l-55/75/26
 Multimodal Corridor Study

- Executive Summary

Prepared by:
AECOM
1000 Corporate Centre Drive, Suite 250
Franklin, TN 37067, USA
May 2020

TN

TDOT
Department of
Transportation

I-55/75/26 Multimodal Corridor Study Executive Summary

Introduction

Tennessee's interstates form the backbone of the state's transportation system, complemented by state highways, local roads, airports, railroads, transit systems, bicycle and pedestrian facilities, and waterborne navigation facilities. Tennessee's interstate highways carry about 30\% of all vehicle miles traveled in the state, and 80% of all truck miles, making them the key component of the roadway system, facilitating the movement of people and goods across the state and across the country. Developing a multimodal transportation system that meets the changing needs of Tennessee's residents, businesses, and visitors will support the state's growth and provide a range of safe transportation options for everyone.
The I-55/75/26 Multimodal Corridor Study evaluated potential transportation improvements to address existing and emerging issues in the system. The analysis is centered on study areas surrounding four Interstate corridors: I-55 in southwestern Tennessee, I-155 in northwestern Tennessee, I-75 in the eastcentral part of the state, and I-26 in eastern Tennessee. Together, these corridors represent more than 200 miles of freeway traveling through urban and rural counties, supported by a robust network of nonfreeway facilities.

The study considered innovative, long-range approaches to addressing multimodal issues and opportunities in these corridors. Solutions were developed to address traffic and congestion, operations and safety, expanded transportation choice, and the ways in which the transportation system supports economic growth, freight movement, and access to employment. The study included multiple opportunities for stakeholder involvement, including surveys, regional meetings, interactive online mapping and the guidance of a project advisory committee made up of representatives from each corridor's study area.
The I-55/75/26 Multimodal Corridor Study is documented in four technical memoranda and a final report. This Executive Summary presents an overview of the key transportation deficiencies identified in each corridor and the top ranked solutions for addressing those deficiencies. For technical details and full explanations of the planning process and its outcomes, please refer to the study documents. This Executive Summary outlines the general shape of the future of transportation in these interstate corridors, suggesting planning studies and projects that will enable them to function efficiently for Tennessee's residents, businesses, and visitors long into the future.

Study Corridors

Four interstate corridors - I-55, I-155, I-75 and I-26 - are included in the study.

 Corridor
 - Executive Summary

I-55 Corridor Deficiencies \& Solutions Summary

Safe, efficient, and equitable multimodal surface transportation is critical to the wellbeing and economic vitality of Tennessee. The I-55/75/26 Multimodal Corridor Study identified and evaluated potential improvements to address issues on four interstate corridors, including l-55. Solutions address traffic and congestion, operations and safety, transportation mode, and support for economic growth and freight movement.
The study included four core activities:

1. Evaluating transportation, demographic, and economic data.
2. Assessing system deficiencies to develop goals and performance measures.
3. Developing and evaluating feasible solutions.
4. Prioritizing actions to implement those solutions.

The l-55 corridor is critical for economic development and growth in the Memphis area. As the region continues to increase in population and employment, pressure on the interstate and adjacent highways also continues to increase. A suite of solutions to address existing and emerging problems was developed, and potential solutions were prioritized for their ability to meet the region's vision in a cost-effective manner while minimizing adverse environmental impacts.

Performance Goals and Objectives - I-55

Goals	Objectives		
Provide efficient and reliable travel	Improve travel times and reduce delay	Provide transportation options for people and freight	Optimize freight movement
Improve safety conditions	Reduce crash rates along the corridor - especially at identified crash "hot spots"	Implement or upgrade technologies that promote safety and effective incident management	Improve bicycle and pedestrian accommodations
Coordinate transportation investments with economic development plans	Improve interchange on/ off ramps	Coordinate with MPOs/ RPOs to determine areas where new/improved Interstate access is needed	
Invest equitably throughout the corridor	Expand transportation options for traditionally underserved populations within the corridor	Consider regional transit options	Identify areas with the greatest data-driven needs
Protect the natural environment and sensitive resources within the corridor	Identify transportation improvements that are not likely to result in major impacts to environmental, social, and cultural resources		

I-55 Corridor Overview \& Transportation Deficiencies

The l-55 corridor extends 13 miles in southwestern Tennessee from the Arkansas state line and Mississippi River to the Mississippi state line. The freeway is a backbone travel route in Shelby County carrying up to 108,000 vehicles daily. This corridor also carries a significant amount of truck traffic as this area of Memphis is a freight hub for the entire region. Growth is anticipated in both population and employment, particularly around interchanges, leading to increased travel. Through data analysis and extensive stakeholder involvement, existing and future deficiencies affecting operations, safety, economic development and transportation equity were identified.

I-55 Fast Facts

Length
 Miles

Counties
1 Shelby
Traffic (Vehicles per Day)
53,000-108,000
H2-0 \%\% Fion on

*Varies north and south of I-240

I-55 Study Area

Highway Capacity

1. Freeway congestion
2. Interchange congestion

 Safety

3. Areas with safety concerns
4. Inadequate signage leads to safety problems

๗\% Freight

5. Potential freight traffic bottlenecks
6. Truck parking needed

 Economic Development

7. Potential for new interchange to accommodate growth
8. Regional transit needed
9. Bicycle and pedestrian facilities needed
through interchange
10. Improved local transit needed
11. Improved transit to airport and employers needed

Pavement \& Structures
12. Road pavement deficient
13. Fifteen corridor bridges eligible for rehabilitation

I-55 Corridor Multimodal Transportation Solutions

Once the corridor deficiencies were identified and analyzed, a universe of alternatives - potential solutions addressing those deficiencies - was
developed and evaluated against a set of goals and performance measures. The alternatives were analyzed for their impacts to safety, traffic congestion, freight movement, and other factors, as well as for how they might function individually and with other solutions over the long term. Twenty-seven alternatives were evaluated for locations throughout the corridor.

