

<u>Concrete Mix Design</u> Technician Course

Division of Materials and Tests

Concrete Mix Design Technician Course

Tennessee Department of Transportation

2024 Manual

Table of Contents

- 1. Basic Concrete Ingredients
- 2.TDOT Concrete Classes
- 3. Making and Curing Concrete Test Specimens in the Laboratory
- 4. Compressive Strength of Cylindrical Concrete Specimens
- 5.Concrete Mix Design Submittal and Approval
- 6.Absolute Volume Method for Concrete Mix Design
- 7.1 Example 1
- 7.2 Example 2
- 7.3 Example 3
- 8.Appendix

1

Basic Concrete Ingredients

Effects of SCMs on Fresh Concrete Properties

Chemical Admixtures Type A - Water Reducers Type E = Type A + Type C Reduce mixing water 5%-• Type F – High Range Water 30% Reducer Increase ultimate strength Minimum 12% reduction in mixing water Improve workability Increase ultimate strength Type B - Retarders • Improve workability Longer set time Type G = Type F + Type B Improve hot weather Type S – Specific workability Performance Type C - Accelerators Viscosity modifying • Shorter set time Shrinkage reducing Increase early strength Corrosion inhibitor Type D = Type A + Type B TDOT TN

2

TDOT Concrete Classes

Classes of Concrete
 Class CP - Concrete Pavement Class A - Structural, General Use Class A Paving Class D, DS - Bridge Decks Class L - Lightweight Class S - Seal Class X - Plans Specific/High Early Class SCC, SH-SCC - Self Consolidating Concrete Class P-SCC Class P - Prestressed/Precast Bridge Members Class PEM - Performance Engineered Mixture Precast Concrete Flow Fill Shotcrete Grout
TN Department of Transportation

Making and Curing Concrete Test Specimens in the Laboratory

Machine-Mixing

- Batch so that there is 10% excess
- Sequence:
 - 1. Coarse aggregate
 - 2. Small amount of mixing water and solution of admixture
 - 3. Start mixer
 - 4. Fine aggregate, cement, and water
 - 5. 3 minutes mixing
 - 6. 3 minutes rest (covered, to avoid evaporation)
 - 7. 2 minutes final mixing
 - 8. Deposit in clean, damp mixing pan, and remix to uniformity

TN TDOT Department

Specimen Type and Size	Mode of Consolidation	Numbers of Layers of Approximate Equal Depth
Cylinders:		
Diameter, mm [in.]	rodding	2
150 [6]	rodding	3
225 [9]	rodding	4
ip to 225 [9]	vibration	2
Prisms and horizontal creep Cyline Depth, mm [in.]	ders:	
up to 200 [8]	rodding	2
over 200 [8]	rodding	3 or more
up to 200 [8]	vibration	1
over 200 [8]	vibration	2 or more

Making Cylinders a	and Beams
--------------------	-----------

	Cylinders		
Diameter of Cylinder, mm [in.]	Diameter of Rod mm [in.]	Number of Strokes/Layer	
75 [3] to < 150 [6]	10 ± 2 [3/8 ± 1/16]	25	
150 [6]	16 ± 2 [5/8 ± 1/16]	25	
200 [8]	16 ± 2 [5/8 ± 1/16]	50	
250 [10]	16 ± 2 [5/8 ± 1/16]	75	
	Beams and Prisms		
Top Surface Area of Specimen, cm ² [in. ²]	Diameter of Rod mm [in.]	Number of Roddings/Layer	
160 [25] or less	10 ± 2 [3/8 ± 1/16]	25	
165 to 310 [26 to 49]	10 ± 2 [3/8 ± 1/16]	one for each 7 cm ² [1 in. ²] of surface	
320 [50] or more	16 ± 2 [5/8 ± 1/16]	one for each 14 cm ² [2 in. ²] of surface	
	Horizontal Creep Cylinders	1045 85	
Diameter of Cylinder mm [in.]	Diameter of Rod mm [in.]	Number of Roddings/Layer	
150 [6]	16 ± 2 [5/8 ± 1/16]	50 total, 25 along both sides of axis	

