$\mathbf{3 1 , 5 4 0}$	$\mathbf{4 2 , 0 5 7}$	$\mathbf{1 5}$	$\mathbf{5 9 , 0 5 6}$	$\mathbf{4 3 , 9 8 4}$	$\mathbf{1 0 3 , 0 4 0}$	$\mathbf{3 8}$

* Excludes Music City Central

Accessibility \& Equity			
Performance Measure	Unit	Trend (2040)	Phase 1 (2040)
People within a 5-Minute Walk or Bike Ride to a Station	Total People	Walk: 10,517 Bike: 138,611	Walk: 59,056 Bike: 187,150

Multimodal Solutions - Bike/Ped

TN

TDOT
Department of
Transportation

Multimodal Solutions - Management \& Operations

1. Intelligent Transportation Systems CCTV, DMS
2. Adaptive Ramp Metering (ARM)
3. Active Arterial Management (AAM)
4. Dynamic On-Ramp Assignment
5. Connected Vehicle Technology Deployment
6. Conversion to Virtual Weigh Stations
7. Smart Truck Parking
8. Rapid Incident Scene Clearance (RISC) Corridor Wide
9. Traffic Incident Management Team Corridor Wide

	Crash Reduction			Incident Duration			Corridor Throughput		Travel Times			
	Low	High	Median									
2. Adaptive Ramp Metering (ARM)	-15%	-30%	-23%				5%	30%	18%	-13%	-26%	-20%
3. Active Arterial Management (AAM)			-30%							-7%	-35%	-21%
9. Traffic Incident Management Team				-30%	-40%	-35%				-8%	-13%	-11%

Source: FHWA

Multimodal Solutions - Performance Measures

	Performance Measure	Unit	Base (2010)	Trend (2040)	Phase 1 (2040)
Moving Autos and Trucks	Auto Travel Times	Minutes	See "Auto Travel Times"		
	Auto Vehicle Miles Traveled (VMT)	Miles (1,000s)	173,652	279,757	279,885
	Auto Vehicle Hours of Delay (VHD)	Hours	101,746	431,384	391,309
	Truck Vehicles Miles Traveled (VMT)	Miles (1,000s)	6,524	12,030	12,090
	Truck Vehicle Hours of Delay (VHD)	Hours	16,204	27,147	27,103
Movis			Vehicle: 177,086 (N) Transit: 483 (N)	Vehicle: 229,304 (N) Transit: 23,511 (N)	Vehicle: 231,676 (N) Transit: 28,213 (N)
	son	ersons per Day	Vehicle: 204,464 (S) Transit: 612 (S)	Vehicle: 264,399 (S) Transit: 10,677 (S)	Vehicle: 277,375 (S) Transit: 12,813 (S)
Safety	Presence of Countermeasures at Safety Hotspots	High, Medium, or Low	See "Interchange \& Bike/Ped Recommendations"		
Land Use Coordination	Presence of TOD at Stations	Total People and Jobs	27,995	42,057	103,040
Equity and Accessibility	People within a 5-Minute Walk or Bike Ride to a Station	Total People	Walk: 1,314 Bike: 43,953	Walk: 10,517 Bike: 138,611	Walk: 59,056 Bike: 187,150
Air Quality/ Emissions	Carbon Intensity	Pounds per Day per Person	99.07	96.35	96.47

Multimodal Solutions - Phase 1 Summary

Goal: World Class Transportation System that is Seamless, Efficient \& Accessible

\checkmark Highway improvements will address capacity and related safety needs in many parts of the corridor
\checkmark Congested areas will continue to result in longer travel times for people and goods
\checkmark There are a series of smaller, short-term investments that can address operational and safety issues in a number of locations
\checkmark In order to support increased growth and travel demand, transit, bike/ped, TDM, and ITS infrastructure and services need to expand

Multimodal
 Solutions Additional Strategies

- Transit Station Area Planning
- Regional Commuter Services
- Hard Shoulder Running on Interstates
- Ramp Metering on Interstates
- HOV Performance \& Enforcement
- Access Management in Interchange Areas