Project Ranking Across all Modes/Strategies - I-55

ID	Project Description	Termini	Cost Efficiency			
			Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
C3	Widen existing 4-lane bridge	Mississippi River Bridge	14	\$164,000,000	0.1	\$11,714,300
C2	Improve interchange to maintain six lanes between ramps	McLemore Ave Interchange	13	\$9,930,000	1.3	\$763,800
S1	Close Exit 12C; Convert enter/ exit lanes to merge/exit lanes for l-55	Metal Museum Drive Interchange	12	\$567,000	21.2	\$47,300
S7	Realign Ramps	South 3rd (US-61)Street Interchange	12	\$19,200,000	0.63	\$1,600,000
S8	Add advanced signage and pavement markings; Extend SB deceleration lane	I-240 Interchange	11	\$1,560,000	7.1	\$141,800
F2	Add auxiliary lane between off-ramps and on-ramps at McLemore Avenue	McLemore Ave Interchange	11	\$9,930,000	1.1	\$902,700
TS1	Advance warning and pull-off OR collapsible barrier in the median for over-dimensional vehicles	Advance of Mississippi River Bridge (WB approach)	10	\$27,000	370.4	\$2,700
S3	Add pavement markings; add additional overhead signage	Metal Museum Drive Interchange	10	\$249,000	40.2	\$24,900
S4	Add pavement markings	Metal Museum Drive Interchange	10	\$345,000	30.0	\$34,500
F5	Apply signal coordination on adjacent arterial streets with heavy truck traffic manage on- and off- ramp congestion (Crump, McLemore, US-61, Brooks)	Throughout Corridor	10	\$1,090,000	9.2	\$109,000
TS2	Install corridor management assets (ITS/DMS)	Throughout Corridor	10	\$7,380,000	1.4	\$738,000
S2	Install additional jersey barrier	Metal Museum Drive Interchange	9	\$55,700	337.1	\$3,000
S5	Interchange improvement: Use existing pavement width from removed exit 12C to provide additional merge and exit ramp space at Crump Blvd	Crump Blvd Interchange	9	\$125,000	72.0	\$13,900
S9	Extend WB deceleration lane	1-240 Interchange	9	\$2,000,000	4.5	\$222,200
F3	Resurface so that at least 90\% of the corridor has good ride quality	Horn Lake Rd to Mississippi River	9	\$3,120,000	2.9	\$346,700

Project Ranking Across all Modes/Strategies (cont.) — l-55

ID	Project Description	Termini	Cost Efficiency			
			Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
S6	Resurface Pavement	MS River Bridge to Mill Branch Rd	9	\$6,520,000	1.4	\$724,400
T2	Improve shuttle service frequency to the Memphis Airport and major employment centers in its vicinity	All Transit Centers to Memphis Airport	8	\$1,200,000	6.7	\$150,000
T10	Circulator shuttle allowing a more direct connection to places of employment	Memphis Intermodal Facility	8	\$600,000	13.3	\$75,00
F4	Add overnight truck parking capacity (~ 100 spots)	Throughout Corridor	8	\$2,440,000	3.3	\$305,000
F6	New interchange at Holmes Road	Holmes Rd	8	\$29,700,000	0.3	\$3,712,500

Note: See full report for project details.

Project Ranking Across all Modes/Strategies (Studies) — l-55

ID	Project Description	Termini	Cost Efficiency			
			Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
C1	Evaluate options for increasing capacity and improving merge/diverge and weave areas between the US-61 and I -240 interchanges	I-240/I-69 to US-61	13	\$175,000	N/A	N/A
F1	Study interchange design to ensure safe efficient truck movement	I-240 Interchange	10	\$25,000	N/A	N/A
ED1	Evaluate need for additional interstate access point to accommodate economic growth	I-240 to MS State Line	8	\$100,000	N/A	N/A
T12	Study transit extension into DeSoto County (Mississippi)	US-61 to Goodman Rd (MS-305)	8	\$50,000	N/A	N/A
S10	Evaluate need for additional drainage	Brooks Rd Interchange	7	\$20,000	N/A	N/A
BP1	Conduct study to identify bike/ped accommodations at U.S. and S.R. interchanges, as well as the Brooks Road interchange	Throughout Corridor	7	\$25,000	N/A	N/A

[^0]The alternatives were screened for feasibility and effectiveness. The alternatives that advanced through the evaluation were finally ranked for their positive
impact on transportation in the corridor and cost effectiveness. The ranked projects are shown below.

Feasible Multimodal Solutions - Full List - I-55

I-55 Corridor Top Ranked Transportation Solutions

The rankings indicate projects with the highest benefits to the corridor's multimodal transportation system and
also shows projects that can be implemented with a smaller financial investment. The highest total benefit score a solution could receive is 15 . In all, 11 projects and two studies were scored at 10 or higher, indicating their potential to effectively and efficiently address corridor transportation deficiencies.

Top Ranked Transportation Solutions — - -55

I-55 Corridor Long Term Vision

The transportation solutions recommended in this study would directly address the deficiencies identified through data analysis and by stakeholders.

Implemented together, they would improve multimodal transportation in the corridor in measurable ways, mitigating the adverse conditions that currently exist and those that are forecast to emerge as corridor population, economic activity, and travel grow.