Finishing
<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>

Compressive Strength of Cylindrical Concrete Specimens

AASHTO T 22 ASTM C 39

TN TDOT

Time Tolerances

• Test cylinders shall be broken within the permissible time tolerance for a given test age

Test Age	Permissible Tolerance
24 hour	± 0.5 hours
3 days	± 2 hours
7 days	± 6 hours
28 days	± 20 hours
90 days	± 2 days

• 2% tolerance for any age not specified

TN TDOT

Report

- Identification number
- Diameter
- Cross-sectional area
- Maximum load
- · Compressive strength to nearest 10 psi
- Average compressive strength to nearest 10 psi
- if 2+ companion cylinders are tested
- Type of fracture
- Defects in cylinders or caps
- Age of cylinder

TN TDOT Departme

Concrete Mix Design Submittal & Approval

Types of Designs (SOP 4-4)

- New
 - Submit mix design template including all data from trial batch
- Temporary
 - Submit like a new design
 - Breaks must exceed 28-day requirement
 - Design expires if 28-day breaks are not submitted within one month of the original submission.
- Same As
 - A "same as" design is associated to multiple projects for a plant instead of submitting a new one each time
 - Must be an approved design from current year
 - Concrete Design Contract Association Request Form
 - Class X, SCC, P-SCC, and SH-SCC designs require additional information to associate to a new contract.

TN TDOT Departmen

- Compressive strength results from the trial batch at 28 days or earlier
 - High early designs need breaks for specified early strength time
- All material sources must be TDOT approved
 - Producer List

TN TDOT

- Qualified Products List (QPL)
- Design weights of all materials
 If Class X, also send a copy of the plans sheet or
 - specification with requirements
- If Class PEM, submit all necessary documentation for data collection purposes only

Table 604.03-3: Type	I or Type IL Cement M Slag Cement	Iodified by Fly Ash o
Modifier	Maximum Cement Replacement Rate % (by weight)	Minimum Modifie Cement Substitution Rates (by weight)
Slag Cement (Grade 100 or 120)	35.0	1:1
Class "F" Fly Ash	25.0	1:1
Class "C" Fly Ash	25.0	1:1

Water (Mix Design Template)

- Municipal or non-municipal
- For non-municipal also submit most recent water results per TDOT Specification 921.01

Maximum Concentration in Mixing Water	Limits	ASTM Test Method (1)
Chloride Ion Content, ppm	500	C114
Alkalies as (NaO2 + 0.658 K2O), ppm	600	C114
Sulfates as SO4, ppm	3000	C114
Total Solids by mass, ppm	50000	C1603
pH	4.5-8.5	(2)

TN TDOT Departmen

Abolute Volume Method for Concrete Mix Design

Before Designing a Mix	
 Need the following: Class of concrete/Type of construction Slump Maximum w/cm ratio Minimum cementitious material Air content Cement Specific gravity Other cementitious materials Pozzolans GGBFS Silica fume 	gate gravity on s modulus gregate gravity on Il maximum size

7.1

Example #1

Example #1

<u>Given:</u>

- Class A Concrete
- Air Content-6%
- Minimum amount of Cement
- No Fly Ash
- Maximum w/c ratio
- Maximum amount of Fine Aggregate
- Specific Gravities:
 - Cement-3.15
 - Coarse Aggregate-2.79
 - Fine Aggregate-2.63

TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

Class of Concrete:

Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

			Constituent Materials		Weight	Specific G ravity		Volume (ft ³)
		W _{cm} (from table)	Cement	%W _{Cement}	W _{Cement} = (W _{cm} × %W _{Cement})/100		Vcemer	nt = W _{Coment} /(G _{5Coment} × U)
	Cementitious Materials		Fly Ash	%W _{Flyash}	W _{Flyash} = (W _{cm} x %W _{Flyash})/100	(given)	V _{Fiya}	_{sh} = W _{Flyash} /(G _{s,Flyash} × U)
Paste		8	Slag	%W Stop	W _{Slap} = (W _{cm} x %W _{Slap})/100	(given)	V s	$_{3ag} = W_{Sbg} / (G_{s, Sbg} \times U)$
			Water	w/cm (from table)	W _{Water} = W _{cm} x w/cm		V _{wa}	_{ter} = W _{Water} /(G _{s,Water} × U)
			Air				De sign Air	V _{Air} = (Design Air x 27)/100
Total We	eight and Volum	e of Paste			W _{Paste} = W _{cm} + W _{Water}		V _{Fa}	aste = V _{cm} + V _{Water} + V _{Alr}
of	Total Volume Aggregate Requ	uired					V _{A00}	= 27-(V _{cm} + V _{Mater} + Vair)
			Coarse (CA)	I	N _{CA} = V _{CA} x G _{s,CA} x U	(given)	%V _{са} (given)	V _{CA} = (%V _{CA} x V _{A00})/100
	Aggregate		Fine (FA)		WFA = VFA XGSFA XU	(given)	%V _{FA} (given)	V _{FA} = (%V _{FA} x V _{A00})/100
	тс	DTAL		W _T	otal = W _{Paste} + W _{OA} + W _{FA}			V _{Total} = V _{Paste} + V _{CA} + V _{FA}
	UNIT	WEIGHT				U _{Concrese} = W _{Tota}	N Tabl	

Paste Material Weights

Cementitious Material:

W_{CEMENT}= W_{CM} * %W_{CEMENT}

Paste:

W_{PASTE}= W_{CM} + W_{WATER}

Water:

W_{WATER}= W_{CM} * W/CM

			Constituent Materials	Weight	
		W _{cm} (from table)	Cement	%W _{Cement}	W _{Cement} = (W _{cm} x %W _{Cement})/100
	Cementitious Materials		Fly Ash	%W _{Flyash}	W _{Flyash} = (W _{cm} x %W _{Flyash})/100
Paste			Slag	%W _{Slag}	$W_{Siag} = (W_{cm} \times \%W_{Siag})/100$
			Water	w/cm (from table)	W _{Water} = W _{cm} x w/cm
			Air		
Total Weight and Volume of Paste				W _{Paste} = W _{cm} + W _{Water}	

Paste Material Volume

Cementitious Material:

V_{CEMENT}= W_{CEMENT} / (G_{CEMENT} * U)

Water:

V_{WATER}=W_{WATER} / U

<u>Air:</u>

```
V<sub>AIR</sub>=(Design Air * 27)/100
```

Paste:

 $V_{PASTE} = V_{CEMENT} + V_{WATER} + V_{AIR}$

U= 62.4 lbs/ft ³

Weight	Specific Gravity	Volume (ft ³)		
W _{Cement} = (W _{cm} × %W _{Cement})/100		V _{Cement} = W _{Cement} /(G _{s,Cement} × U)		
W _{Flyash} = (W _{cm} x %W _{Flyash})/100	(given)	V _{Ryash} = W _{Ryash} /(G _{s,Ryash} x U)		
$W_{Slap} = (W_{cm} \times \%W_{Slap})/100$	(given)	$V_{Slog} = W_{Slog} / (G_{s,Slog} \times U)$		
W _{water} = W _{cm} x w/cm		V _{Water} = W _{Water} /(G _{s,Water} × U)		
		Design Air V _{Air} = (Design Air x 27)/100		
W _{Paste} = W _{cm} + W _{Water}		V _{Paste} = V _{cm} + V _{Water} + V _{Alr}		

Aggregate Volume

Total Aggregate Volume:

V_{AGG}= 27-V_{PASTE}

- **Coarse Aggregate Volume:**
- $V_{CA} = %V_{CA} * V_{AGG} / 100$
 - Fine Aggregate Volume:
 - $V_{FA} = %V_{FA} * V_{AGG} / 100$

V _{Paste} = V _{orn} + V _{Water} + V _{Air}				
V _{Acc}	= 27-(V _{cm} + V _{Weber} + Vair)			
%V _{CA} (given)	V _{CA} = (%V _{CA} x V _{Agg})/100			
%V #A (given)	V _{FA} = (%V _{FA} x V _{Agg})/100			
	$V_{Total} = V_{Paste} + V_{CA} + V_{FA}$			

Aggregate Weights

Coarse Aggregate Weight:

 $W_{CA} = V_{CA} * G_{CA} * U$

Fine Aggregate Weight:

U= 62.4 lbs/ft ³

 $W_{FA} = V_{FA} * G_{FA} * U$

	Constituent Materials	Weight	Specific Gravity		Volume (ft ³)
Aggregate	Coarse (CA)	$W_{CA} = V_{CA} \times G_{KCA} \times U$	(given)	%V _{CA} (given)	V CA = (%V CA X V ADD)/100
	Fine (FA)	W FA = V FA X G SFA X U	(given)	%V _{FA} (given)	V FA = (%V FA X V Agg)/100

Total and Unit Weight

Total Weight:

$W_{TOTAL} = W_{CA} + W_{FA} + W_{PASTE}$

Unit Weight:

U_{CONCRETE}= W_{TOTAL} / V_{TOTAL}

	Constituent Materials	Weight	Specific Gravity		Volume (ft ³)		
Total Weight and Volume of Paste		$W_{Paste} = W_{cm} + W_{Water}$		v,	Haste = V _{cm} + V _{Water} + V _{Alr}		
Total Volume of Aggregate Required				VADD	= 27-(V _{cm} + V _{Mater} + Vair)		
	Coarse (CA)	W _{CA} = V _{CA} × G _{s,CA} × U	(given)	%V _{CA} (given)	$V_{CA} = (\% V_{CA} \times V_{A_{00}})/100$		
Aggregate	Fine (FA)	W _{FA} = V _{FA} x G _{s,FA} x U	(given)	%V _{FA} (given)	V _{FA} = (%V _{FA} × V _{A22})/100		
TOTAL		W Total = W Paste + W DA + W PA			V _{Tota} = V _{Paste} + V _{CA} + V _{FA}		
UNIT WEIGHT			U _{Concrete} = W _{Tota}	V Tatel			

7.2

Example #2

Example #2

Given:

- Class D Concrete
- Air Content 7%
- Minimum amount of Cement
- Maximum Replacement of Fly Ash
- Maximum w/c ratio
- Maximum amount of Fine Aggregate
- Specific Gravities:
 - Type IL Cement 3.11
 - Fly Ash 2.55
 - Coarse Aggregate 2.79
 - Fine Aggregate 2.63

TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

Class of Concrete: Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

			Constituent Materials		Weight	Specific G ravity		Volume (ft ³)
		W _{cm} (from table)	Cement	%W _{Cement}	W _{Cement} = (W _{cm} × %W _{Cement})/100		V _{Ceme}	nt = W _{Cement} /(G _{sCement} × U)
	Cementitious Materials		Fly Ash	%W _{Flyash}	W _{Flyash} = (W _{cm} x %W _{Flyash})/100	(given)	V _{Flye}	_{sh} = W _{Flyash} /(G _{s,Flyash} x U)
Paste			Slag	%W Stop	W _{Slap} = (W _{cm} x %W _{Slap})/100	(given)	V.	_{Sag} = W _{Sag} /(G _{s,Sag} x U)
			Water	w/cm (from table)	W _{Water} = W _{cm} x w/cm		V _{we}	_{iter} = W _{Water} /(G _{s,Water} x U)
			Air				Design Air	V _{Alr} = (Design Air x 27)/100
Total W	Total Weight and Volume of Paste				W _{Paste} = W _{cm} + W _{Water}		V _R	aste = V _{cm} + V _{Water} + V _{Alr}
of	Total Volume Aggregate Requ	iired					V ₄₀₀	= 27-(V _{cm} + V _{Meter} + Vair)
			Coarse (CA)	l	W _{CA} = V _{CA} x G _{s,CA} x U	(given)	%V _{CA} (given)	V _{CA} = (%V _{CA} × V _{A00})/100
Aggregate		Fine (FA)		N _{FA} = V _{FA} x G _{S,FA} x U	(given)	%V _{FA} (given)	V _{FA} = (%V _{FA} × V _{Agg})/100	
	то	TAL		W	_{ptal} = W _{Paste} + W _{CA} + W _{PA}			V _{Total} = V _{Faste} + V _{CA} + V _{FA}
	UNIT	WEIGHT				U _{Concrete} = W _{Tata}	N Taul	