Performance Measure Summary - I-55

	Performance Measure		Unit	$\begin{aligned} & \text { Base } \\ & \text { (2010) } \end{aligned}$	$\begin{aligned} & \text { Trend } \\ & \text { (2040) } \end{aligned}$	$\begin{aligned} & \text { Build } \\ & 2040 \end{aligned}$	\% Change		
Goal			(Base vs Trend)				$\underset{\text { Build) }}{\substack{\text { (Trend ys } \\ \hline}}$		
	Traffic on int	e operates at LOS D etter		\% of interstate operating at LOS D or better	87.5	80.8	86.9	8	7
	Total Daily	cle Miles Traveled MT)	Miles (1,000s)	20,726	25,572	25,504	23	<1	
	Total Daily	e Hours of Travel T)	Hours (1,000s)	725	958	956	32	<1	
	Total Peak H	icle Hours of Delay D)	Hours	22.5	25.6	26.3	18	-1	
		T / Trip	Miles	3.91	4.05	4.04	4	<1	
	Total Vehicl	tes Traveled / Trip	Minutes	8.20	9.10	9.08	11	<1	
	Average	Urban Interstate	MPH	46	41	43	-10	5	
	Travel Speed	Rural Interstate	MPH	72	74	74	0	0	
	Congested O\&D Pairs	Time between key Corridor (Total)	Minutes	100	111	106	11	-5	
	Peak Hour	sity at Improved hanges	Vehicles/Mile/Lane	See "Traffic Operations Memo"					
	Average and	ueues at Improved hanges	Feet	See "Traffic Operations Memo"					
華	Crash Reduc	Safety "Hot Spots"	Above or Below Average Crash Reduction Potential	See "Safety Recommendations"					
	Bridge Condition (Sufficiency Rating)		\% of bridges < 50	9	0	0	N/A	N/A	
			$50<\%$ of bridges < 80	38	47	28	N/A	N/A	
	Pavement	tion (Resurfacing)	\% of corridor resurfaced within the last 10 years	66	66	100	N/A	N/A	
	Pedestrian and Bicycle Accommodations at U.S. and State Route Interchanges		\% interchanges with bike facilities	0	25	25	N/A	N/A	
			\% interchanges with ped. facilities	100	100	100	N/A	N/A	
	Freight (Truck Parking)		\# of rest area spots	13	13	13	0	0	
			\# of truck stop spots	88	88	188	0	114	

Note: See full report for performance measure details.

|-155
 Corridor
 - Executive Summary

I-155 Corridor Deficiencies \& Solutions Summary

Safe, efficient, and equitable multimodal surface transportation is critical to the wellbeing and economic vitality of Tennessee. The I-55/75/26 Multimodal Corridor Study evaluated potential improvements to address issues in four interstate corridors, including I-155. Solutions address traffic and congestion, operations and safety, transportation choice, and support for economic growth and freight movement.
The study included four core activities:

1. Evaluating transportation, demographic, and economic data.
2. Assessing system deficiencies to develop goals and performance measures.
3. Developing and evaluating feasible solutions.
4. Prioritizing actions to implement those solutions.

The I-155 corridor is critical for economic development and growth in northwestern Tennessee. As the region continues to increase in population and employment, pressure on the interstate and adjacent highways also continues to increase. A suite of solutions to address existing and emerging problems was developed, and potential solutions were prioritized for their ability to meet the region's vision in a cost-effective manner while minimizing adverse environmental impacts.

Performance Goals and Objectives - I-155

Goals	Objectives		
Provide efficient and reliable travel	Improve travel times and reduce delay	Provide transportation options for people and freight	Optimize freight movement
Improve safety conditions	Reduce crash rates along the corridor - especially at identified crash "hot spots"	Implement or upgrade technologies that promote safety and effective incident management	Improve bicycle and pedestrian accommodations
Coordinate transportation investments with economic development plans	Improve interchange on/ off ramps	Coordinate with MPOs/ RPOs to determine areas where new/improved Interstate access is needed	
Invest equitably throughout the corridor	Expand transportation options for traditionally underserved populations within the corridor	Consider regional transit options	Identify areas with the greatest data-driven needs
Protect the natural environment and sensitive resources within the corridor	Identify transportation improvements that are not likely to result in major impacts to environmental, social, and cultural resources		

I-155 Corridor Overview \& Transportation Deficiencies

The I-155 corridor extends 16 miles in northwestern Tennessee from the Missouri state line and Mississippi River to Dyersburg. The freeway is a backbone travel route in the region, carrying up to 14,000 vehicles daily. Moderate growth is anticipated in both population and employment, leading to increased travel in the region. Through data analysis and extensive stakeholder involvement, existing and future deficiencies were identified affecting safety, economic development and transportation equity.
|-155 Fast Facts

Length
 16.

Counties
4 Dy \quad Lauderdale

Traffic (VehiclesperDay)
10,000-14,000
H10 \%oy \%표 앙․․․․․․․․․․․

Typical Section
 4 Lanes

I-155 Study Area

Key Existing Deficiencies and Future Needs

Safety

1. Areas with safety concerns
2. Farm equipment blocks lanes
3. Hill and ice cause safety issues

\%.\% Freight

4. Truck crashes prevalent

Economic Development
5. Industrial growth anticipated to increase truck traffic

6. Bicycle and pedestrian facilities needed through interchange

Pavement \& Structures

7. Road pavement aging
8. Two corridor bridges eligible for rehabilitation

I-155 Corridor Multimodal Transportation Solutions

Once the corridor deficiencies were identified and analyzed, a universe of alternatives - potential solutions addressing those deficiencies - was
developed and evaluated against a set of goals and performance measures. The alternatives were analyzed for their impacts to safety, traffic congestion, freight movement, and other factors, as well as for how they might function individually and with other solutions over the long term. Eight alternatives were evaluated for locations throughout the corridor.