Paste Material Weights

Cementitious Material:

W_{CEMENT}= W_{CM} * %W_{CEMENT}

Water:

W_{WATER}= W_{CM} * W/CM

Paste:

 $W_{PASTE} = W_{CM} + W_{WATER}$

			Constituent Materials	Weight				
		W _{cm} (from table)	Cement	%W _{Cement}	W _{Cement} = (W _{cm} x %W _{Cement})/100			
	Cementitious Materials		Fly Ash	%W _{Flyash}	W _{Flyash} = (W _{cm} x %W _{Flyash})/100			
Paste			Slag	%W _{Slag}	$W_{Siag} = (W_{cm} \times \%W_{Siag})/100$			
			Water	w/cm (from table)	W _{Water} = W _{cm} x w/cm			
			Air					
Total We	eight and Volum	e of Paste		W _{Paste} = W _{cm} + W _{Water}				

Paste Material Volume

Cementitious Material:

V_{CEMENT}= W_{CEMENT} / (G_{CEMENT} * U)

Water:

V_{WATER}=W_{WATER} / U

<u>Air:</u>

```
V<sub>AIR</sub>=(Design Air * 27)/100
```

Paste:

V_{PASTE}= V_{CEMENT} + V_{WATER}+ V_{AIR}

U= 62.4 lbs/ft ³

Weight	Specific Gravity	Volume (ft ³)
W _{Cement} = (W _{cm} x %W _{Cement})/100		V _{Cement} = W _{Cement} /(G _{s,Cement} × U)
W _{Flyash} = (W _{cm} x %W _{Flyash})/100	(given)	V _{Ryash} = W _{Ryash} /(G _{s, Ryash} x U)
$W_{Slag} = (W_{cm} \times \%W_{Slag})/100$	(given)	$V_{Slog} = W_{Slog} / (G_{s,Slog} \times U)$
W _{Water} = W _{cm} x w/cm		V _{Water} = W _{Water} /(G _{s,Water} x U)
		Design Air V _{Air} = (Design Air x 27)/100
W _{Paste} = W _{cm} + W _{Water}		V _{Paste} = V _{cm} + V _{Water} + V _{Alr}

Aggregate Volume

Total Aggregate Volume:

V_{AGG}= 27-V_{PASTE}

Coarse Aggregate Volume:

 $V_{CA} = %V_{CA} * V_{AGG} / 100$

Fine Aggregate Volume:

 $V_{FA} = %V_{FA} * V_{AGG} / 100$

VP	V _{Plante} = V _{am} + V _{Water} + V _{Ar}								
V _{A00}	= 27-(V _{cm} + V _{Weber} + Vair)								
%V _{CA} (given)	V _{CA} = (%V _{CA} × V _{A00})/100								
%V _{FA} (given)	V FA = (%V FA X V Agg)/100								
	V Total = V Paste + V CA + V FA								

Aggregate Weights

Coarse Aggregate Weight:

 $W_{CA} = V_{CA} * G_{CA} * U$

Fine Aggregate Weight:

U= 62.4 lbs/ft ³

$W_{FA} = V_{FA} * G_{FA} * U$

	Constituent Materials	Weight	Specific Gravity	Volume (ft ³)			
Anneata	Coarse (CA)	$W_{CA} = V_{CA} \times G_{x,CA} \times U$	(given)	%V _{CA} (given)	V _{CA} = (%V _{CA} x V _{Agg})/100		
Aggregate	Fine (FA)	W FA = V FA X G KFA X U	(given)	%V #A (given)	V FA = (%V FA X V Agg)/100		

Total and Unit Weight

Total Weight:

$W_{TOTAL} = W_{CA} + W_{FA} + W_{PASTE}$

Unit Weight:

U_{CONCRETE}= W_{TOTAL} / V_{TOTAL}

	Constituent Materials	Weight	Specific Gravity		Volume (ft ³)		
Total Weight and Volume of Paste		W _{Peste} = W _{cm} + W _{Water}		v,	easte = V _{cm} + V _{Water} + V _{Alr}		
Total Volume of Aggregate Required				VAD	, = 27-(V _{cm} + V _{Mater} + Vair)		
Aggregate	Coarse (CA)	W _{CA} = V _{CA} x G _{s,CA} x U	(given)	%V _{са} (given)	V _{CA} = (%V _{CA} × V _{A02})/100		
Aggregate	Fine (FA)	WFA = VFA XG _{SFA} XU	(given)	%V _{FA} (given)	V _{FA} = (%V _{FA} × V _{A00})/100		
TOTAL		VV Total = VV Paste + VV GA + VV FA			V Total = V Paste + V CA + V FA		
UNIT WEIGHT			U Concrete = VV Tota	I /V Tatel			

7.3

Example #3

Example #3

Given:

- Class A Ternary
- Minimum amount of Cement
- Maximum Replacement of Fly Ash
- Maximum w/c ratio
- Maximum amount of Fine Aggregate
- Specific Gravities:
 - Cement 3.15
 - Fly Ash 2.55
 - Slag 2.63
 - Coarse Aggregate 2.79
 - Fine Aggregate 2.63

TABULATION OF CONCRETE MIX DESIGN PROPORTIONS

Class of Concrete:

Use the table in Section 604.03 of the Standard Specifications (Classification and Proportioning and Quality Assurance)

			Constituent Materials		Weight	Specific G ravity		Volume (ft ³)
		W _{cm} (from table)	Cement	%W _{Cement}	W _{Coment} = (W _{cm} × %W _{Coment})/100		V _{Ceme}	nt = W _{Cement} /(G _{sCement} × U)
	Cementitious Materials		Fly Ash	%W _{Flyash}	W _{Flyash} = (W _{cm} × %W _{Flyash})/100	(given)	V _{Flya}	_{sh} = W _{Flyash} /(G _{s,Flyash} x U)
Paste		8	Slag	%W seg	W _{Slap} = (W _{cm} x %W _{Slap})/100	(given)	V.	$_{Sag} = W_{Sag} / (G_{s, Sag} \times U)$
			Water	w/cm (from table)	W _{Water} = W _{cm} x w/cm		Vwa	_{ter} = W _{Water} /(G _{s,Water} x U)
			Air				Design Air	V _{Alr} = (Design Air x 27)/100
Total We	Total Weight and Volume of Paste				W _{Paste} = W _{cm} + W _{Water}		V _{Ps}	aste = V _{cm} + V _{Water} + V _{Alr}
of	Total Volume Aggregate Requ	lired					V ₄₀₀	= 27-(V _{cm} + V _{Water} + Vair)
			Coarse (CA)		W _{CA} = V _{CA} x G _{s,CA} x U	(given)	%V _{са} (given)	V _{CA} = (%V _{CA} x V _{A00})/100
Aggregate		Fine (FA)		NFA = VFA X G S,FA X U	(given)	%V _{FA} (given)	V _{FA} = (%V _{FA} × V _{A00})/100	
	то	TAL		W _T	ota) = W _{Paste} + W _{OA} + W _{FA}			V _{Tota} = V _{Paste} + V _{CA} + V _{FA}
	UNIT	WEIGHT				U _{Concrete} = W _{Tot}	al N _{Total}	