Project Ranking Across all Modes/Strategies — I-155

			Cost Efficiency			
ID	Project Description	Termini	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
S2	Install lighting and longitudinal rumble stripes on WB approach to bridge	Mississippi River Bridge	9	\$394,000	22.8	\$43,800
F1	Install warning system for snow, ice, and inclement weather	Great River Rd to JenkinsvilleJamestown Rd	9	\$250,000	36.0	\$27,800
S1	Install LED pavement markers	Entire Corridor	8	\$112,000	71.4	\$14,000
S3	Install fencing	Lenox-Nauvoo Rd to Lake Rd	8	\$573,000	14.0	\$71,600
TS1	Installation of structural impact monitoring system to identify severity of barge collisions	Mississippi River Bridge	8	\$50,000	160.0	\$6,250
TS2	Installation of barge sensor monitoring system	Mississippi River Bridge	8	\$200,000	40.0	\$25,000
F3	Install appropriate signage and increase enforcement to remove farm equipment from the interstate	Mississippi River Bridge to US-412	7	\$18,200	384.6	\$2,600

Note: See full report for project details.

Project Ranking Across all Modes/Strategies (Studies) - I-155

			Cost Efficiency			
ID	Project Description	Termini	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
F2	Evaluate the need to redesign interchange due to truck rollovers	US-412 Interchange	7	\$25,000	N/A	N/A

[^1]The alternatives were screened for feasibility and effectiveness. The alternatives that advanced through the evaluation were finally ranked for their positive
impact on transportation in the corridor and cost effectiveness. The ranked projects are shown below.

Feasible Multimodal Solutions - Full List - |-155

I-155 Corridor Top Ranked Transportation Solutions

The rankings indicate projects with the highest benefits to the corridor's multimodal transportation system and
also shows projects that can be implemented with a smaller financial investment. The highest total benefit score a solution could receive is 15. All projects were scored between seven and nine, indicating a moderate potential to effectively and efficiently address corridor transportation deficiencies.

Top Ranked Transportation Solutions - I-155

I-155 Corridor Long Term Vision

The transportation solutions recommended in this study would directly address the deficiencies identified through data analysis and by stakeholders.

Implemented together, they would improve multimodal transportation in the corridor in measurable ways, mitigating the adverse conditions that currently exist and those that are forecast to emerge as corridor population, economic activity, and travel grow.

Performance Measure Summary - I-155

	Performance Measure		Unit	$\begin{aligned} & \text { Base } \\ & \text { (2010) } \end{aligned}$	$\begin{aligned} & \text { Trend } \\ & \text { (2040) } \end{aligned}$	$\begin{aligned} & \text { Build } \\ & 2040 \end{aligned}$	\% Change		
Goal			(Basevs Trend)				$\begin{aligned} & \text { (Trend vs } \\ & \text { Build) } \end{aligned}$		
	Traffic on in	tate operates at LOS better		\% of interstate operating at LOS D or better	100	100	100	0	0
	Total Daily	icle Miles Traveled (VMT)	Miles (1,000s)	2,430	3,058	3,058	26	0	
	Total Daily	cle Hours of Travel (VHT)	Hours (1,000s)	55	67	67	20	0	
	Total Peak	ur Vehicle Hours of (VHD)	Hours	1.7	2.0	2.0	2	0	
		VMT / Trip	Miles	5.65	5.98	5.98	6	0	
	Total Vehic	utes Traveled / Trip	Minutes	7.70	7.80	7.80	1	0	
	Average Peak Hour	Urban Interstate	MPH	76	76	76	0	0	
	Travel Speed	Rural Interstate	MPH	76	76	76	0	0	
	Congeste key O\&D Pairs	vel Time between ong Corridor (Total)	Minutes	48	49	49	2	0	
	Peak Hour	nsity at Improved changes	Vehicles/Mile/Lane	See "Traffic Operations Memo"					
	Averag Impr	Max Queues at Interchanges	Feet	See "Traffic Operations Memo"					
$\stackrel{\vec{U}}{\stackrel{\rightharpoonup}{\omega}}$	Crash Red	ion in Safety "Hot pots"	Above or Below Average Crash Reduction Potential	See "Safety Recommendations"					
	Bridge Condition (Sufficiency Rating)		\% of bridges < 50	0	0	0	N/A	N/A	
			$50<\%$ of bridges < 80	20	10	10	N/A	N/A	
	Pavement	dition (Resurfacing)	\% of corridor resurfaced within the last 10 years	95	95	95	N/A	N/A	
	Pedestrian and Bicycle Accommodations at U.S. and State Route Interchanges		\% interchanges with bike facilities	0	0	0	N/A	N/A	
			\% interchanges with ped. facilities	0	0	0	N/A	N/A	
	Freight (Truck Parking)		\# of rest area spots	10	10	10	N/A	N/A	
			\# of truck stop spots	40	40	40	N/A	N/A	

Note: See full report for performance measure details.

$1-75$
 Corridor
 - Executive Summary

I-75 Corridor Deficiencies \& Solutions Summary

Study Overview

Safe, efficient, and equitable multimodal surface transportation is critical to the wellbeing and economic vitality of Tennessee. The I-55/75/26 Multimodal Corridor Study evaluated potential improvements to address issues on four interstate corridors, including I-75. Solutions address traffic and congestion, operations and safety, transportation choice, and support for economic growth and freight movement.
The study included four core activities:

1. Evaluating transportation, demographic, and economic data.
2. Assessing system deficiencies to develop goals and performance measures.
3. Developing and evaluating feasible solutions.
4. Prioritizing actions to implement those solutions.

The I-75 corridor is critical for economic development and growth in Tennessee. As the region continues to increase in population and employment, pressure on the interstate and adjacent highways also continues to increase. A suite of solutions to address existing and emerging problems was developed, and potential solutions were prioritized for their ability to meet the region's vision in a cost-effective manner while minimizing adverse environmental impacts.

Performance Goals and Objectives - I-75

Goals	Objectives		
Provide efficient and reliable travel	Improve travel times and reduce delay	Provide transportation options for people and freight	Optimize freight movement
Improve safety conditions	Reduce crash rates along the corridor - especially at identified crash "hot spots"	Implement or upgrade technologies that promote safety and effective incident management	Improve bicycle and pedestrian accommodations
Coordinate transportation investments with economic development plans	Improve interchange on/ off ramps	Coordinate with MPOs/ RPOs to determine areas where new/improved Interstate access is needed	
Invest equitably throughout the corridor	Expand transportation options for traditionally underserved populations within the corridor	Consider regional transit options	Identify areas with the greatest data-driven needs
Protect the natural environment and sensitive resources within the corridor	Identify transportation improvements that are not likely to result in major impacts to environmental, social, and cultural resources		

I-75 Corridor Overview and Transportation Deficiencies

The I-75 corridor extends 162 miles in eastern Tennessee from the Kentucky state line to the Georgia state line, and traverses the Knoxville and Chattanooga metropolitan areas. The freeway carries between 25,000 vehicles daily in the rural areas of Campbell County to more than 200,000 around Knoxville. The corridor serves as a backbone transportation route for economic development. With growth anticipated in both population and employment, particularly around interchanges, demands on the region's transportation system are expected to increase, leading to more congestion and traffic conflicts.
More than a dozen major projects are already programmed to address a variety of issues in the corridor, including widening projects and interchange improvements. Incorporating those projects and looking beyond them through data analysis and extensive stakeholder involvement, existing and future deficiencies affecting operations, safety, economic development and transportation equity were identified.

I-75 Fast Facts

Counties

14

Traffic (venicles per Day)

Typical Section*

*Varies in urban areas

The I-75 corridor is being studied as part of a larger corridor study that also includes I-55, I-155, and I-26.

I-75 Study Area

HePh Highwa Capacity

1．Freeway congestion
2．Interchange congestion

等管。
 Safety

3．Areas with safety concerns
4．Bike and pedestrian safety issues

\％．Freight

5．Potential freight traffic bottlenecks
6．Truck parking needed
7．Truck climbing lanes needed

8．Employment growth expected

※号公 Multimodal
9．Regional transit needed
10．Bicycle and pedestrian facilities needed through interchanges
11．Park－and－Ride lots needed

Pavement \＆Structures

12．Road pavement deficient
13．Fifty－four corridor bridges eligible for rehabilitation（noted ones are structurally deficient）

I-75 Corridor Multimodal Transportation Solutions

Once the corridor deficiencies were identified and analyzed, a universe of alternatives - potential solutions addressing those deficiencies - was
developed and evaluated against a set of goals and performance measures. The alternatives were analyzed for their impacts to safety, traffic congestion, freight movement, and other factors, as well as for how they might function individually and with other solutions over the long term. Forty-three alternatives were evaluated for locations throughout the corridor.

Project Ranking Across all Modes/Strategies - I-75

			Cost Efficiency			
ID	Project Description	Termini	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
C2	Widen existing four lane section	SR-72 to l-40	15	\$108,000,000	0.1	\$7,200,000
C4	Widen existing six lane section	Western Avenue to I-275	14	\$16,600,000	0.8	\$1,185,700
C5	Construct auxiliary lane NB between interchanges	Callahan Drive to SR-131	14	\$15,700,000	0.9	\$1,121,400
C7	Widen NB lanes; consider truck climbing lanes	US-441 to SR-63	14	\$77,900,000	0.2	\$5,564,300
C1	Widen existing four lane section	US-64 Bypass/US-75 to SR-60	13	\$40,700,000	0.3	\$3,130,800
C6	Widen existing four lane section; consider truck climbing lanes	SR-170 to US-441	13	\$131,700,000	0.1	\$10,130,800
C8	Widen/Apply TSM\&O and/or Arterial Management Strategies to address forecasted congestion	I-75/I-24 Interchange to Georgia State Line	12	\$8,110,000	1.5	\$675,800
S5	Add right-turn only lane on NB off-ramp	SR-61 (Charles G Seivers Blvd) Interchange	11	\$406,000	27.1	\$37,000
S10	Install advanced signage and increase capacity of NB exit ramp; Modify interchange to remove weave caused by loop ramps	SR-320 (Brainerd Rd) Interchange	11	\$15,000,000	0.7	\$1,363,600
TS1	Signal coordination on adjacent spillover streets to manage on-and off-ramp congestion	Brainerd Rd, Shallowford Rd, Harrison Rd, Kingston Pk, Central Ave Pk	11	\$1,410,000	7.8	\$128,200
TS3	Integrated Corridor Management (with real-time technology platform)	Ringgold Rd to Shallowford Rd	11	\$ 3,000,000	3.7	\$272,700
C10	Widen northbound to create auxiliary lane	Merchants Drive to Callahan Drive	11	\$9,850,000	1.1	\$895,500
S6	Add pavement markings to indicate lanes for l-40 junction	Western Ave Interchange	10	\$9,090	1,100.1	\$900
S7	Extend length of NB deceleration lane	US-321 Interchange	10	\$1,740,000	5.8	\$174,000
S9	Increase length of NB and SB deceleration lane; Install advanced signage for NB off-ramp	SR-60 Interchange	10	\$2,160,000	4.6	\$216,000
F3	Address bridge deficiency to maintain appropriate load carrying capacity	Tennessee River Bridge	10	\$11,600,000	0.9	\$1,160,000
F6	Address bridge deficiency to maintain appropriate load carrying capacity	East Wolf Valley Rd Bridge	10	\$ 1,230,000	8.1	\$123,000
S3	Extend length of SB deceleration and NB acceleration lanes	SR-63 (Oneida) Interchange	9	\$2,100,000	4.3	\$233,300
S4	Extend length of NB and SB deceleration lanes	SR-63 (Caryville) Interchange	9	\$2,100,000	4.3	\$233,300
S2	Speed limit reduction / warning signage/ retroreflective markers	Jellico Mountain Area	8	\$262,000	30.5	\$32,800

Note: See full report for project details.

Project Ranking Across all Modes/Strategies - I-75

			Cost Efficiency			
ID	Project Description	Termini	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
F2	Resurface so that at least 90% of the corridor has good ride quality	Georgia State Line to Bradley County Line	8	\$10,400,000	0.8	\$1,300,000
F7	Address bridge deficiency to maintain appropriate load carrying capacity	Bruce Gap Road Bridge	8	\$903,000	8.9	\$112,900
BP3	Trail connector	Facilities west of I-75 to Camp Jordan Park	8	\$7,290,000	1.1	\$911,300
S8	Install additional lighting on NB exit ramp	McMinn County Rest Area	7	\$75,900	92.2	\$10,800
F1	Add overnight truck parking in or near Chattanooga	Georgia State Line to Bradley County Line	7	\$1,270,000	5.5	\$181,400

Note: See full report for project details.

Project Ranking Across all Modes/Strategies (Studies) — I-75

			Cost Efficiency			
ID	Project Description	Termini	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
C9	Evaluate options for increasing capacity and improving merge/diverge and weave areas between the SR-320 and SR-153 interchanges.	SR-320 to SR-153	13	\$200,000	N/A	N/A
BP1	Study to propose bike/ped connectivity and safety at existing U.S. and S.R. interchanges, as well as the Shallowford Rd interchange	Throughout Corridor	12	\$100,000	N/A	N/A
TS4	Evaluate locations that would benefit from ramp metering and queue detection systems	Urban Areas of Chattanooga and Knoxville	12	\$250,000	N/A	N/A
TS6	Evaluate balanced alternative routing opportunities	Hamilton County	11	\$100,000	N/A	N/A
ED1	Evaluate need for additional interstate access point to accommodate economic growth	SR-60 to SR-74	11	\$100,000	N/A	N/A
ED2	Evaluate need for new interchange to accommodate growth (consider existing overpass for Ooltewah/Georgetown Rd)	Ooltewah to Cleveland	11	\$100,000	N/A	N/A
T9	Study to establish a Regional Transit Authority to provide inter-county transit service	Knox County	10	\$250,000	N/A	N/A
T21	Study commuter route between Chattanooga and Cleveland. Regional transit access would likely require implementation of a Regional Transit Authority	Chattanooga to Cleveland	8	\$100,000	N/A	N/A
TS2	Conduct study to evaluate correlation between travel speed and crash severity	I-75 and adjacent, parallel arterials	6	\$25,000	N/A	N/A

Note: See full report for project details.

Feasible Multimodal Solutions - Full List—|-75 (north)

Feasible Multimodal Solutions - Full List - I-75 (south)

I-75 Corridor Top Ranked Transportation Solutions

When evaluated side-by-side, the rankings indicate projects with high benefits to the corridor's multimodal
transportation system and that can be implemented with smaller financial investment. The highest score a solution could receive is 15 . In all, 17 projects and seven studies were scored at 10 or higher, indicating their potential to effectively and efficiently address corridor transportation deficiencies.

Top Ranked Transportation Solutions - I-75 (north)

Top Ranked Transportation Solutions - I-75 (south)

I-75 Corridor Long Term Vision

The transportation solutions recommended in this study would directly address the deficiencies identified through data analysis and by stakeholders. Implemented together, they would improve multimodal
transportation in the corridor in measurable ways, mitigating the adverse conditions that currently exist and those that are forecast to emerge as corridor population, economic activity, and travel grow.

Performance Measure Summary - I-75

	Performance Measure		Unit	$\begin{gathered} \text { Base } \\ \text { (2010) } \end{gathered}$	$\begin{aligned} & \text { Trend } \\ & \text { (2040) } \end{aligned}$	$\begin{aligned} & \text { Build } \\ & 2040 \end{aligned}$	\% Change		
Goal			(Base vs Trend)				(Trend vs Build)		
	Traffic on int	te operates at LOS D etterw		\% of interstate operating at LOS D or better	94.5	65.1	88.5	31	36
	Total Daily Ve	Miles Traveled (VMT)	Miles (1,000s)	38,071	51,409	50,271	35	-2	
	Total Daily	cle Hours of Travel (HT)	Hours (1,000s)	1,069	1,762	1,715	64	-3	
	Total Peak H	ehicle Hours of Delay (VD)	Hours	35.5	54.6	52.0	54	-5	
		MT / Trip	Miles	4.93	4.88	47.7	-1	-2	
	Total Vehicle	utes Traveled / Trip	Minutes	1.68	2.06	2.05	22	<1	
	Average	Urban Interstate	MPH	49	40	48	-19	20	
	Travel Speed	Rural Interstate	MPH	67	54	60	-20	12	
	Congested O\&D Pairs	I Time between key g Corridor (Total)	Minutes	328	412	380	26	-8	
	Peak Hour	nsity at Improved changes	Vehicles/Mile/Lane	See "Traffic Operations Memo"					
	Average and	Queues at Improved changes	Feet	See "Traffic Operations Memo"					
$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{*} \end{aligned}$	Crash Reduct	in Safety "Hot Spots"	Above or Below Average Crash Reduction Potential	See "Safety Recommendations"					
	Bridge Condition (Sufficiency Rating)		\% of bridges < 50	0	0	0	N/A	N/A	
			$50<\%$ of bridges < 80	30	28	20	N/A	N/A	
	Pavement	ition (Resurfacing)	\% of corridor resurfaced within the last 10 years	74	76	88	N/A	N/A	
	Pedestrian and Bicycle Accommodations at U.S. and State Route Interchanges		\% interchanges with bike facilities	0	0	3	N/A	N/A	
			\% interchanges with ped. facilities	9	9	11	N/A	N/A	
	Freight (Truck Parking)		\# of rest area spots	145	145	145	0	0	
			\# of truck stop spots	1,161	1,161	1,211	0	4	

Note: See full report for performance measure details.

|-26
 Corridor
 -Executive Summary

I-26 Corridor Deficiencies \& Solutions Summary

Safe, efficient, and equitable multimodal transportation is critical to the well-being and economic vitality of Tennessee. The I-55/75/26 Multimodal Corridor Study identified and evaluated potential improvements to address issues on four interstate corridors, including I-26. Solutions address traffic and congestion, operations and safety, transportation mode, and support for economic growth and freight movement.
The study included four core activities:

1. Evaluating transportation, demographic, and economic data.
2. Assessing system deficiencies to develop goals and performance measures.
3. Developing and evaluating feasible solutions.
4. Prioritizing actions to implement those solutions.

The I-26 corridor is critical for economic development and growth in northeast Tennessee. As the region continues to increase in population and employment, pressure on the interstate and adjacent highways also continues to increase. A suite of solutions to address existing and emerging problems was developed, and potential solutions were prioritized for their ability to meet the region's vision in a cost-effective manner while minimizing adverse environmental impacts.

Performance Goals and Objectives - I-26

Goals	Objectives		
Provide efficient and reliable travel	Improve travel times and reduce delay	Provide transportation options for people and freight	Optimize freight movement
Improve safety conditions	Reduce crash rates along the corridor - especially at identified crash "hot spots"	Implement or upgrade technologies that promote safety and effective incident management	Improve bicycle and pedestrian accommodations
Coordinate transportation investments with economic development plans	Improve interchange on/ off ramps	Coordinate with MPOs/ RPOs to determine areas where new/improved Interstate access is needed	
Invest equitably throughout the corridor	Expand transportation options for traditionally underserved populations within the corridor	Consider regional transit options	Identify areas with the greatest data-driven needs
Protect the natural environment and sensitive resources within the corridor	Identify transportation improvements that are not likely to result in major impacts to environmental, social, and cultural resources		

I-26 Corridor Overview \& Transportation Deficiencies

The I-26 corridor extends 54 miles in northeastern Tennessee from the North Carolina border to Kingsport, where the highway transitions to US 23. The interstate travels through rural and urban areas and carries between 8,000 (Unicoi County) and 64,000 (Johnson City) vehicles per day. Traffic is expected to increase as population and employment increase - especially around the urban interchanges. Through data analysis and extensive stakeholder involvement, existing and future deficiencies affecting operations, safety, economic development and transportation equity were identified.

I-26 Fast Facts

Length

Counties
4. Carter \quad Unicoi

Traffic (Vehicles per Day)
 8,000-64,000

Typical Section
4 Lanes . .

PRighway Capacity

1. Interchange congestion
2. Traffic bottlenecks
3. Truck climbing lanes needed

E. Safety

4. Areas with safety concerns
5. Bike and pedestrian crashes at interchanges

...". Freight

6. Freight traffic bottleneck
7. Truck parking needed

絭潽

8. Employment growth expected

9. Park-and-Ride lots needed
10. Regional transit needed
11. Bicycle and pedestrian facilities needed through interchange

\square
 Pavement \& Structures

12. Road pavement aging in Washington County
13. Fifteen corridor bridges eligible for rehabilitation

I-26 Corridor Multimodal Transportation Solutions

Once the corridor deficiencies were identified and analyzed, a universe of alternatives - potential solutions addressing those deficiencies - was
developed and evaluated against a set of goals and performance measures. The alternatives were analyzed for their impacts to safety, traffic congestion, freight movement, and other factors, as well as for how they might function individually and with other solutions over the long term. Twenty-nine alternatives were evaluated for locations throughout the corridor.

Project Ranking Across all Modes/Strategies - I-26

				Cost Efficiency			
ID	Project Description	Termini	Source of Solution	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
C1	Widen Eastbound Off-Ramp to Provide Option Lane	SR-400 to SR-91	Data Analysis	12	\$1,290,000	9.3	\$107,500
F4	Install CCTV to Monitor Congestion \& Accidents, Advise Trucks Via HAR	SR-381 to US-321	Data Analysis	11	\$1,950,000	5.6	\$177,300
S2	Widen Inside Shoulders	SR-93 to SR-347	Public/ Stakeholder	10	\$3,180,000	3.1	\$318,000
S5	Install Additional Lighting \& Signage	Kingsport and Johnson City Urbanized Areas	Public/ Stakeholder	10	\$6,490,000	1.5	\$649,000
S7	Install Additional Guardrail \& Median Cable Barrier	Throughout Corridor	Public/ Stakeholder	10	\$14,400,000	0.7	\$1,440,000
TS2	ITS Installation (CCTV \& DMS)	Kingsport and Johnson City Urbanized Areas	Public/ Stakeholder	10	\$3,270,000	3.1	\$327,000
BP2	Add Bicycle Lane/Multi-Use Path on US-11W Through I-26 Interchange	I-26 / US-11W Interchange	Data Analysis	10	\$2,050,000	4.9	\$205,000
S8	Reconfigure Interchange to Address Ramp Geometry	I-26/I-81 Interchange	Public/ Stakeholder, TN Freight Plan	9	\$18,000,000	0.5	\$2,000,000
ED2	Improve Interchange Capacity \& Geometry to Accommodate Expected Economic Growth	I-26/I-81 Interchange	Public/ Stakeholder	9	\$18,000,000	0.5	\$2,000,000
S4	Install Road Weather Information System	TN/NC State Line to Unicoi/Carter Co. Line	Public/ Stakeholder	8	\$12,200,000	0.7	\$1,525,000
S6	Install Additional Overhead Signage	State of Franklin Rd. Interchange (SR-381)	Public/ Stakeholder	8	\$248,000	32.3	\$31,000
F5	Add Overnight Parking Location (~50 spaces)	Along Corridor	Data Analysis	8	\$1,270,000	6.3	\$158,800
F2	Add Eastbound Truck Climbing Lane	SR-93 to SR-347	Kingsport MTPO 2040 LRTP	8	\$6,720,000	1.2	\$840,000
F7	Add Eastbound Truck Climbing Lane	Flag Pond Rd to NC State Line	TN Freight Plan	8	\$40,800,000	0.2	\$5,100,000

Note: See full report for project details.

Project Ranking Across all Modes/Strategies - I-26

				Cost Efficiency			
ID	Project Description	Termini	Source of Solution	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
S1	Install Fencing by Bays Mountain Nature Preserve	US-11W to Meadowview Pkwy	Data Analysis	7	\$441,000	15.9	\$63,000
F6	Add Eastbound Truck Climbing Lane	Near Clear Branch Access	TN Freight Plan	7	\$32,700,000	0.2	\$4,671,400
TS5	Construct Median Breaks to allow for EMS Vehicle Turnaround	Erwin to NC State Line	Public/ Stakeholder	7	\$77,000	90.9	\$11,000
T10	Designate Park-and-Ride Lots Near SR-93, SR-347, SR-75	Various Locations	Public/ Stakeholder	7	\$906,000	7.7	\$129,400
TS1	HELP Truck Expansion to I-26	Throughout Corridor	Public/ Stakeholder	6	\$675,000	8.9	\$112,500

Note: See full report for project details.

Project Ranking Across all Modes/Strategies (Studies) — I-26

				Cost Efficiency			
ID	Project Description	Termini	Source of Solution	Total Benefit	Cost Estimate	Benefit Cost Index	Dollar per Benefit
TS3	Evaluate Need for Ramp Metering	Kingsport and Johnson City Urbanized Areas	Public/ Stakeholder	10	\$75,000	N/A	N/A
T3	Study Commuter Route Between JCT Transit Center \& Citi Commerce Solutions/ Frontier Health (Gray)	Johnson City to Gray	JCT Comprehensive Operations Analysis	10	\$50,000	N/A	N/A
F3	Study I-81/I-26 Interchange for Capacity, Truck Use	I-26/I-81 Interchange	Kingsport MTPO 2040 LRTP	9	\$220,000	N/A	N/A
TS4	Conduct Speed Study	Eastern Star Rd to Boones Creek Rd (SR-354)	Public/ Stakeholder	9	\$25,000	N/A	N/A
ED1	Evaluate Need for Additional Interstate Access Point	Eastern Star Rd to SR-75	Public/ Stakeholder	9	\$100,000	N/A	N/A
T9	Study Commuter Route Between Johnson City \& Kingsport	Johnson City to Kingsport	Data Analysis	9	\$75,000	N/A	N/A
BP3	Study to propose Bike/ Ped Connectivity \& Safety Improvements at U.S. \& State Route Interchanges	Throughout Corridor	Data Analysis	9	\$50,000	N/A	N/A
C2	Evaluate Need for C-D Lanes and/or Other Improvements Between Interchanges	Meadowview Pkwy to SR-93/SR-126	Public/ Stakeholder	8	\$160,000	N/A	N/A

[^2]The alternatives were screened for feasibility and effectiveness. The alternatives that advanced through the evaluation were finally ranked for their positive
impact on transportation in the corridor and cost effectiveness. The ranked projects are shown below.

Feasible Multimodal Solutions - Full List - I-26

I-26 Corridor Top Ranked Transportation Solutions

The rankings indicate projects with the highest benefits to the corridor's multimodal transportation system
and also shows projects that can be implemented with a smaller financial investment. The highest total benefit score a solution could receive is 15 . In all, seven projects and two studies were scored at 10 or higher, indicating their potential to effectively and efficiently address corridor transportation deficiencies.

Top Ranked Transportation Solutions - I-26

I-26 Corridor Long Term Vision

The I-26 corridor is experiencing traffic growth, but appears to have enough capacity to accommodate this growth and congestion for the next two decades.

The transportation solutions recommended in this study would directly address the deficiencies identified through data analysis and by stakeholders. Implemented together, they would improve multimodal transportation in the corridor in measurable ways, mitigating the adverse conditions that currently exist and those that are forecast to emerge as corridor population, economic activity, and travel grow.

Performance Measure Summary - I-26

[^3]
[^0]: Note: See full report for project details.

[^1]: Note: See full report for project details.

[^2]: Note: See full report for project details.

[^3]: Note: See full report for performance measure details.