Appendix

CONCRETE MIXTURE DESIGN TEMPLATE

Contract Nur	nber					Pin Numbe	er					P	oject R	ef. No.					VLIX	51014	11.22
Plant Produc	er/loc	ation					_							-	Plant	ant Number 0					
Contractor	200					Class of Concret	te				•	Streng	th (psi)	3000	at	28 DAY	S Ear	ly Str.	3	t	
P/S Code		Cem	entitiou	s Materials	(cm)	Type/Class	/Grade				Sour	rce			-	Ga (SS	D)	Weight, Ib:	5.	Volu	ume, ft ³
0			Ce	ement				-							•		-				
0			F	lyash				-							-						
0			Slag	Cement				-							-						
P/S Code			Agg	regates		Ту	/pe/Size	2				Source				Ga (SS	D)	Weight, Ib:	5.	Volu	ume, ft ³
0		Co	arse Agg	regate 1 (C	A1)				-						-						
0		Co	arse Agg	regate 2 (C	A2)				-						-						
0		Co	arse Agg	regate 3 (C	A3)				•						-						
0		F	ine Aggr	egate 1 (FA	1)				-						-						
0		F	ine Aggr	egate 2 (FA:	2)				▼ ▼												
0		Air	-Entrain	ing Admixt	ure		E	Brand Nam	ame - Product Dosage (oz/cwt)					% Air	r	Weight, Ib:	5.	Volu	ume, ft ³		
	_			lates.		undana a		_				•			-	4	_				
			Ň	rater		w/cm =									-	1					
P/S Code		Chemi	ical and	Other Admi	ixtures		E	Brand Nam	ne - Produ	ct			Dosa	age (units	;)			Design P	aramete	rs	
0	Тур	e A - Water	r Reduce	r								•				Tota	I om Weig	pht, Ibs.	_		
0	Тур	e B - Retar	der			×							Tota	I Aggrega	te Volume, f	2					
0	Тур	e C - Accel	erator				· · · · · · · · · · · · · · · · · · ·							%FA	of Total	Agg. Vol.					
0	Тур	e D - Redu	cer/Retar	der								•			Theoretical Unit Wt., pcr						
0	Тур	e E - Redu	cer/Accel	erator								•					F	reshly-Mixe	d Prope	erties	
0	Тур	e F - High-	Range W	ater Reduce	er							•	▼ Air Con			ontent, %	ant, %				
0	Тур	e G - High-	Range/R	etarder								-				Tem	perature,	*			
0	Oth	er (QPL Ite	ms)													Sium	np/Flow, in	1.	\rightarrow		
0	Uth	er (QPL Ite	ms) fo Dorfor													Vield	weight, p	cr			
0	Pro	e 5 - Speci	nc Perior	mance												Tield			_		
	Fie	cast										<u> </u>									
								A	GGREGAT	EDATA											
CA/FA	4"	3-1/2"	3"	2-1/2"	2"	1-1/2"	1"	3/4"	1/2"	3/8"	No. 4	No. 8	No.	. 16 No	o. 30	No. 50	No. 100	No. 200	FM	A	bsorption
CA1		-				_		<u> </u>					_					_			
CA2								l					_							_	
CA3								<u> </u>					_							_	
FAT								<u> </u>									10.00	-			
FAZ								I											10.00		
								COMPRE	SSIVE ST	RENGTH	IDATA										
Sample	No.	Date	Made	0	Date Tested	Age, days	s Le	ngth, in.	Dia., i	n.	L/D	(C	Area,	in ²	Load, It	Ibs. Strength, psi			Aver	age, psi
				_		0					0.00	-		0.00	0			0		0	
						0					0.00			0.00	,			0			
		1		1		0			1		0.00	1		0.00				0			

	•		0.00	0.00	v	0
	0		0.00	0.00	0	v
	0		0.00	0.00	0	0
	0		0.00	0.00	0	
	0		0.00	0.00	0	0
	0		0.00	0.00	0	· ·
	0		0.00	0.00	0	0
	0		0.00	0.00	0	v

Remarks:	Mix ID:
Technician Name:	Certification Number:

