4TH QUARTER 2020 GROUNDWATER ASSESSMENT MONITORING REPORT NOVEMBER 2020 MONITORING EVENT

FORMER ENVIRONMENTAL WASTE SOLUTIONS (EWS) CAMDEN CLASS II LANDFILL

TDSWM PERMIT NUMBER IDL 03-0212 (TERMINATED)
200 OMAR CIRCLE
CAMDEN, TN 38320

Prepared for:
THE TENNESSEE DEPARTMENT OF ENVIRONMENT AND
CONSERVATION

FORMER ENVIRONMENTAL WASTE SOLUTIONS CAMDEN CLASS II LANDFILL

Prepared by: CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 117 SEABOARD LANE, SUITE E-100 FRANKLIN, TENNESSEE 37067

CEC PROJECT 181-364

JANUARY 2021

Philip Campbell, P.G.

Project Manager

Kevin B. Wolfe Vice-President

TABLE OF CONTENTS

		YE SUMMARYY OF TERMS	
1.0	INT	RODUCTION	1
1.0	1.1	Site Location	
	1.2	Current Activities	
2.0	AOU	UIFER CHARACTERISTICS	2
	2.1	Geologic and Aquifer Characteristics	
		2.1.1 Camden and Harriman Formations	
	2.2	Monitor Well Integrity & Static Water Levels	
	2.3	Groundwater Flow Direction	
	2.4	Potentiometric Gradient	
	2.5	Hydraulic Conductivity	
3.0	GRO	OUNDWATER SAMPLING PROCEDURES	5
	3.1	Instrumentation	
	3.2	Groundwater Purging and Collection of Field Parameter Values	
	3.3	Groundwater Sample Collection & Preservation	
	3.4	Leachate Sampling Procedures	
	3.5	Quality Assurance and Quality Control	
		3.5.1 Field Quality Assurance and Quality Control	
		3.5.2 Laboratory Quality Assurance and Quality Control	
	3.6	Sample Chain-of-Custody	
4.0	LAB	ORATORY ANALYTICAL PROCEDURES	10
	4.1	Analytical Methods	
	4.2	Laboratory Analytical Results	
		4.2.1 EWS Groundwater Quality Relative to the EPA Primary Drinking	
		Water Standards	10
		4.2.2 EWS Groundwater Quality Relative to the National Secondary	
		Drinking Water Standards	13
	4.3	Quality Control Qualifier Codes	15
5.0	STA	TISTICAL ANALYSIS	15
	5.1	Applicable Methods	15
	5.2	Statistical Results	
6.0	CON	ICLUSIONS	19
7.0	REC	OMMENDATIONS	21

APPENDICES

Maps & Tables
Statistical Evaluations & Time Series Plots
Laboratory Analytical Report & Field Information Logs
CEC Standard Operating Procedures

EXECUTIVE SUMMARY

This report documents the 4th quarter 2020 assessment-monitoring event, which was performed at the former Environmental Waste Solutions, LLC (EWS) Camden Class II Landfill on November 17th, 2020, and a re-sample event that was performed at MW-3 on December 8, 2020.

The former EWS Camden Class II Landfill is located in Benton County at 200 Omar Circle, Camden, Tennessee (latitude 36°03'16" N; longitude -88°05'16" W), and was formerly registered with the Tennessee Division of Solid Waste Management (DSWM) with permit number IDL 03-0212 and previously received secondary aluminum smelter waste for disposal including aluminum dross, salt cakes, and other industrial wastes. The IDL 03-0212 permit was terminated in July 2017.

Beginning in 2008, the site entered into the Groundwater Detection-Monitoring Program, and groundwater samples were collected from site monitoring wells on a semi-annual basis. EWS entered the Assessment Monitoring Program because of chloride concentrations reported above the 250 mg/l EPA secondary drinking water standard (2DWS) at monitoring well MW-3 during the November 2015 semi-annual detection-monitoring event. As a result, additional groundwater quality assessment activities were completed which included the installation of a new permanent groundwater monitoring well (MW-5), the installation of three (3) temporary monitoring wells (TMW-1, TMW-2, TMW-3), and completion of a private water-use survey. In addition, the semi-annual detection monitoring frequency was increased from semi-annual to quarterly assessment monitoring. The observed chloride concentration at MW-3 during this November 2020 event (18.7 mg/l) was well below the 2DWS.

Quarterly assessment monitoring activities have been performed since the November 2015 monitoring event in general accordance with the site's Groundwater Quality Assessment Plan (GWQAP) dated March 14, 2016. During the second quarter 2017 assessment-monitoring event, total cadmium was detected above the maximum contaminant level (MCL) at MW-3, which was the first MCL exceedance for total cadmium concentrations at any well location on site. As a result, enhancements have been made to the sampling and analytical program for the site.

The 4^{th} quarter 2020 sampling event at the facility included the following sampling activities:

Groundwater samples were collected by CEC on November 17, 2020 from MW-1, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3. A groundwater re-sample event was completed at MW-3 on December 8, 2020, and a sample was collected from MW-3 and analyzed for total cadmium and dissolved cadmium. A leachate sample was also collected by CEC on December 9, 2020 from the "Industrial Waste Cell (IWC)" during this event. No sample was collected from the "Aluminum Processing Waste Cell (APWC)" during this sampling event since leachate was not currently being generated from the APWC. The amount of leachate produced from the IWC and APWC have been minimal since the landfill was capped, and the leachate flows being pumped from the IWC cell

has been intermittent. Also, no leachate has been generated from the APWC cell for the past several months.

Pace Analytical (Pace) is the laboratory sub-contracted to perform the chemical analyses. Laboratory reports for the 4th quarter 2020 groundwater analyses were prepared by Pace and reported to CEC on December 1st, 2020 for the groundwater samples. Total cadmium was detected over the MCL at MW-3 in the sample taken during the November 17, 2020 sampling event. A verification re-sample event for cadmium was completed at MW-3 on December 8, 2020 to determine the validity of the cadmium detection over the MCL during the initial November 17, 2020 event. The results of the MW-3 re-sample event were prepared by Pace and reported to CEC on December 16, 2020. The IWC-leachate sample analysis was prepared by Pace and reported to CEC on December 21, 2020.

The reported concentrations of chemicals detected in the groundwater monitoring wells and temporary monitoring wells were reviewed and compared against their respective U.S. EPA Maximum Contaminant Levels (MCLs) and U.S. National Secondary Drinking Water Standards (2DWS). Where primary or secondary standards were not available (i.e., cobalt), concentrations were reviewed and compared against their EPA Regional Screening Levels (RSLs). Statistical analysis methods were used to identify whether there were any statistically significant increases (SSIs) in any site monitoring wells over background concentrations for the analyzed water quality parameters. The results of the analyses during this assessment-monitoring event are summarized in the following paragraphs.

As stated previously in this report, total cadmium was detected above the MCL (0.005 mg/l) at MW-3 (0.00816 mg/l) during the November 17, 2020 monitoring event and was higher in concentration compared to the previous June 2, 2020 event (0.00278 mg/l). In a duplicate sample collected from MW-3 during the November 17, 2020 monitoring event, the total cadmium concentration (0.00817 mg/l) was similar to the concentration in the original sample from MW-3. During the December 8, 2020 verification re-sample event, the total cadmium (0.00906 mg/l) and dissolved cadmium (0.00787 mg/l) concentrations at MW-3 were both above the MCL. The cadmium detections at MW-3 during this event were the only cadmium detections above the Practical Quantification Limit (PQL) at any of the groundwater monitoring locations. Based on the Mann-Kendall trend test, no distinct statistically significant trend was identified for total cadmium concentrations at MW-3, when considering data from the past 19 sampling events since November 2016. Total cadmium was first detected above the PQL during the November 10, 2016 event (0.00177 mg/l) and was first detected above the MCL at MW-3 during the June 8, 2017 event (total cadmium at MW-3 = 0.0286 mg/l).

Although there have been elevated concentrations of total cadmium in MW-3, the cadmium levels observed in MW-3 have improved significantly since closure activities have been completed.

During the previous 3 consecutive quarterly monitoring events, the cadmium concentrations at MW-3 were below the MCL.

Twelve SSIs were identified over background during this event. SSIs included mercury (upgradient MW-1), chloride (MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3), total cadmium (MW-3), fluoride (MW-3), sulfate (MW-3), and zinc (MW-3 and MW-5). The chloride, fluoride, sulfate, and zinc detections observed in the site monitoring wells were all below their associated MCLs or 2DWS.

Glossary of Terms

Appendix I Refers to the required regulatory sample list of groundwater parameters

CEC Civil & Environmental Consultants, Inc.

Class I Landfill Municipal Solid Waste Landfill

Class II Landfill Industrial Waste Landfill

Class IV Landfill Construction/Demolition Waste Landfill

Class III/IV Landfill Landscaping and Construction/Demolition Waste Landfill

DML Construction Demolition Landfill

US EPA United States Environmental Protection Agency

Pace Pace Analytical

EWS Environmental Waste Solutions

GW Groundwater

HDPE High Density Polyethylene
HI Hydrogeologic Investigation
MCL Maximum Contaminant Level
microomhos•cm-1 micro-Siemens per centimeter

mg/l milligrams per Liter

MW Monitor Well

NPPL Non-parametric prediction limit analysis

ORP Oxidation Reduction Potential

POTW Publically Owned Treatment Works

ppm parts per million*

PQL Practical Quantitation Limit

QC Quality Control

2DWS Secondary Drinking Water Standard (EPA)
SESD Science and Ecosystem Support Division

SNL Sanitary Landfill

SSI Statistically Significant Increase

TDEC Tennessee Department of Environment and Conservation

TDOG Tennessee Division of Geology

TDSWM Tennessee Division of Solid Waste Management

TOC Top of Casing

VOC Volatile Organic Compound

^{*} ppm – parts per million* is equivalent to mg/l – milligrams per Liter for water samples

1.0 INTRODUCTION

1.1 SITE LOCATION

The former EWS Camden Class II landfill is located just off Highway US 70 at 200 Omar Circle, Camden, Tennessee. The site is located on the Camden, Tennessee USGS quadrangle at north latitude 36° 03' 16" and west longitude -88° 05' 16" at an average elevation of 400 feet above mean sea level datum (MSL). The location of the facility is shown in **Appendix A – Figure 1 – Site Location Map**. The landfill footprint can be viewed in **Appendix A – Figure 2 – Potentiometric Surface Map**.

1.2 CURRENT ACTIVITIES

The former EWS Camden Class II landfill is not currently operating (i.e., the permit has been terminated) and landfill cap construction and closure activities have been completed by TDEC. Continued post-closure activities at the facility are being implemented to protect the environment and human health. These activities include leachate pre-treatment, leachate hauling and disposal, storm water management activities, and groundwater monitoring activities.

2.0 AQUIFER CHARACTERISTICS

2.1 GEOLOGIC AND AQUIFER CHARACTERISTICS

The extensive reworking of the site because of the excavation of chert for local road and fill projects has impacted the original site geology. Based upon a review of the Tennessee Division of Geology (TDOG) Geologic Map and site observations, it appears that the site is within the Camden and Harriman Formations. It is reported by the TDOG that the Camden and Harriman Formations are lithologically identical and not enough fossils are present to form a convenient basis for subdivision.

2.1.1 Camden and Harriman Formations

The Camden and Harriman Formations are described as follows: chert, gray with specks and mottling's of very light-gray and yellowish-gray (surfaces stained pale to dark yellowish-orange), bedded and blocky (beds 2 to 8 inches thick), dense, conchoidal fracture, contains pods of white to light gray tripolitic clay, locally stained yellow and brown, and fossiliferous. Locally, especially near the top, fragments of chert are cemented into large masses and beds of breccia by dark-brown to moderate-red limonite.

Groundwater potentiometric data collected from the uppermost water-bearing zone across the entire landfill site footprint during the 1999 and 2006 hydrogeological investigations indicated that groundwater flow in the uppermost aquifer is generally to the south. Comparisons of the water bearing zone elevations to static groundwater elevations indicate an unconfined aquifer.

2.2 MONITOR WELL INTEGRITY & STATIC WATER LEVELS

The groundwater-monitoring network for the former EWS Class II Landfill currently consists of monitoring wells MW-1, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3. Due to insufficient groundwater recharge volumes for sampling, MW-2 has been removed from the regular sampling network and replaced by MW-4. MW-2 is still intact and is used for potentiometric surface measurements and field parameter testing. Monitoring well MW-1 serves as an up-gradient monitoring point, while monitoring wells MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3 serve as down-gradient monitoring points. The temporary wells (TMW-1, TMW-2, and TMW-3) were installed with the purpose of delineating the areal extent of groundwater contamination and providing additional potentiometric interpretation. The installation of these temporary wells was in response to elevated chloride concentrations at MW-3, which were first detected during the November 2015 sampling event. In addition to providing potentiometric information for the site, these temporary wells yield groundwater samples for water-quality analyses.

The following table presents the wells that were used to develop this report.

Up-gradient Monitoring Points	Down-gradient Monitoring Points							
MW-1	MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3							

Before purging and sampling activities began, depth to water (DTW) measurements were collected at each of the above-referenced monitoring wells using an electronic water level indicator such as the Solinst® model #122 electronic water-level indicator. DTW measurements were also collected from MW-2 for potentiometric interpretation. DTW measurements were collected in the following order from first to last: MW-1, MW-5, TMW-1, TMW-2, TMW-3, MW-4, MW-2, and finally MW-3.

The integrity of each monitoring well was checked during each sampling event prior to groundwater collection. The physical condition of each wellhead was observed and noted along with the condition of all locking mechanisms for each monitoring well. Once the watertight seal was removed from the top of each monitoring well's casing, the well was allowed to equilibrate to atmospheric conditions. The water-level indicator was decontaminated in accordance with the United States Environmental Protection Agency-Science and Ecosystem Support Division (USEPA SESD) procedures for field water-level measurements in between wells and a new pair of clean nitrile gloves were donned at each monitoring location while collecting DTW measurements. The decontaminated electronic water-level indicator was slowly lowered into the well to establish the distance between the top of casing and the elevation of free groundwater. The electronic probe was capable of determining this distance to within one-hundredth of one foot (0.01 foot). The distance was written in the site-specific field book or field data sheet as DTW. Upon collection of these data, the electronic water-level indicator was removed from the monitoring well and decontaminated.

The following equation is used to determine the elevation of groundwater at each well:

Established Top of Casing Elevation – Depth to Water = Groundwater Elevation

Top of casing elevation has been determined by a licensed land surveyor and is referenced to the current Tennessee State Plane Coordinate System. The top of casing elevations for all sitemonitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3) were updated by a licensed land surveyor on May 12, 2016. Groundwater elevations are listed in **Appendix A – Table 1 – Field Parameters & Potentiometric Data** and reflect the most recent survey.

2.3 GROUNDWATER FLOW DIRECTION

Groundwater at the landfill appears to generally flow in a southern direction towards Charlie Creek and Cane Creek. Groundwater flow in the vicinity of the former EWS Class II Landfill generally flows from a topographic high north of the landfill towards monitoring wells MW-2, MW-3, MW-4, and MW-5 and temporary monitoring wells TMW-1, TMW-2, and TMW-3, which are all downgradient of the waste cells.

2.4 POTENTIOMETRIC GRADIENT

The potentiometric surface of the unconfined aquifer occurring beneath the former EWS Class II Landfill occurs at approximately 22.38 feet below the top of casing at the up-gradient monitor well MW-1 to approximately 11.38 feet below the top of casing at monitor well MW-4. The potentiometric gradient calculated from groundwater elevation data collected on November 17, 2020 is approximately 1.26%.

The potentiometric gradient is calculated according to the following formula:

The above calculation assumes a perpendicular gradient between the potentiometric elevations from MW-1 and MW-4. These assumptions may provide an artificially higher potentiometric gradient than is likely occurring at the site.

2.5 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity estimations within the uppermost aquifer occurring beneath the landfill have not been determined at this time.

3.0 GROUNDWATER SAMPLING PROCEDURES

3.1 INSTRUMENTATION

Before purging and sampling activities began, DTW measurements were collected at each of the monitoring wells. A YSI Professional Plus® multi-parameter instrument (YSI) was used to record pH, conductivity, temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP) during groundwater sampling events at the landfill. A Hach® model 2100Q turbidity meter was used to collect turbidity readings. Each instrument was either checked against known standards or calibrated per manufacturers' specifications prior to the commencement of sampling activities.

3.2 GROUNDWATER PURGING AND COLLECTION OF FIELD PARAMETER VALUES

On November 29, 2017, dedicated submersible bladder pumps (low-flow bladder pumps) were installed in each of the groundwater monitoring wells (MW-1, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3). During the December 11, 2017 sampling event, monitoring personnel for the former EWS Class II Landfill began utilizing low-flow protocols as described within the USEPA's Issue Paper EPA/540/S-95/504: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, April 1996. The low-flow protocols have continued to be utilized by monitoring personnel during each quarterly groundwater assessment-monitoring event since December 11, 2017. Additionally, groundwater-sampling activities were completed during this sampling event in accordance with the USEPA SESD sampling procedure -SESDPROC-301-R4 titled "Groundwater Sampling", effective April 26, 2017.

Each dedicated submersible bladder pump is of stainless steel construction, and each is equipped with a TeflonTM bladder and dedicated TeflonTM-lined bonded twin polyethylene tubing (airline and water discharge line). The low-flow bladder pumps were operated by using a special control box, which controls the pressure and frequency of the pumping action and was used to adjust the flow rate of the water. The flow rate used was adjusted to minimize stress (drawdown), prevent damage to monitoring well components, and to minimize the risk of introducing sediments into the monitoring well through the well's gravel pack. Water pumped was withdrawn directly from the formation with little mixing of casing water or disturbance to the sampling zone. The initial amount of purged groundwater was collected in a clean, high-density polyethylene (HDPE) flow-through cell while measuring temperature, pH, conductivity, DO, and ORP. A turbidity meter was used to collect turbidity readings during low-flow purging activities.

The start time of purging, the parameter measurements at intervals during purging, estimated pumped volumes, depths to water for low-flow sampling, and any notes of unusual conditions were recorded during purging activities. Field parameter measurements (temperature, pH, conductivity, DO, ORP, and turbidity) were collected periodically until proper field stabilization goals had been met, which are defined by the USEPA SESD as: "for at least three consecutive measurements, the pH remains constant within 0.1 Standard Unit (SU), conductivity varies no more than 5 percent, and the turbidity has either stabilized or is below 10 Nephelometric Turbidity

Units (NTUs)". Other parameters such as DO were also measured as a purge-adequacy parameter. Normal goals for DO are 0.2 mg/l or 10% saturation, whichever is greater. Temperature and ORP were measured during purging to obtain measurements of record for these parameters for each sampling event.

During the November 17, 2020 monitoring event, a peristaltic pump was utilized during purging activities in the temporary monitoring wells (TMW-1, TMW-2, and TMW-3). According to the USEPA SESD groundwater sampling procedures, peristaltic pumps can be utilized as an alternative and acceptable method for low-flow or multiple volume purging and sampling activities.

Peristaltic pumps require three separate pieces of tubing in order to function: (1) a section of Teflon® tubing, which is lowered into the well, (2) a small section of flexible Masterflex® silicone tubing, which is installed into the peristaltic pump head, and (3) a small section of Teflon® tubing, which connects the pump head to the flow-through cell. The first section of tubing was deployed to the approximate mid-screen within the well (approximately 4 feet above the bottom of the well casing) and cut above the ground surface. The free end of the first section of tubing was connected to the flexible Masterflex® silicone tubing situated in the peristaltic pump head. Finally, the third section of tubing (second section of Teflon® tubing) connected the Masterflex® silicone tubing at the pump head to the flow-through cell for collection of field chemistry parameter measurements. In order to prevent the transfer of residuals between sampling locations, all three sections of tubing were replaced between each well. After replacement of all sections of tubing, the peristaltic pump was turned on, and a suitable (slow) pumping rate was achieved to maintain a minimal and stable drawdown level. Field parameters were collected from the initial amount of water that was purged and measurements were collected periodically until the parameters had stabilized as described above.

With respect to groundwater chemistry, an adequate purge is achieved when the pH and conductivity have stabilized and the turbidity either has stabilized or is below 10 NTUs. If the field parameters were not stable, the purging procedures continued until one of the following adequate purge conditions were met:

- 1. Field stabilization occurred.
- 2. Well was purged dry. For wells with slow recovery, attempts were made to avoid purging to dryness by slowing the purge rate. In some situations, even with slow purge rates, the well may be pumped dry. This situation generally indicates that an adequate purge had been achieved and the well was sampled following sufficient recovery (enough volume to allow filling of all sample containers).
- 3. A minimum of three well volumes were purged.

Field chemistry parameters were collected periodically at the temporary wells until field parameter measurements had stabilized, and at least three well volumes were removed from each temporary monitoring well. The purge water from down-gradient monitoring wells MW-3, MW-4, MW-5,

TMW-1, TMW-2, and TMW-3 were containerized and discarded into the on-site leachate collection system storage tank.

Field parameter values for each well are presented in **Table 1 – Field Parameters and Potentiometric Data in Appendix A**. A detailed account of each purge and sample procedure conducted at each monitoring well is presented in **Appendix D – CEC Standard Operating Procedures**.

3.3 GROUNDWATER SAMPLE COLLECTION & PRESERVATION

Groundwater samples were collected from monitoring wells when field parameter data indicated that stagnant water had been purged from the well and replaced by groundwater from the adjacent formation that is representative of actual aquifer conditions. Groundwater was placed in the laboratory supplied sample vessels in the following order: Appendix I organics – three (3) forty (40) mL amber glass containers preserved with hydrochloric acid (HCl); Appendix I organics EDB and DBCP– three (3) forty (40) mL clear glass containers preserved with sodium thiosulfate (Na₂S₂O₃); total metals (Appendix I metals, Al, Ca, Fe, K, Mg, Mn, Na, and Boron) – one (1) two-hundred fifty (250) ml HDPE container preserved with nitric acid (HNO₃); alkalinity – one (1) one-hundred (100) ml unpreserved amber glass container; bromide, chloride, nitrate, and sulfate – one (1) two-hundred fifty (250) ml unpreserved With sulfuric acid (H₂SO₄).

As described in the previous section, a peristaltic pump was used to purge temporary monitoring wells TMW-1, TMW-2, and TMW-3. Samples for organic analysis cannot be exposed to the flexible peristaltic pump-head tubing, due to the risk of contaminant sorption and/or the risk of the dissolution of organic compounds to the sample.

3.4 LEACHATE SAMPLING PROCEDURES

A leachate sample was also collected by CEC on December 9, 2020 from the "Industrial Waste Cell (IWC)" during this event. The amount of leachate produced from the IWC and APWC has been minimal since the landfill was capped, and the leachate being pumped from the IWC and APWC cells has been intermittent. No leachate was being pumped from the IWC Leachate during the November 17, 2020 groundwater event, and the IWC leachate sample was collected on December 9, 2020 in conjunction with a pumping event. The IWC leachate sample was collected from the leachate collection system associated with the industrial waste cell and was collected directly from the associated leachate collection hose within the secondary containment area before the leachate entered the IWC leachate collection tank. No sample was collected from the "Aluminum Processing Waste Cell (APWC)" during this sampling event since leachate was not being pumped from the APWC. Laboratory reports from the IWC leachate analyses were prepared by Pace and reported to CEC on December 21, 2020. The approximate APWC and IWC leachate sample locations are shown on **Figure 2 – Potentiometric Surface Map located in Appendix A**.

3.5 QUALITY ASSURANCE AND QUALITY CONTROL

3.5.1 Field Quality Assurance and Quality Control

Field Quality Assurance and Quality Control (QA/QC) samples were collected as part of the groundwater-sampling program. Quality assurance (with internal laboratory quality controls) addresses the accuracy and repeatability of analytical results after analysis in the laboratory. Quality control addresses methods to preserve the integrity of samples in the field and during shipping to the laboratory. Quality control may be accomplished by incorporating trip blanks, field blanks, field duplicates, and equipment (rinsate) blanks into the analytical program.

A field blank and a duplicate sample were collected during this groundwater-monitoring event. CEC collected a field blank near monitoring well TMW-1 and a duplicate sample was collected from MW-3. The field blank was collected by pouring deionized water into a set of sample bottles provided by the laboratory, thereby allowing any airborne contaminants a chance to enter the field blank sample. The duplicate sample was collected by taking separate samples from within MW-3 at the same time. In addition, a laboratory supplied trip blank for VOC analysis was prepared and placed in a cooler, which was present during groundwater sampling activities. Upon the collection of the final groundwater sample, the trip blank was placed in a sample cooler and delivered to Pace for VOC analysis. No VOCs were detected above the laboratory PQL in the trip blank sample.

Pace reported the groundwater laboratory analytical results to CEC on December 1, 2020. Laboratory analytical testing of the field blank presented in the analytical report showed no indications of any constituents above the laboratory PQL. The results for the duplicate sample collected from MW-3 were similar to the original MW-3 sample results.

3.5.2 Laboratory Quality Assurance and Quality Control

In order to demonstrate that a laboratory is producing data of adequate precision, accuracy and sensitivity, it is necessary to assess all laboratory procedures at all stages from sampling to reporting. The laboratory completed specific control and assessment procedures designed to monitor, quantitatively, the accuracy and precision of specific assays. Laboratory Internal Quality Assurance (IQA) refers to the full range of practices employed to ensure that laboratory results are reliable. Internal Laboratory Quality Control (IQC) consists of the operational techniques used by the laboratory staff for continuous assessment of the quality of the results of individual analytical procedures. The specific quality-control procedures utilized by the analytical laboratory are summarized in the following table:

Quality Criteria Category	Quality Control Laboratory Methods								
	Laboratory duplicates at a frequency of one								
Precision	per matrix spike, one per laboratory control								
	sample, and one per method blank.								
	Matrix spikes, laboratory control samples,								
Bias	method blanks at a frequency of one								
	sample per standard batch.								
	Adherence to standard analytical								
Representative and Comparable Data	procedures, analytical methods, units of								
	measurement, and detection limits.								

As indicated by laboratory qualifier "T8", the nitrate sample from the duplicate sample collected on November 17, 2020 was prepared and/or analyzed past holding time as defined by the method and the nitrate concentration at the duplicate sample location should be considered a minimum value. Although all collected samples were submitted to Pace Analytical well within the 48-hour hold times for nitrate, Pace Analytical was not able to prepare the duplicate sample for nitrate within the 48-hour hold time. The internal laboratory IQA and IQC results are included in the laboratory analytical reports located in **Appendix C** – **Laboratory Analytical Reports & Field Information Logs**.

3.6 SAMPLE CHAIN-OF-CUSTODY

A sample Chain-of-Custody (COC) traveled with each sample kit from Pace to the former EWS Class II Landfill site and back to Pace for analysis. The CEC SOP 07-01-01 for maintaining sample Chain of Custody is presented in **Appendix D – CEC Standard Operating Procedures**.

4.0 LABORATORY ANALYTICAL PROCEDURES

4.1 ANALYTICAL METHODS

All laboratory analyses for the 4th quarter 2020 groundwater assessment-monitoring event were completed by Pace Analytical. The analytical methods chosen for these monitoring events were in full compliance with the procedures required by the DSWM and the USEPA's publication SW-846, entitled Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (3rd Edition).

The SW-846 methods used for the analysis of **groundwater and leachate samples** were as follows:

Method 6010b	Inductively Coupled Plasma (ICP) – Atomic Emission Spectrometry
	(Boron only)
Method 6020	ICP – Mass Spectrometry (metals)
Method 2320 B-2011	Alkalinity
Method 7470A	Mercury in Liquid Waste – Manual Cold Vapor Technique
Method 8011	1,2-dibromoethane & 1,2 dibromo-3-chloropropane by Micro-
	extraction and Gas Chromatography
Method 8260B	Volatile Organic Compounds by Gas Chromatograph/Mass
	Spectrometry
Method 9056A	Determination of Inorganic Anions by Ion Chromatography
	(Bromide, Chloride, Fluoride, Nitrate, and Sulfate)
Method 130.1	Hardness (colorimetric) as CaCO ₃
Method 350.1	Ammonia Nitrogen
Method 410.4	Chemical Oxygen Demand (COD)

4.2 LABORATORY ANALYTICAL RESULTS

Constituent values from all inorganic laboratory analyses for groundwater and leachate samples, along with applicable MCLs or 2DWSs, are presented in **Table 2a – Groundwater and Leachate Analytical Data in Appendix A**. Copies of the laboratory reports are located in **Appendix C – Laboratory Analytical Report & Field Information Logs**.

4.2.1 <u>EWS Groundwater Quality Relative to the EPA Primary Drinking Water Standards</u>

Total Arsenic was <u>not</u> detected above the MCL (0.01 mg/l) at up-gradient MW-1 (0.00513 mg/l) during this 4th Quarter 2020 event. Arsenic has been detected at concentrations that exceed the MCL during previous monitoring events only at up-gradient well MW-1. Arsenic was not detected above the laboratory PQL (<0.002 mg/l) in any of the down-gradient monitoring wells during this November 2020 event, which is consistent with previous sampling events. For this site, the presence of arsenic in the local groundwater is considered to be naturally occurring, originating from deposits in the soil overburden since there is no immediate development up-gradient of MW-1.

Total Cadmium was detected above the MCL (0.005 mg/l) at MW-3 and the duplicate sample collected from MW-3 during this November 17, 2020 monitoring event. Total cadmium was also detected above the MCL in the sample collected from MW-3 during the verification re-sampling event on December 8, 2020. In addition, the dissolved cadmium concentration at MW-3 during the verification re-sample event on December 8, 2020 was also above the MCL. A summary of cadmium concentrations (total cadmium and dissolved cadmium) and turbidity values observed at MW-3 during each sampling event since May 9, 2016 is referenced in the table and graph below:

	MW-3 Summary of Cadmium Concentrations and Turbidity Measurements												
Date	Total Cadmium (mg/l)	Cadmium, Dissolved (mg/l)	Turbidity (NTU)										
12/8/2020	0.00906	0.00787	10.8										
11/17/2020	0.00816	NA	14.0										
8/26/2020	0.00242	NA	6.66										
6/2/2020	0.00278	NA	5.38										
2/27/2020	0.00214	NA	7.63										
11/20/2019	0.00157	NA	2.11										
9/6/2019	0.0088	NA	2.98										
6/4/2019	0.0292	0.0297	2.98										
3/5/2019	0.0117	0.0133	6.27										
12/4/2018	0.144	0.139	4.77										
9/27/2018	0.204	0.204	1.05										
9/12/2018	0.297	0.320	1.12										
6/19/2018	0.0312	0.0292	4.90										
3/22/2018	0.00671	0.00637	24.3										
12/14/2017	0.00659	0.00733	23.0										
9/28/2017	0.00926	0.0102	18.9										
8/8/2017	0.0113	NA	16.6										
6/8/2017	0.0286	NA	34.8										
11/10/2016	0.00177	NA	64.5										
5/9/2016	< 0.001	NA	8.39										

NA-Not Analyzed

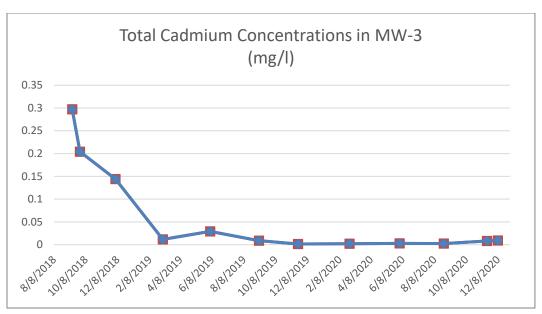


Figure – Cadmium concentrations in MW-3

Since the fall of 2018, the total cadmium concentrations observed in MW-3 have shown an overall decrease in concentration. During the previous four consecutive sampling events from November 2019 to August 2020, the cadmium concentrations at MW-3 were below the MCL. However, during this November 17, 2020 sampling event and the verification re-sample event on December 8, 2020, the observed cadmium concentrations at MW-3 were slightly above the MCL. Although the current cadmium concentrations during this event are above the MCL, these concentrations remain significantly lower than the concentrations observed in 2018. The cause of the increased cadmium at MW-3 during this event is not completely understood at this time. However, TDEC and CEC expect that the total cadmium concentrations at MW-3 will generally decrease to levels below the MCL since landfill closure activities have been completed. TDEC and CEC will continue to carefully monitor the total cadmium concentrations at MW-3 during future events.

Total Cobalt was detected in up-gradient well MW-1 (0.0291 mg/l) and down-gradient well MW-3 (0.00445 mg/l) during this November 2020 event. Cobalt does not have an MCL; however, the TDEC-DSWM uses the EPA regional screening level (RSL) of 0.006 mg/l as the groundwater protection standard for this constituent. The reported cobalt detection at up-gradient well MW-1 was above the RSL for cobalt during this November 2020 event. However, the reported cobalt concentration in down-gradient monitoring well MW-3 was below the RSL for cobalt during this November 2020 event. Cobalt has historically been detected at concentrations that exceed the RSL at MW-1 prior to the disposal of waste in the landfill, and total cobalt was detected in MW-1 at similar concentrations during previous events. For this site, the presence of cobalt in the local groundwater is considered to be naturally occurring, originating from deposits in the soil overburden, since there is no development immediately up-gradient of MW-1.

Total Chromium was detected in MW-5 (0.00391 mg/l), which was not above the MCL of 0.1 mg/l for chromium.

Total Mercury was detected in up-gradient well MW-1 (0.00258 mg/l) during this November 2020 monitoring event, which was slightly above the MCL of 0.002 mg/l for mercury concentrations. Total mercury has consistently been detected above the PQL at MW-1 since January 2009. Total mercury was not detected above the laboratory PQL (0.000200 mg/l) at any of the down-gradient wells during this November 2020 event. Although total mercury has been previously detected above the PQL at up-gradient MW-1, total mercury has not been detected above the laboratory PQL in any of the down-gradient monitoring wells since monitoring began at the site in 2008. The presence of mercury in the local groundwater near up-gradient monitoring well MW-1 may be attributable to naturally occurring deposits in the soil overburden, since there is no development immediately up-gradient of MW-1.

4.2.2 EWS Groundwater Quality Relative to the National Secondary Drinking Water Standards

Laboratory analytical results for the groundwater samples collected during the 4th quarter 2020 sampling event from the former EWS Class II Landfill groundwater monitoring well network indicated that three of the site-specific groundwater-monitoring list of compounds were detected at concentrations that exceeded the National Secondary Drinking Water Standards (2DWS). Those parameters include **aluminum** in down-gradient wells MW-3, MW-5, and TMW-2; **iron** in upgradient well MW-1 and down-gradient well MW-4; and **manganese** in up-gradient well MW-1 and down-gradient wells MW-5. **Chloride, sulfate,** and **nickel** detections were below the 2DWS during this event. The observed concentrations for the constituents given below are discussed relative to the 2DWS.

The **Total Aluminum** concentrations observed in MW-3 (0.284 mg/l), MW-5 (0.344 mg/l), and TMW-2 (0.235 mg/l) during this November 2020 sampling event were above the 2DWS (0.2 mg/l). During the previous August 2020 event, total aluminum was not detected above the PQL (<0.1 mg/l) in MW-3, MW-5, or TMW-2. Total aluminum was also detected in upgradient well MW-1 (0.19 mg/l) and downgradient well TMW-1 (0.126 mg/l), which were below the 2DWS (0.2 mg/l). Aluminum was not detected above the PQL (<0.1 mg/l) at MW-4 or TMW-3 during this November 2020 event.

The **Chloride** concentrations reported at MW-1 (2.48 mg/l), MW-3 (18.7 mg/l), MW-4 (9.04 mg/l), MW-5 (74.8 mg/l), TMW-1 (24.3 mg/l), TMW-2 (37.6 mg/l), and TMW-3 (62.9 mg/l) during this November 2020 event were below the 2DWS for chloride concentrations (250 mg/l). The chloride concentrations for this November 2020 event are similar to the concentrations observed at samples collected from each well during the previous August 2020 event. The chloride concentration at MW-3 continues to be significantly lower in concentration compared to the previous events in December 2018 (65 mg/l), September 2018 (222 mg/l), November 2015 (458 mg/l), and the supplemental re-sampling in December 2015 (360 mg/l).

Fluoride was detected at MW-3 (0.179 mg/l) and the duplicate sample collected from MW-3 (0.180 mg/l) during this November 2020 monitoring event, which were well below the MCL (4.0 mg/l) for fluoride. In addition, the observed fluoride concentrations at MW-3 and the duplicate sample collected at MW-3 were well below the 2DWS (2.0 mg/l) for fluoride.

Total Iron was detected above the 2DWS (0.3 mg/l) in up-gradient well MW-1 (5.36 mg/l) and down-gradient well MW-4 (4.94 mg/l) during this November 2020 monitoring event. Iron was detected above the PQLs of the laboratory (0.1 mg/l), but below the 2DWS (0.3 mg/l) during this November 2020 event at wells MW-3 (0.172 mg/l), MW-5 (0.287 mg/l), TMW-1 (0.242 mg/l), and TMW-2 (0.153 mg/l). The reported total iron concentrations at each of the groundwater monitoring wells were less than the highest concentrations observed prior to placement of waste and do not exhibit a trend via time-series graphs. The presence of iron in the local groundwater is considered to be naturally occurring, originating from deposits in the soil overburden, and iron has consistently been detected above the 2DWS in up-gradient well MW-1.

Total Manganese detections were observed above the 2DWS (0.05 mg/l) in up-gradient MW-1 (0.486 mg/l) and down-gradient wells MW-3 (0.545 mg/l), MW-4 (0.0587 mg/l), and MW-5 (0.235 mg/l) during the November 2020 monitoring event. Total Manganese has been consistently detected at concentrations above the 2DWS (0.05 mg/l) in up-gradient well MW-1. The presence of total manganese in the local groundwater is considered to be naturally occurring, originating from deposits in the soil overburden. During this November 2020 event, total manganese was also detected below 2DWS (0.05 mg/l) but above the laboratory PQL (<0.005 mg/l) in wells TMW-1 (0.00552 mg/l) and TMW-3 (0.00985 mg/l).

Total Nickel was detected in up-gradient well MW-1 (0.00632 mg/l) and down-gradient wells MW-3 (0.00708 mg/l) and MW-5 (0.00714 mg/l) during the November 2020 sampling event, and these values were not above the MCL value obtained from the Tennessee Division of Water Resources (TN DWR) Public Water Systems chapter rule 0400-45-01-.06 (0.10 mg/l). Total nickel has been detected at concentrations above the TN DWR Public Water Systems MCL (0.1 mg/l) in up-gradient well MW-1 during previous events on April 9, 2009 (total nickel at MW-1=0.2 mg/l) and May 19, 2009 (total nickel at MW-1=0.17 mg/l). Therefore, the presence of total nickel in the local groundwater is considered to be naturally occurring, originating from deposits in the soil overburden.

The **Sulfate** concentration reported at MW-3 (61.4 mg/l) during this November 2020 sampling event was below the 2DWS for sulfate (250 mg/l). In addition, the sulfate concentrations at MW-3 have been consistently decreasing each event since September 2018.

Sulfate was also detected in MW-5 (11.2 mg/l) during this November 2020 event and was below the 2DWS. Sulfate was not detected above the PQL of 5.00 mg/l in any of the other monitoring wells across the site.

Total Magnesium does not currently have an established MCL, 2DWS, EPA RSL, or an approved alternate groundwater protection standard (GWPS). The total magnesium concentration at MW-3 during this November 2020 (6.86 mg/l) event was slightly higher than the June 2020 sample event (6.2 mg/l) which was lower than the previous February 2020 event (6.73 mg/l), November 2019 (10.3 mg/l), September 2019 (13 mg/l), June 2019 (20.8 mg/l), March 2019 (7.83 mg/l), December 2018 (36.4 mg/l), and September 2018 (64 mg/l) respective event concentrations.

Magnesium was also detected above the laboratory PQL (1.00 mg/l) during the November 2020 sample event in MW-1 (2.36 mg/l), MW-4 (3.1 mg/l), MW-5 (11.5 mg/l), TMW-1 (3.47 mg/l), TMW-2 (4.98 mg/l), and TMW-3 (6.86 mg/l).

4.3 QUALITY CONTROL QUALIFIER CODES

The EPA Contract Laboratory Program states that sample and result qualifiers should be utilized as part of a total quality-control process. Pace complies with this directive and reports all qualifiers along with explanations of QC qualifier codes. Three QC qualifier codes (E, J4, and T8) were indicated during the laboratory analysis of groundwater samples collected during the November 17, 2020 event. Specific information concerning each laboratory QC qualifier code can be found on page 49 of 52 in the December 1, 2020 Laboratory Analytical Report in **Appendix C**. No QC qualifier codes were indicated on the laboratory report for the December 8, 2020 re-sample event at MW-3 or the IWC-Leachate laboratory report for the December 9, 2020 leachate sample event.

5.0 STATISTICAL ANALYSIS

5.1 APPLICABLE METHODS

The Rules of the Tennessee Department of Environment and Conservation, Division of Solid Waste Management Chapter 0400-11-01-.04(7) state, in part, that each landfill must conduct and report statistical analyses as part of the evaluation of groundwater monitoring data. Statistical analyses of the sampling data was performed on monitoring wells MW-1, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3.

The solid waste rules require groundwater sample results and associated statistical methods used to determine the statistical background of a groundwater detection/assessment monitoring program be "protective of human health and the environment". Furthermore, the rules require that the results be "representative" of the background groundwater quality of the geologic formation(s) being monitored. Various influences may affect the representativeness of sample results, which include possible errors in sampling. As previously discussed, reported total metals concentrations are likely affected by elevated turbidity values and would not be representative of the natural groundwater conditions. Before statistical evaluations were completed, the turbidity values which were collected during historical groundwater sampling events were evaluated for elevated turbidity values (>150 NTU). If the turbidity value at the time of sample collection at any given location was greater than 150 NTUs, the total metals concentrations for each sample location would not be representative of natural groundwater conditions. As a result, the corresponding data were removed from the background data set.

After the non-representative background sample data were removed, the distribution of the data was evaluated for normality. The test for normality was conducted using the Shapiro-Wilks method if N <50 or Shapiro-Francia method if N>50. The normality test was performed for both raw and log-transformed data, with replacement of non-detects to half of the corresponding laboratory PQL. Data determined to be normally distributed were evaluated using parametric

prediction limit (PPL) analysis. Inter-well and intra-well (intra-well utilized for upgradient MW-1) statistical methods were appropriately utilized to determine statistically significant increases in constituent concentrations.

Intra-well analyses was utilized only at MW-1 to compare the concentrations observed during the current groundwater-sampling event to the established background data set for MW-1 concentrations. Intra-well PPL and non-parametric statistical methods were appropriately utilized to determine statistically significant changes in background water quality data in up-gradient monitoring well MW-1. The cobalt data at MW-1 were normally distributed using the Shapiro-Wilks test for normality when the data were log-transformed and non-detects were replaced by half of the corresponding PQL. Therefore, intra-well PPL analysis was performed for the data sets that passed normality testing. However, all other data sets (arsenic, barium, chloride, nickel, sulfate, and mercury data) for MW-1 were not normally distributed and were evaluated using intra-well non-parametric statistical methods.

Inter-well analyses compared the concentrations observed at the down-gradient monitoring locations (MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3) to the concentrations observed at the up-gradient monitoring location (MW-1) during this monitoring event. Chloride data distribution tests from all up-gradient and down-gradient monitoring wells indicated normality when the data were log-transformed and non-detects were replaced by half of the corresponding PQL. Therefore, the chloride data at MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3 were evaluated using PPL inter-well analysis. All other data sets (aluminum, barium, total cadmium, chromium, cobalt, fluoride, nickel, zinc, and sulfate data) at all up-gradient and down-gradient monitoring wells were not normally distributed and were evaluated using non-parametric statistical methods.

The percentage of inter-well non-detects for each parameter determined the primary statistical method utilized. If the percentage of non-detects in the samples was less than 50%, Shewart-CUSUM control charts were utilized. If at least 50% non-detects existed for the given parameter, non-parametric inter-well prediction limit analysis was conducted on the data. For this site, the total % non-detects for aluminum (41.22% non-detects) and barium (6.04% non-detects) were less than 50%, and Shewart-CUSUM control charts were utilized for aluminum and barium analysis. Based on the high amount of left-censored data (>/=50% of non-detects) for total cadmium, chromium, cobalt, fluoride, nickel, zinc, and sulfate, non-parametric inter-well prediction limit analysis was conducted for the background data from up-gradient well MW-1 compared to downgradient monitoring wells (MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3). Additional statistical procedures performed included Mann-Kendall trend analyses.

The computer program ChemStat v.6.4 was used for all statistical computations. Worksheets for inter-well and intra-well statistical analysis and time versus concentration charts are given in **Appendix B – Statistical Evaluations and Time Series Plots.**

5.2 STATISTICAL RESULTS

One statistically significant increase (SSI) in the reported mercury concentrations was identified in up-gradient well MW-1 using intra-well non-parametric prediction limit analysis.

SSIs over background identified for the current monitoring event include chloride at MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3, total cadmium at MW-3, fluoride at MW-3, sulfate at MW-3, and zinc at MW-3 and MW-5. When considering data since the November 10, 2016, statistically significant trends in data were observed using the Mann-Kendall trend analyses at the 95% confidence level. Trend analyses revealed a statistically significant upward trend in barium at MW-4, MW-5, TMW-1, and TMW-3; chloride at MW-4, MW-5, TMW-1, TMW-2, and TMW-3; chromium at MW-5; sulfate at MW-5; and zinc at MW-5. Trend analysis revealed a downward trend in aluminum concentrations at TMW-2 and chloride concentrations at MW-3. There were no distinct statistically significant trends in concentrations for any of the other detected constituents.

The total cadmium concentration observed at MW-3 indicated an SSI in reported concentrations using inter-well non-parametric prediction limits by using cadmium concentrations observed at the up-gradient monitoring location (MW-1) as background for comparison. From June 2017 to September 2019, the total cadmium concentrations observed at MW-3 were above the MCL of 0.005 mg/l. However, the total cadmium concentrations observed at MW-3 from November 2019 to August 2020 were below the MCL. Although the total cadmium concentration at MW-3 during this event was above the MCL and indicated as an SSI, no distinct statistically significant trend was identified by Mann-Kendall for total cadmium concentrations at MW-3 when considering data from the past 19 sampling events since November 10, 2016.

The chloride concentrations observed at MW-3 (18.7 mg/l), MW-4 (9.04 mg/l), MW-5 (74.8 mg/l), TMW-1 (24.3 mg/l), TMW-2 (37.6 mg/l), and TMW-3 (62.9 mg/l) produced SSIs over background during this event. The chloride detections at MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3 are consistent with previous data and are below the 2DWS for chloride concentrations (250 mg/l). When considering data from the past 16 sampling events since November 2016, the data showed a downward trend in chloride concentrations at MW-3 and an upward trend in chloride concentrations at MW-4, MW-5, TMW-1, TMW-2, and TMW-3 using the Mann-Kendall trend analyses at the 95% confidence level.

The chromium concentration observed at MW-5 (0.00391 mg/l) was less than the MCL (0.1 mg/l), and did not produce a SSI in reported concentrations during this event. When considering chromium data from MW-5 since November 2016, the data did not show an upward or downward trend in chromium concentrations at MW-5 using the Mann-Kendall trend analysis at the 95% confidence level.

The cobalt concentration observed at MW-3 (0.00445 mg/l) was less than the GWPS value referenced from the EPA Regional Screening Levels for cobalt (0.006 mg/l) and did not produce a SSI in reported concentrations during this event. When considering cobalt data from MW-3 since

November 2016, the data did not show an upward or downward trend in cobalt concentrations at MW-3 using the Mann-Kendall trend analysis at the 95% confidence level.

A SSI for fluoride concentrations was identified during this sampling event at MW-3. The fluoride concentration at MW-3 (0.179 mg/l) was less than the MCL (4.0 mg/l) during this event and was less than the previous August 2020 event (0.279 mg/l). However, no distinct statistically significant trend was identified by Mann-Kendall for fluoride concentrations at MW-3 when considering data from the past 16 sampling events since November 10, 2016.

A SSI for sulfate concentrations at MW-3 was identified during this sampling event. However, when considering all data accumulated from MW-3 since November 10, 2016, the data did not show an upward or downward trend in sulfate concentrations at MW-3 using the Mann-Kendall trend analysis at the 95% confidence level. The sulfate concentration reported during this sampling event (61.4 mg/l) was higher than the previous August 2020 sample event (34.3 mg/l). Regardless, the concentration remains below the 2DWS of 250 mg/l. Sulfate was also detected in MW-5 (11.2 mg/l) during this November 2020 event, which was well below the 2DWS of 250 mg/l. While there was an upward trend in sulfate concentrations identified in MW-5 during this event, there was no reported SSI. Sulfate was not detected above the PQL in any of the other monitoring wells across the site.

The zinc concentrations observed at MW-3 (0.0507 mg/l) and MW-5 (0.110 mg/l) produced SSIs over background during this event. The zinc concentrations at MW-3 and MW-5 were less than the 2DWS limit of 5 mg/l. Zinc was most recently indicated as a SSI at MW-3 during the previous June 2020 event. When considering zinc data from MW-3 since November 2016, the data did not show an upward or downward trend in zinc concentrations at MW-3 using the Mann-Kendall trend analysis at the 95% confidence level. However, an upward trend in zinc concentrations at MW-5 was observed using the Mann-Kendall trend analyses at the 95% confidence level when considering zinc data at MW-5 from sampling events since November 2016. Zinc was not detected above the PQL in any of the other monitoring wells across the site.

A summary of intra-well and inter-well statistical analysis is presented in **Table 3 – Intra-Well** and **Inter-Well Statistical Summary in Appendix A.**

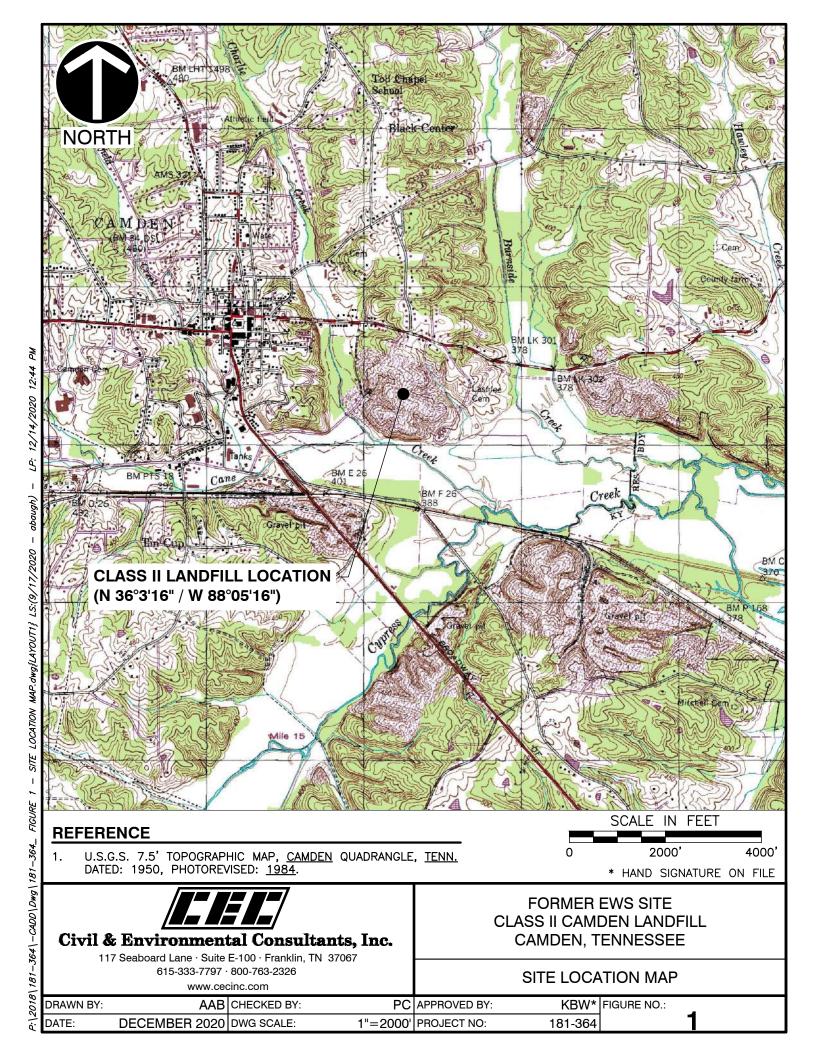
6.0 CONCLUSIONS

The results of the fourth quarter assessment-monitoring event of 2020 are summarized as follows:

- SSIs included mercury (up-gradient MW-1), chloride (MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3), total cadmium (MW-3), fluoride (MW-3), sulfate (MW-3), and zinc (MW-3 and MW-5).
- Trend analyses revealed a statistically significant upward trend in barium at MW-4, MW-5, TMW-1, and TMW-3; chloride at MW-4, MW-5, TMW-1, TMW-2, and TMW-3; sulfate at MW-5; and zinc at MW-5. Trend analysis revealed a downward trend in aluminum concentrations at TMW-2 and chloride concentrations at MW-3. There were no distinct statistically significant trends in concentrations for any of the other detected constituents during this event.
- The total cadmium levels at MW-3 have generally improved since closure activities have been completed. In addition, there have been no cadmium detections from groundwater samples obtained from temporary monitoring wells TMW-2 and TMW-3 that are immediately down-gradient of MW-3. Although the current cadmium concentration at MW-3 during this event is slightly above the MCL, the cadmium concentrations at MW-3 remain significantly lower than the cadmium concentrations observed at MW-3 in previous sampling events. The cause of the increased cadmium at MW-3 is not completely understood at this time. However, TDEC and CEC expect that the total cadmium concentrations at MW-3 will generally decrease to levels below the MCL since landfill closure activities have been completed. TDEC and CEC will continue to carefully monitor the total cadmium concentrations at MW-3 during future events.
- A SSI was identified for the reported sulfate concentration at MW-3. However, the sulfate concentrations at MW-3 do not exhibit a statistically significant increasing or decreasing trend when considering data from MW-3 since November 10, 2016.
- The chloride concentrations at MW-1, MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3 are still well below the 250 mg/l 2DWS.
- Although the zinc concentration reported at MW-3 was indicated as an SSI using all available data since 2008, the levels appear to be decreasing in concentration since September 2018 and are still below the 2DWS of 5 mg/l. In addition, the zinc concentrations at MW-3 did not exhibit a statistically significant increasing or decreasing trend when considering data from MW-3 since November 10, 2016.
- No VOCs were detected above their respective laboratory PQL in any of the groundwater monitoring wells during the monitoring event.

The first quarter 2021 assessment-monitoring event is tentatively scheduled for February 2021 and will consist of collecting groundwater samples from up-gradient well MW-1 and down-gradient wells MW-3, MW-4, MW-5, TMW-1, TMW-2, and TMW-3. As mentioned previously, the

amount of leachate produced from the IWC and APWC has been minimal since the landfill was capped, and the leachate being pumped from the IWC and APWC cells has been intermittent. If possible, leachate samples will also be collected from the APWC and IWC during the first quarter 2021 assessment-monitoring event.


Since the former EWS Class II Landfill site remains in assessment monitoring, a private water use survey update is required annually. An annual water use survey update for the former EWS Class II Landfill site was completed by CEC in November 2020, and no new wells or springs were identified within the required search radius for the site during the November 2020 update. The annual 2020 water use survey update is documented in a separate report.

7.0 RECOMMENDATIONS

The following recommendations are presented in an effort to ensure the continuance of securing representative groundwater samples and to obtain analytical results with a high-degree of accuracy and precision (i.e., repeatability).

- 1. It is recommended that all permanent monitoring wells on the site continue to be monitored quarterly. In addition, quarterly groundwater samples will continue to be collected from temporary monitoring wells down-gradient from MW-3.
- 2. If certain groundwater samples have turbidities that are elevated, samples will be collected for dissolved metals analysis (in addition to total metals analysis).

GROUND WATER MONITORING WELL GROUND WATER ELEVATION (FMSL)

374.43

TEMPORARY GROUND WATER MONITORING WELL GROUND WATER ELEVATION (FMSL)

GROUND WATER FLOW DIRECTION

POTENTIOMETRIC SURFACE CONTOUR (FMSL)

MANHOLE

APPROXIMATE FILL LIMITS

FM LEACHATE FORCE MAIN

NOTE:

Hydraulic gradient calculation between MW-1 and MW-4 locations.

$$i = \frac{394.09' \text{ (MW}-1) -370.09' \text{ (MW}-4)}{1,910'} = 0.0126 \text{ ft/ft}$$

GROUNDWATER CONDITIONS

THE WATER LEVELS PRESENTED HEREIN ARE APPLICABLE TO THE LOCATION AND TIME OF MEASUREMENT. WATER LEVELS MAY FLUCTUATE THROUGH TIME.

POTENTIOMETRIC CONTOURS GENERATED FROM THESE DATA ARE CONSTRUCTED BY INTERPOLATION BETWEEN POINTS OF KNOWN STATIC WATER LEVEL ELEVATIONS AND USING KNOWLEDGE OF SPECIFIC SITE CONDITIONS. ACTUAL STATIC WATER LEVELS AT LOCATIONS BETWEEN THE MONITORING POINTS MAY DIFFER FROM THOSE DEPICTED.

*HAND SIGNATURE ON FILE

Civil & Environmental Consultants, Inc.

117 Seaboard Lane · Suite E-100 · Franklin, TN 37067 615-333-7797 · 800-763-2326

www.cecinc.com

AAB CHECKED BY: PC APPROVED BY: DRAWN BY: DECEMBER 2020 DWG SCALE: 1"=200' PROJECT NO: 181-364.0005

ENVIRONMENTAL WASTE SOLUTIONS CAMDEN CLASS II LANDFILL CAMDEN, TENNESSEE

NOVEMBER 2020 POTENTIOMETRIC SURFACE MAP

MW-1 394.09 SW OUTFALL 001 (LOCATION APPROXIMATE) EXISTING PHASE 4A IWC LEACHATE SAMPLING LOCATION WASTE PHASE 3B ALUMINUM PROCESSING WASTE CELL (APWC) 3.24 EXISTING EXISTING PHASE 2A 374.43 373.02 APWC LEACHATE SAMPLING LOCATION 372.38 370.09 *KW FIGURE NO.: SW OUTFALL 001 (LOCATION APPROXIMATE)

Table 1
Former Environmental Waste Solutions Camden Class II Landfill
Field Parameters and Potentiometric Data - 4th Quarter 2020

Monitoring Well/ Sample Location	Date	Sample Time	Top of Casing Elevation ¹ (Feet MSL)	Bottom of Well Elevation (Feet)	Well Diameter (Feet)	Well Volume Gallons	Water	Potentiometric Surface (Feet MSL)	Temp.	Conductivity (µS/cm)	Specific Conductivity (µS/cm)	pH (SU)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
MW-1	11/17/2020	10:15	416.47	385.97	0.17	1.4	22.38	394.09	16.0	40.9	49.4	5.28	1.67	169.1	7.12
MW-2*	11/17/2020	10:50	380.35	367.70	0.17	0.8	7.97	372.38	17.4	244.8	286.3	5.86	3.54	190.0	3.99
MW-3	11/17/2020	14:40	392.90	365.10	0.17	1.4	19.66	373.24	18.5	218.9	249.4	5.31	2.37	253.8	14.0
MW-3 (re-sample)	12/8/2020	16:00	392.90	365.10	0.17	1.4	19.55	373.35	17.9	259.5	300.1	5.04	0.95	193.2	10.8
MW-4	11/17/2020	11:30	381.47	358.37	0.17	2.0	11.38	370.09	17.2	69.0	81.8	5.75	2.60	192.4	4.89
MW-5	11/17/2020	13:15	385.25	351.40	0.17	4.2	9.11	376.14	17.2	279.6	329.0	5.05	1.11	255.2	9.48
TMW-1	11/17/2020	12:30	381.19	348.99	0.085	1.1	6.76	374.43	16.7	114.9	136.5	5.30	3.88	405.1	8.57
TMW-2	11/17/2020	11:35	384.27	356.77	0.085	0.7	11.25	373.02	16.2	141.0	169.1	5.54	9.26	408.4	8.49
TMW-3	11/17/2020	10:15	381.37	353.37	0.085	0.8	9.70	371.67	16.3	241.6	290.0	5.06	1.33	355.2	4.53
**Leachate (IWC-L)	12/9/2020	11:00	NA	NA	NA	NA	NA	NA	NS	NS	NS	3.70	NS	NS	NS
**Leachate (APWC-L)	11/17/2020	NS	NA	NA	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS

¹ Top of Casing Elevations from survey by Civil & Environmental Consultants, Inc. on May 12, 2016.

NA= Not Applicable.

 $^{^{2}\,}$ Depth to water measurements collected by Civil & Environmental Consultants, Inc. on November 17, 2020.

^{*}MW-2 has been removed from monitoring network. Only water level and field parameters collected at MW-2.

^{**}Leachate (IWC-L) was collected from the lift station access. pH meter on-site used for pH measurement only. APWC-L was not producing leachate and was not sampled. NS= Not Sampled

Table 2 Former EWS Camden Class II Landfill IDL 03-0212 (Terminated) **Groundwater and Leachate Analytical Data - 4th Quarter 2020**

			1		1	T =		1		1		alytical Dat	_		1		1		1			1 22216			_	
		MW-1		MW-3		Duplicate (MW-3)		MW-3 (re-sample)		MW-4		MW-5		TMW-1		TMW-2		TMW-3		IWC- Leachate		APWC- Leachate		Field Blank	 	
Parameter	MCL/GWPS	11/17/2020		11/17/2020	_	11/17/2020	r	12/8/2020	_	11/17/2020	_	11/17/2020	_	11/17/2020	_	11/17/2020	ا یا		11/17/2020	_	12/9/2020	_	NS	1 .	11/17/2020	
Tarameter	(mg/l)		lifie	Value	lifie	Value	lifie	Value	lifie		lifie	Value	lifie	Value	lifie	Value	lifie	Value	lifie		lifie	Value	lifie	Value	lifie	
		Value (mg/l)	Qualifier	(mg/l)	Qualifier	(mg/l)	Qualifier	(mg/l)	Qualifier	Value (mg/l)	Qualif	(mg/l)	Qualifier	(mg/l)	Qualifier	(mg/l)	Qualifier	(mg/l)	Qualifier	Value (mg/l)	Qualifier	(mg/l)	Qualifier	Value (mg/l)	Qualifier	
Hardness	-	17.8	Ť	76.2	Ť	76.5		NS	Ť	26.7	Ť	90.6	Ť	44.8	Ť	54.4		81.2	Ť	41400		NS		<2.50	_	
Alkalinity	-	30.1		<20.0		<20.0		NS		<20.0		<20.0		<20.0		<20.0		<20.0		<20.0		NS		<20.0		
Ammonia Nitrogen	-	< 0.250		< 0.250		< 0.250		NS		< 0.250		< 0.250		< 0.250		< 0.250		< 0.250		1760		NS		< 0.250		
COD	-	<20.0		<20.0		<20.0		NS		<20.0		<20.0		<20.0		<20.0		<20.0		11000		NS		< 20.0		
Boron	-	< 0.200		< 0.200		< 0.200		NS		< 0.200		< 0.200		< 0.200		< 0.200		< 0.200		<1.00		NS		< 0.200		
																									!	
Bromide	-	<1.00		<1.00		<1.00		NS		<1.00		<1.00		<1.00		<1.00		<1.00		<100		NS	\sqcup	<1.00	<u> </u>	
Chloride	250 ²	2.48		18.7		18.3		NS		9.04		74.8		24.3		37.6		62.9		88900		NS		<1.00		
Fluoride	2 2	< 0.150		0.179		0.18		NS		< 0.150		< 0.150		< 0.150		< 0.150		< 0.150		<15.0		NS		< 0.150		
Nitrate	10 ¹	< 0.100		0.302		0.268	T8	NS		0.9		1.3		1.72		0.83		5.35		<10.0		NS		< 0.100	1	
Sulfate	250 ²	< 5.00		61.4		61.4		NS		< 5.00		11.2		< 5.00		< 5.00		< 5.00		609		NS		< 5.00		
																									—— I	
Aluminum	0.2 2	0.19		0.284		0.339		NS		< 0.100		0.344		0.126		0.235		< 0.100		360		NS		< 0.100		
Antimony	0.006	< 0.00400		< 0.00400		< 0.00400		NS		< 0.00400		< 0.00400		< 0.00400		< 0.00400		< 0.00400		< 0.200		NS		< 0.00400		
Arsenic	0.01	0.00513		< 0.00200		< 0.00200		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		0.306		NS		< 0.00200		
Barium	2	< 0.0200		0.0709		0.071		NS		< 0.0200		0.0531		< 0.0200		0.0313		0.0454		2.81		NS		< 0.0200		
Beryllium	0.004	< 0.00200		< 0.00200		< 0.00200		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.100		NS		< 0.00200		
Cadmium	0.005	< 0.00100		0.00816		0.00817		0.00906		< 0.00100		< 0.00100		< 0.00100		< 0.00100		< 0.00100		18.8		NS		< 0.00100		
Cadmium (Dissolved)	0.005	NS		NS		NS		0.00787		NS		NS		NS		NS		NS		NS		NS		NS		
Calcium	-	3.25		19.2		19.3		NS		5.58		17.2		12.2		13.6		21.2		14300		NS		<1.00		
Chromium	0.1	< 0.00200		< 0.00200		< 0.00200		NS		< 0.00200		0.00391		< 0.00200		< 0.00200		< 0.00200		< 0.100		NS		< 0.00200		
Cobalt	0.006^{3}	0.0291		0.00445		0.0046		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		0.472		NS		< 0.00200		
Copper	1.3	< 0.00500		< 0.00500		< 0.00500		NS		< 0.00500		< 0.00500		< 0.00500		< 0.00500		< 0.00500		1.21		NS		< 0.00500		
Iron	0.3^{2}	5.36		0.172		0.187		NS		4.94		0.287		0.242		0.153		< 0.100		452		NS		< 0.100	ı	
Lead	0.015	< 0.00500		< 0.00500		< 0.00500		NS		< 0.00500		< 0.00500		< 0.00500		< 0.00500		< 0.00500		0.785		NS		< 0.00500		
Magnesium	-	2.36		6.86		6.91		NS		3.1		11.5		3.47		4.98		6.86		1380		NS		<1.00		
Manganese	0.05^{2}	0.486		0.545		0.549		NS		0.0587		0.235		0.00552		< 0.00500		0.00985		43		NS		< 0.00500	1	
Nickel	0.10	0.00632		0.00708		0.00664		NS		< 0.00200		0.00714		< 0.00200		< 0.00200		< 0.00200		0.691		NS		< 0.00200		
Potassium	-	< 2.00		6.28		6.36		NS		< 2.00		< 2.00		< 2.00		< 2.00		< 2.00		14100		NS		< 2.00		
Selenium	0.05	< 0.00200		< 0.00200		< 0.00200		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		0.568		NS		< 0.00200		
Silver	0.10 2	< 0.00200		< 0.00200		< 0.00200		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.100		NS		< 0.00200		
Sodium	-	2.59		7.35		7.39		NS		3.94		19.8		3.83		5.63		13.7		23800		NS		< 2.00		
Thallium	0.002	< 0.00200		< 0.00200		< 0.00200		NS		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.00200		< 0.100		NS		< 0.00200		
Vanadium	-	< 0.00500		< 0.00500		< 0.00500		NS		< 0.00500		< 0.00500		< 0.00500		< 0.00500		< 0.00500		< 0.250		NS		< 0.00500		
Zinc	5 ²	< 0.0250		0.0507		0.0484		NS		< 0.0250		0.110		< 0.0250		< 0.0250		< 0.0250		190		NS		< 0.0250		
Mercury	0.002	0.00258		< 0.000200		< 0.000200		NS		< 0.000200		< 0.000200		< 0.000200		< 0.000200		< 0.000200		< 0.000200		NS		< 0.000200		
								NS														NS				
Acetone	-	< 0.0500		< 0.0500		< 0.0500		NS		< 0.0500		< 0.0500		< 0.0500		< 0.0500		< 0.0500		2.35		NS		< 0.0500		
2-Butanone (MEK)	-	< 0.0100		< 0.0100		< 0.0100		NS		< 0.0100		< 0.0100		< 0.0100		< 0.0100		< 0.0100		0.269		NS		< 0.0100		

MCL: Maximum Contaminant Level Enforceable National Primary Drinking Water Standards

GWPS: Groundwater Protection Standard

NS- Not Sampled for analysis.

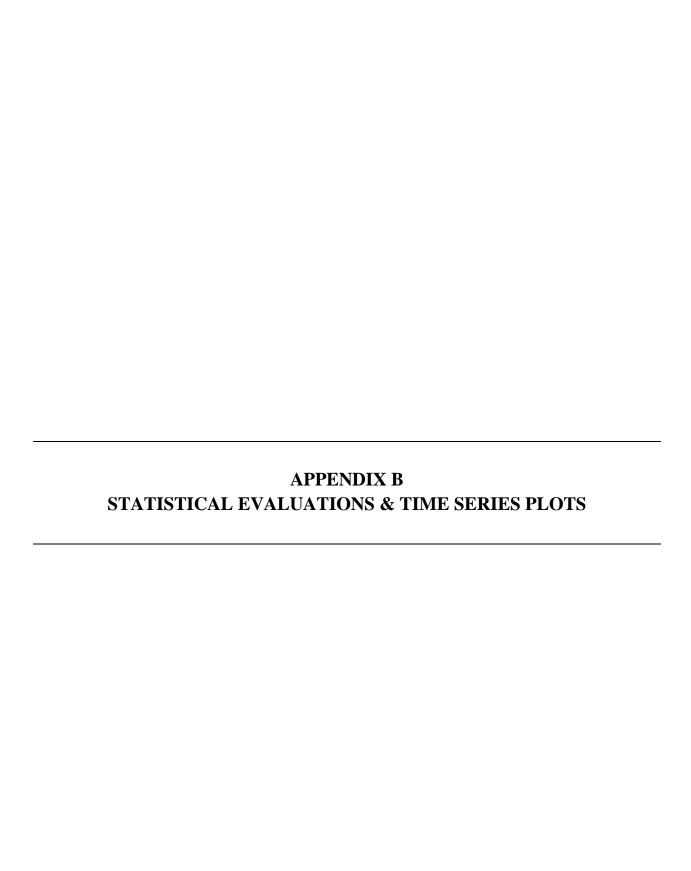
NA-Not Analyzed by the Laboratory.

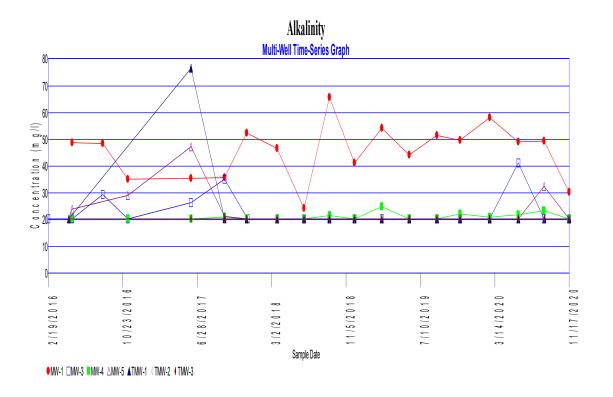
Bold text indicates laboratory analytical detections above the practical quantitation level
Dark gray shaded text indicates detection above respective MCL/GWPS
Light gray shaded text indicates detection above respective Non-Enforceable National Secondary Drinking Water Standard.

- J4: The associated batch QC was outside the established quality control range for accuracy
- T8: Sample(s) received past/too close to holding time expiration.

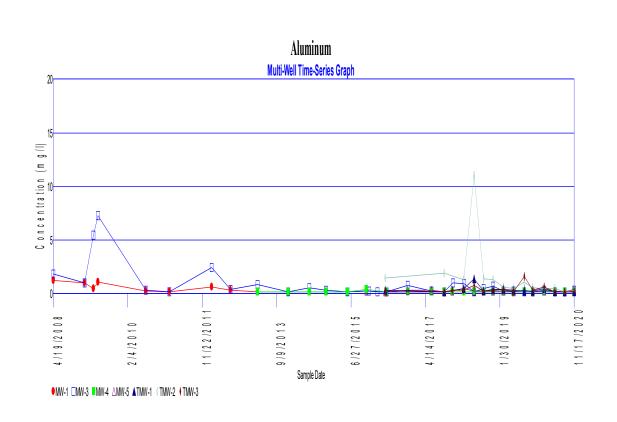
¹ - MCL value obtained from TN Division of Water Supply rule 1200-5-.06(1)(b)11

² - MCL value obtained from TN Division of Water Supply rule 1200-5-1-.12(1)(n). (EPA Secondary Drinking Water Standard)

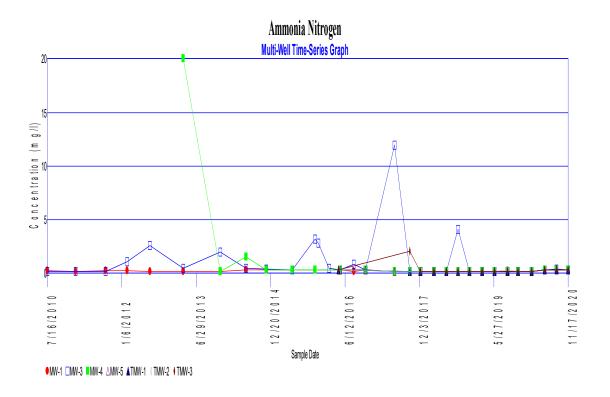

 $^{^{\}rm 3}$ - GWPS value is referenced from EPA Regional Screening Level for Cobalt

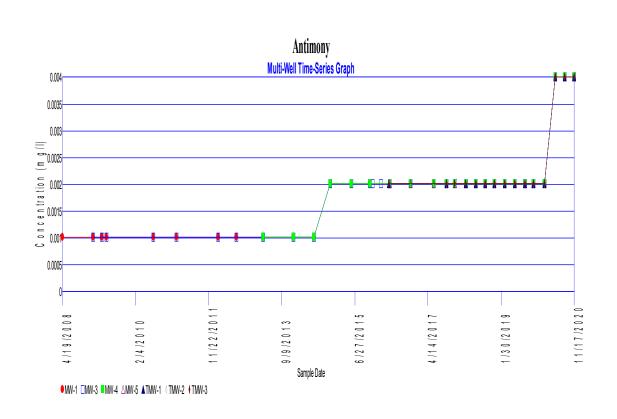

Table 3
Intra-Well and Inter-Well Statistical Summary
Environmental Waste Solutions Camden Class II Landfill IDL 03-0212 (Terminated)
Inorganic Analytical Data - 4th Quarter 2020

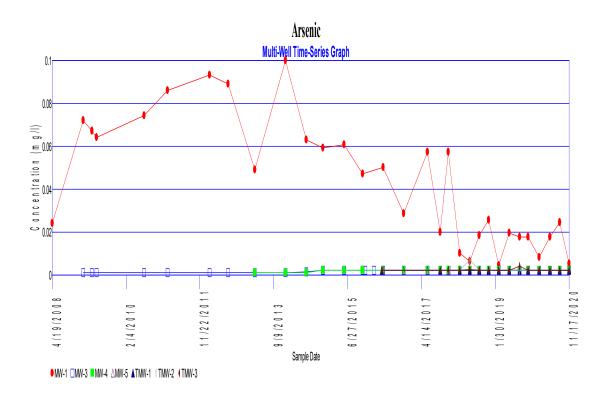
	Intra-Well Statistical Summary (Upgradient Background Well MW-1)														
Constituent	Well	% Non Detects	Normality	Intra-well NPPL	Intra-well PPL	Shewhart-Cusum	SSI								
Arsenic	MW-1	0.00	non-parametric	Pass		Pass	No								
Chloride	MW-1	0.00	non-parametric	Pass		Pass	No								
Cobalt	MW-1	0.00	log-normal		Pass		No								
Nickel	MW-1	35.48	non-parametric	Pass		Pass	No								
Mercury	MW-1	32.26	non-parametric	Pass		Fail	Yes								

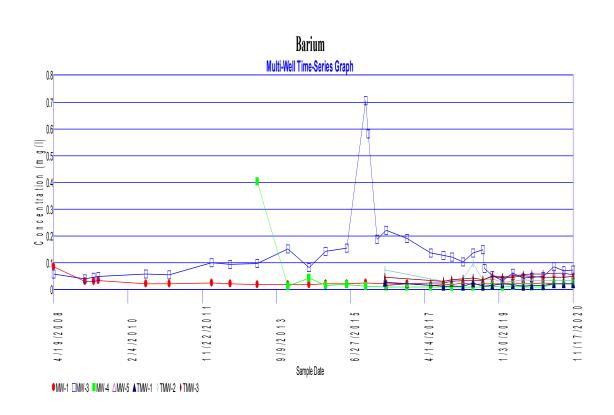

		Inter	-Well Statistical	Summary (Dow	ngradient Co	mpliance Well	s)		
Constituent	Well	Total % Non Detects	Normality	Inter-well NPPL	Inter-well PPL	Shewhart-Cusum	SSI	Mann-Kendall Trend Analysis ¹	
	MW-3		non-parametric			Pass	No	No Trend	
Aluminum	MW-5	41.22	non-parametric			Pass	No	No Trend	
	TMW-1		non-parametric			Pass	No	No Trend	
	TMW-2		non-parametric			Pass	No	Downward Trend	
	MW-3		non-parametric			Pass	No	No Trend	
	MW-4		non-parametric			Pass	No	Upward Trend	
Barium	MW-5	6.04	non-parametric			Pass	No	Upward Trend	
Barium	TMW-1	0.04	non-parametric			Pass	No	Upward Trend	
	TMW-2		non-parametric			Pass	No	No Trend	
	TMW-3		non-parametric			Pass	No	Upward Trend	
Total Cadmium	MW-3	87.33	non-parametric	Fail			Yes	No Trend	
	MW-3		log-normal		Fail		Yes	Downward Trend	
	MW-4	*	log-normal		Fail		Yes	Upward Trend	
Chloride	MW-5	0.00	log-normal		Fail		Yes	Upward Trend	
Chloride	TMW-1	0.00	log-normal		Fail		Yes	Upward Trend	
	TMW-2	*	log-normal		Fail		Yes	Upward Trend	
	TMW-3	*	log-normal		Fail		Yes	Upward Trend	
Chromium	MW-5	74.32	non-parametric	Pass			No	No Trend	
Cobalt	MW-3	59.46	non-parametric	Pass			No	No Trend	
Fluoride	MW-3	85.71	non-parametric	Fail			Yes	No Trend	
Nickel	MW-3	60.00	non-parametric	Pass			No	No Trend	
Nickei	MW-5	00.00	non-parametric	Pass			No	No Trend	
Sulfate	MW-3	64.67	non-parametric	Fail			Yes	No Trend	
Sullate	MW-5	04.07	non-parametric	Pass			No	Upward Trend	
Zinc	MW-3	68.00	non-parametric	Fail			Yes	No Trend	
ZIIIC	MW-5	08.00	non-parametric	Fail			Yes	Upward Trend	

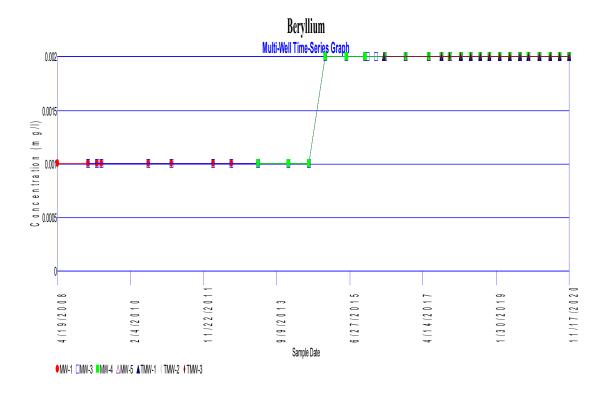
¹ Mann-Kendall Trend Analysis was completed using recent data since the November 10, 2016 sampling event.

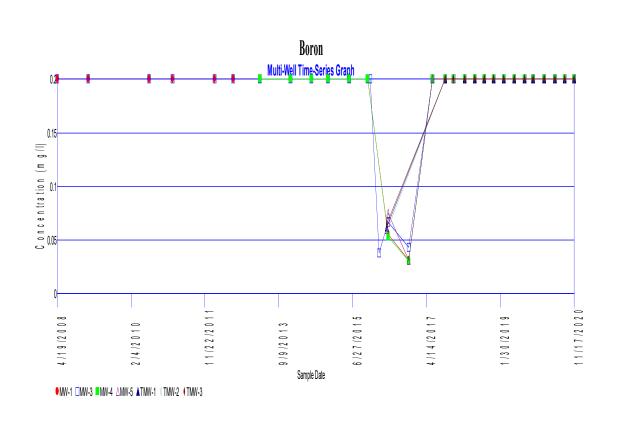


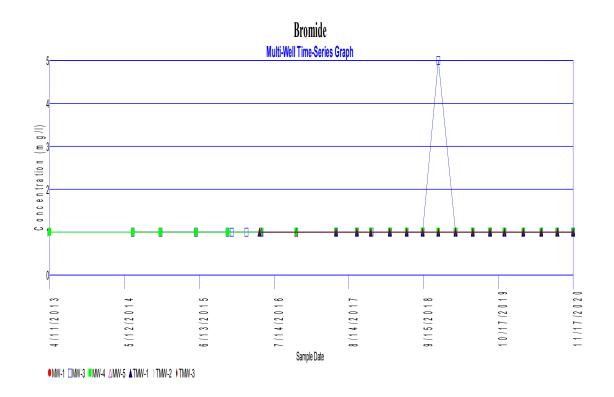

Page 1

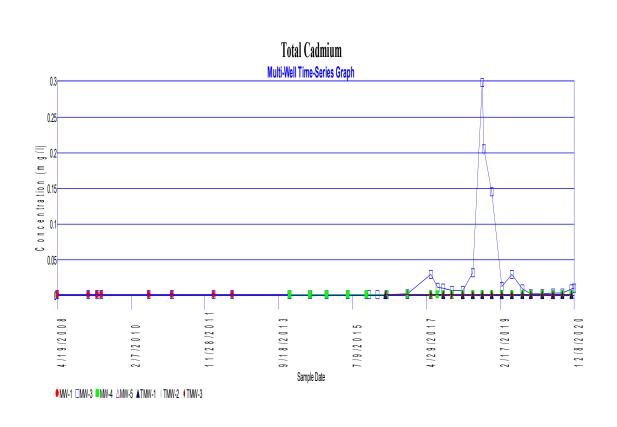

Page 2

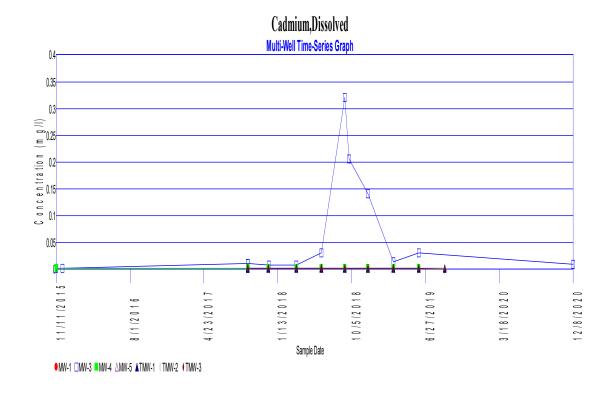

Page 3


Page 4

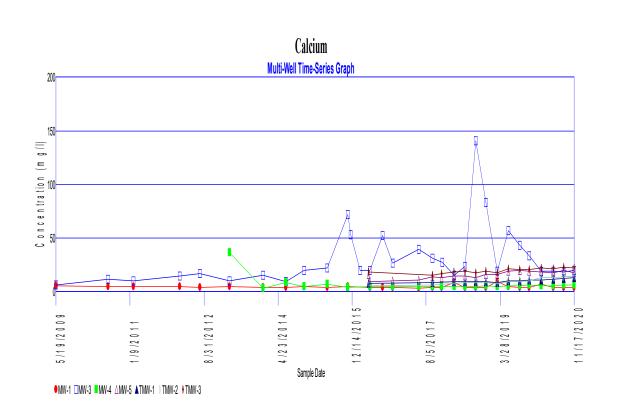

Page 5


Page 6

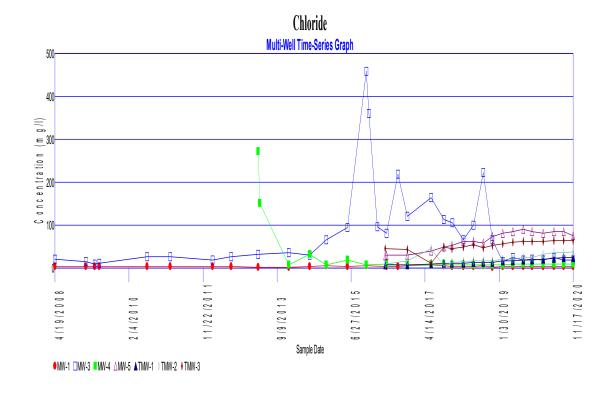

Page 7

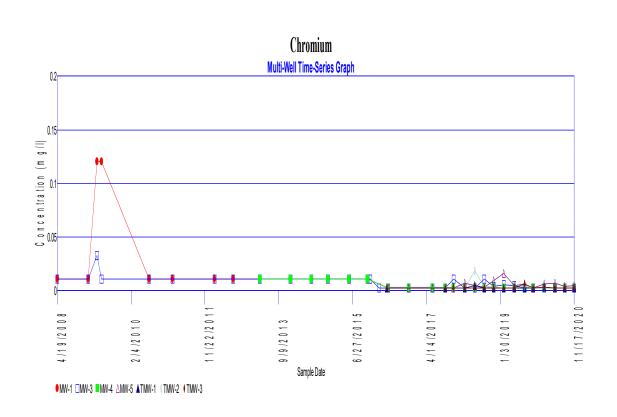


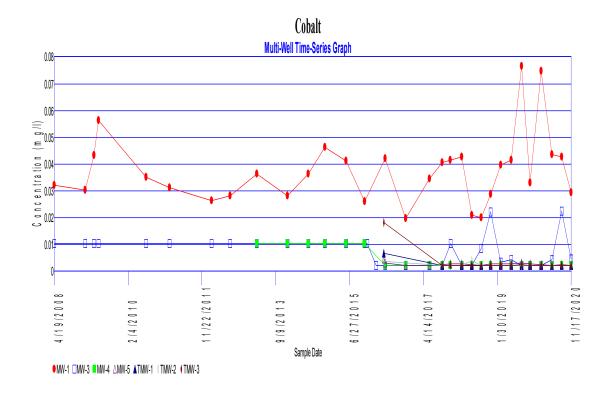
Page 8

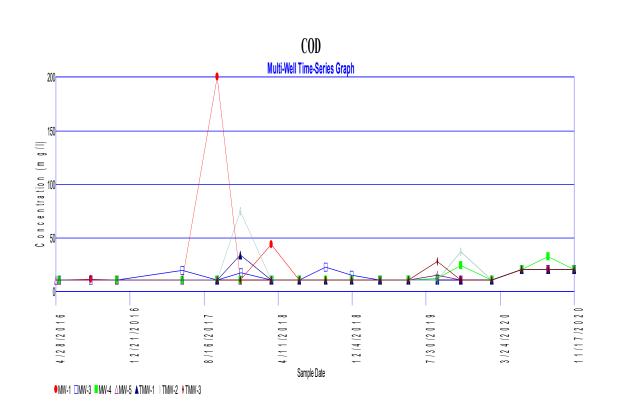


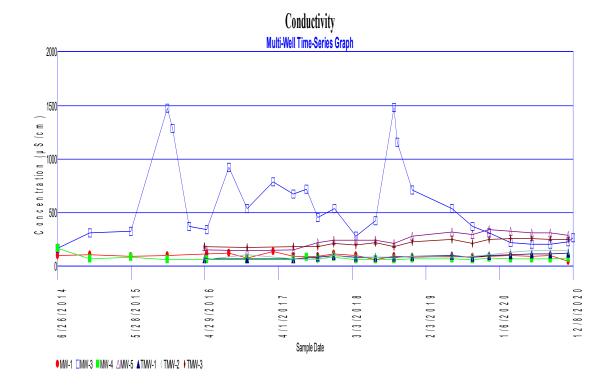
Page 9

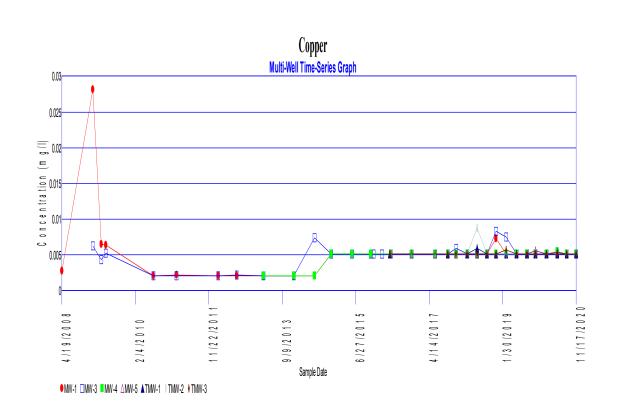


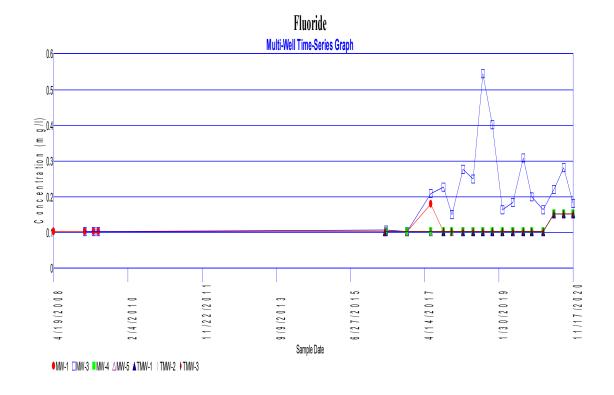


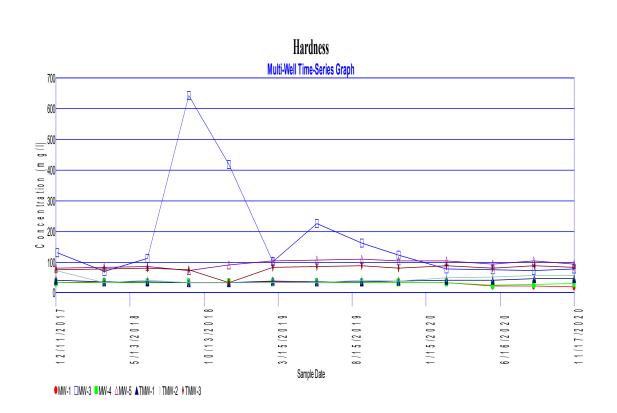

Page 12

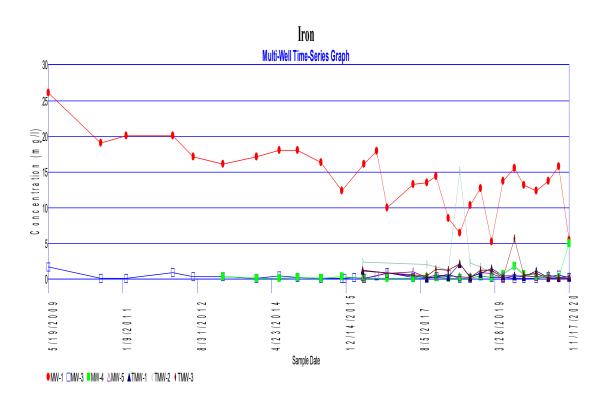



Page 14

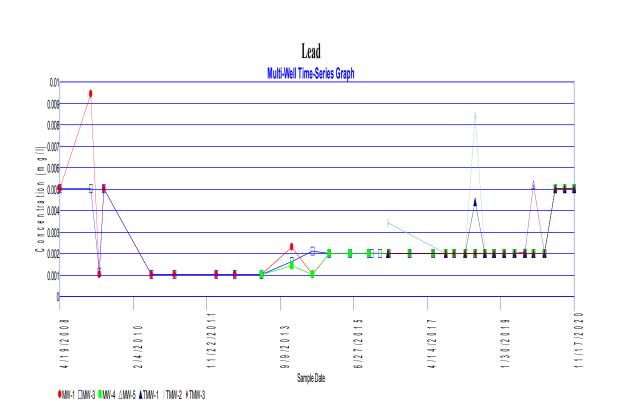


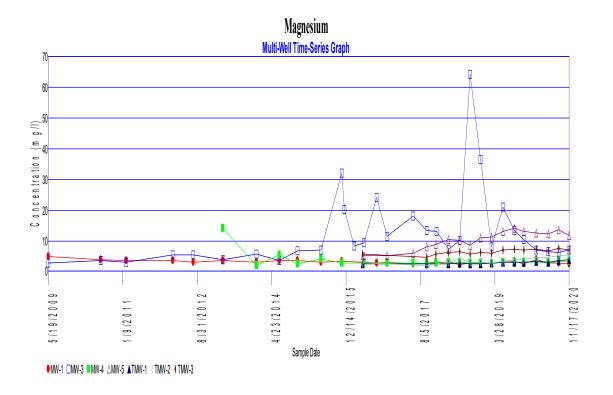

Page 16

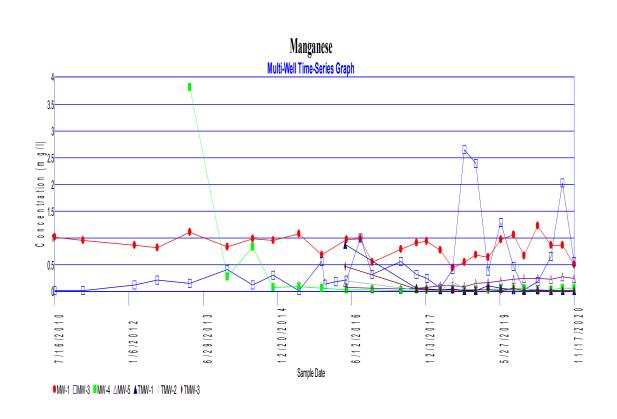


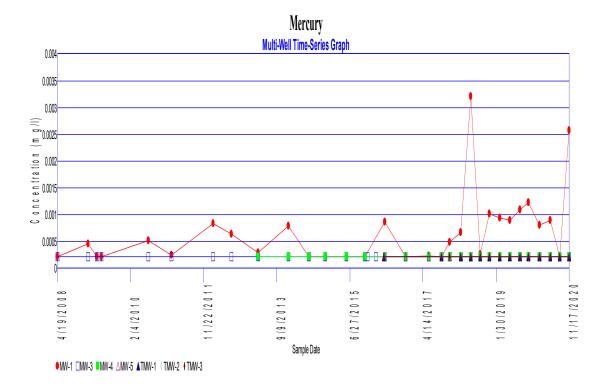


Page 18

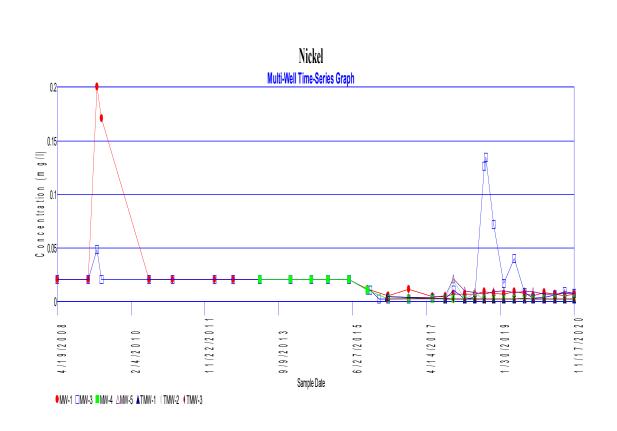


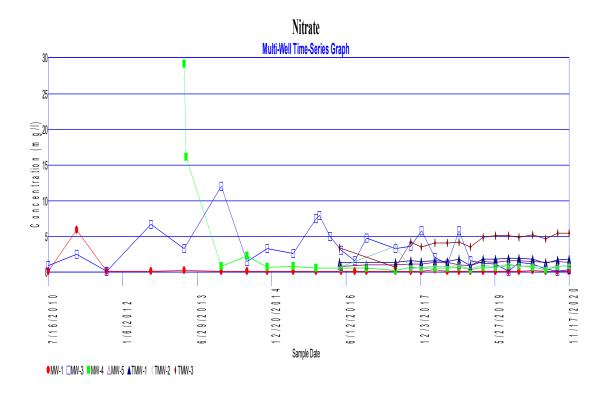


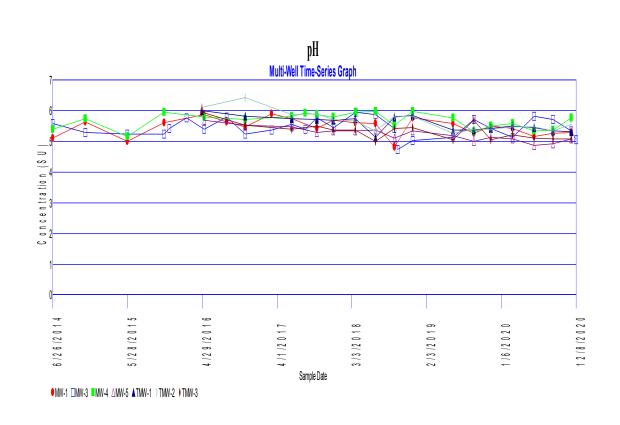

Page 21

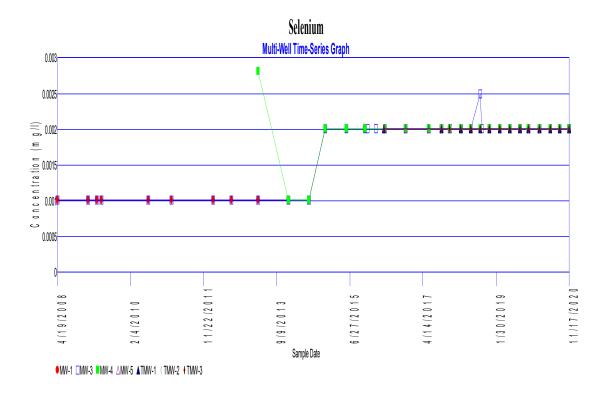


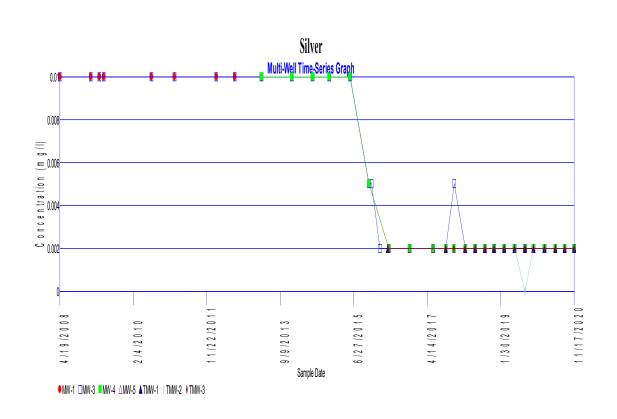
Page 22



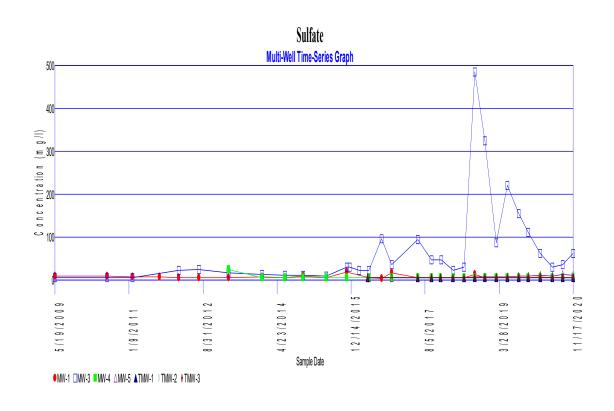


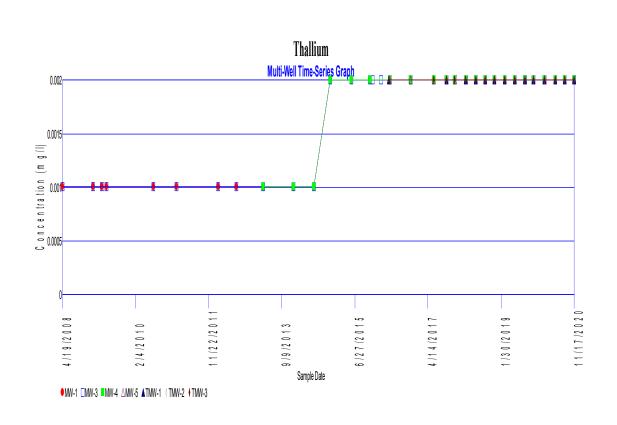


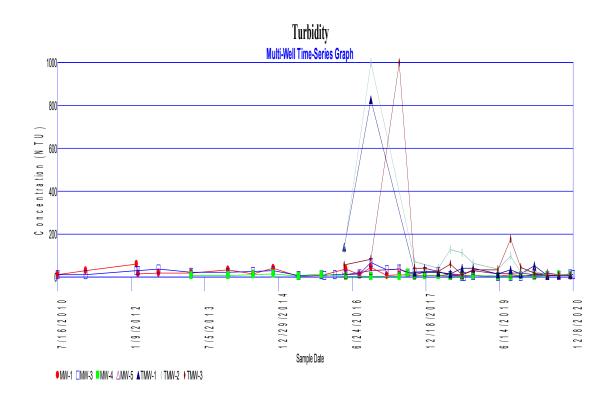


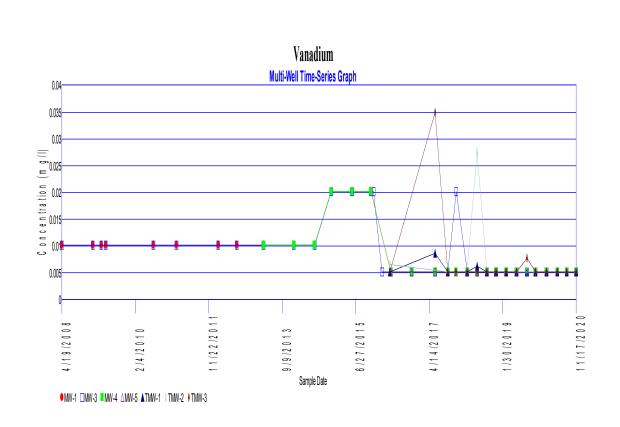


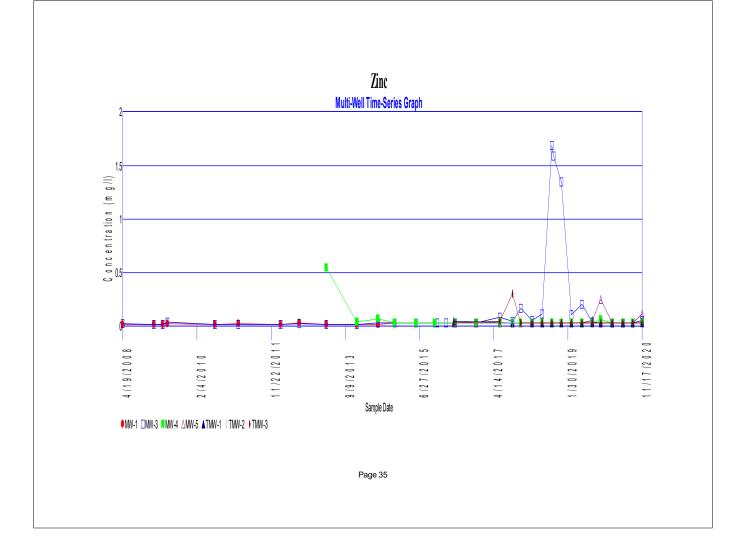
Page 27






Page 30




Page 32

Page 33

Page 34

Shapiro-Wilks Test of Normality

Parameter: Arsenic Location: MW-1

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
K = 15 for 31 measurements

Sum of b values = 0.152642 Sample Standard Deviation = 0.0291131 W Statistic = 0.916329

5% Critical value of 0.929 exceeds 0.916329 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 is less than 0.916329
Data is normally distributed at 99% level of significance

Shapiro-Wilks Test of Normality

Parameter: Chloride Location: MW-1

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
K = 16 for 32 measurements

Sum of b values = 5.04264 Sample Standard Deviation = 0.996843 W Statistic = 0.825468

5% Critical value of 0.93 exceeds 0.825468 Evidence of non-normality at 95% level of significance

1% Critical value of 0.904 exceeds 0.825468
Evidence of non-normality at 99% level of significance

Page 1

Page 2

Shapiro-Wilks Test of Normality

Parameter: Cobalt Location: MW-1

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
K = 15 for 31 measurements

Sum of b values = 0.0665689 Sample Standard Deviation = 0.0131018 W Statistic = 0.860522

5% Critical value of 0.929 exceeds 0.860522 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 exceeds 0.860522 Evidence of non-normality at 99% level of significance

Shapiro-Wilks Test of Normality

Parameter: Nickel Location: MW-1

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
K = 15 for 31 measurements

Sum of b values = 0.15177 Sample Standard Deviation = 0.0438868 W Statistic = 0.398643

5% Critical value of 0.929 exceeds 0.398643 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 exceeds 0.398643 Evidence of non-normality at 99% level of significance

Page 3 Page 4

Shapiro-Wilks Test of Normality

Parameter: Mercury Location: MW-1

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
K = 15 for 31 measurements

Sum of b values = 0.00307314 Sample Standard Deviation = 0.000677979 W Statistic = 0.684874

5% Critical value of 0.929 exceeds 0.684874 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 exceeds 0.684874 Evidence of non-normality at 99% level of significance

Shapiro-Wilks Test of Normality

Parameter: Arsenic Location: MW-1

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
K = 15 for 31 measurements

Sum of b values = 4.70605 Sample Standard Deviation = 0.902649 W Statistic = 0.906053

5% Critical value of 0.929 exceeds 0.906053 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 is less than 0.906053
Data is normally distributed at 99% level of significance

Page 5

Page 6

Shapiro-Wilks Test of Normality

Parameter: Chloride Location: MW-1

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
K = 16 for 32 measurements

Sum of b values = 1.71278 Sample Standard Deviation = 0.320702 W Statistic = 0.92011

5% Critical value of 0.93 exceeds 0.92011 Evidence of non-normality at 95% level of significance

1% Critical value of 0.904 is less than 0.92011
Data is normally distributed at 99% level of significance

Shapiro-Wilks Test of Normality

Parameter: Cobalt Location: MW-1

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
K = 15 for 31 measurements

Sum of b values = 1.72278 Sample Standard Deviation = 0.322519 W Statistic = 0.951101

5% Critical value of 0.929 is less than 0.951101 Data is normally distributed at 95% level of signi

1% Critical value of 0.902 is less than 0.951101 Data is normally distributed at 99% level of signif

Page 7 Page 8

Shapiro-Wilks Test of Normality

Parameter: Nickel
Location: MW-1
Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
K = 15 for 31 measurements

Sum of b values = 3.56442 Sample Standard Deviation = 0.843553 W Statistic = 0.595156

5% Critical value of 0.929 exceeds 0.595156 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 exceeds 0.595156 Evidence of non-normality at 99% level of significance

Shapiro-Wilks Test of Normality

Parameter: Mercury Location: MW-1

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
K = 15 for 31 measurements

Sum of b values = 5.56789 Sample Standard Deviation = 1.08629 W Statistic = 0.875726

5% Critical value of 0.929 exceeds 0.875726 Evidence of non-normality at 95% level of significance

1% Critical value of 0.902 exceeds 0.875726 Evidence of non-normality at 99% level of significance

Page 9 Page 10

Parametric Prediction Interval Analysis

Intra-Well Comparison for MW-1 Parameter: Cobalt

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline	Sam	ples	Date	Result
-----------------	-----	------	-------------	--------

4/19/2008	-3.44202
1/21/2009	-3.50656
4/9/2009	-3.14656
5/19/2009	-2.8824
7/16/2010	-3.35241
2/8/2011	-3.47377
2/17/2012	-3.64966
7/31/2012	-3.57555
3/27/2013	-3.32424
12/23/2013	-3.57555
6/26/2014	-3.32424
11/21/2014	-3.07911
5/28/2015	-3.19418
11/11/2015	-3.66126
5/9/2016	-3.17725
11/10/2016	-3.93223
6/8/2017	-3.37553
9/28/2017	-3.2114
12/11/2017	-3.19175
3/21/2018	-3.15825
6/19/2018	-3.88246
9/12/2018	-3.92207
12/4/2018	-3.56137
3/5/2019	-3.23145
6/4/2019	-3.19175
9/5/2019	-2.57308
11/20/2019	-3.41428
2/27/2020	-2.59964
6/2/2020	-3.14191
8/26/2020	-3.16061

From 30 baseline samples Baseline mean = -3.33042 Baseline std Dev = 0.325854

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 30 (background observations) - 1 t(0.95, 30) = 1.69913

Date	Samples	Mean	Interval	Significant
11/17/2020	1	-3.53702	[02.7676]	FALSE

Intra-Well Comparison for MW-1 Parameter: Arsenic

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 30
Maximum Baseline Concentration = 0.1
Confidence Level = 96.8%
False Positive Rate = 3.2%

Baseline I	Measurem Date	Value
------------	---------------	-------

4/19/2008	0.024
1/21/2009	0.072
4/9/2009	0.067
5/19/2009	0.064
7/16/2010	0.074
2/8/2011	0.086
2/17/2012	0.093
7/31/2012	0.089
3/27/2013	0.049
12/23/2013	0.1
6/26/2014	0.063
11/21/2014	0.059
5/28/2015	0.0604
11/11/2015	0.0469
5/9/2016	0.05
11/10/2016	0.0286
6/8/2017	0.0571
9/28/2017	0.0199
12/11/2017	0.0573
3/21/2018	0.0101
6/19/2018	0.0063
9/12/2018	0.0184
12/4/2018	0.0254
3/5/2019	0.00449
6/4/2019	0.0194
9/5/2019	0.0176
11/20/2019	0.0176
2/27/2020	0.00807
6/2/2020	0.0174
8/26/2020	0.0244

Date
11/17/2020Count
1Mean
0.00513Significant
FALSE

Intra-Well Comparison for MW-1 Parameter: Chloride

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 30
Maximum Baseline Concentration = 5.68
Confidence Level = 96.8%
False Positive Rate = 3.2%

Baseline I	Measurem Date	Value
Dascillo	vicasai cilibate	• uiuc

4/19/2008	2
1/21/2009	2.9
4/9/2009	1.9
5/19/2009	2.8
7/16/2010	2.8
2/8/2011	2.6
2/17/2012	2.1
7/31/2012	2.2
3/27/2013	1.8
12/23/2013	1.5
6/26/2014	2.9
11/21/2014	3.9
5/28/2015	2.01
11/11/2015	3.97
5/9/2016	2.12
8/18/2016	2.4
11/10/2016	4.59
6/8/2017	5.68
9/28/2017	4.11
12/11/2017	2.31
3/21/2018	2.1
6/19/2018	2.24
9/12/2018	4.94
12/4/2018	1.67
3/5/2019	2.11
6/4/2019	2.15
9/5/2019	2.84
11/20/2019	2.52
2/27/2020	1.95
6/2/2020	2.27

Date
11/17/2020Count
1Mean
2.48Significant
FALSE

Intra-Well Comparison for MW-1 Parameter: Nickel

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 36.6667% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 30 Maximum Baseline Concentration = 0.2 Confidence Level = 96.8% False Positive Rate = 3.2%

R	aseline	Measurem Date	Value
_	uscillo	Micagarembate	Value

4/19/2008	ND<0.02
1/21/2009	ND<0.02
4/9/2009	0.2
5/19/2009	0.17
7/16/2010	ND<0.02
2/8/2011	ND<0.02
2/17/2012	ND<0.02
7/31/2012	ND<0.02
3/27/2013	ND<0.02
12/23/2013	ND<0.02
6/26/2014	ND<0.02
11/21/2014	ND<0.02
5/28/2015	ND<0.02
11/11/2015	0.0112
5/9/2016	0.00512
11/10/2016	0.0112
6/8/2017	0.00418
9/28/2017	0.00445
12/11/2017	0.00652
3/21/2018	0.00658
6/19/2018	0.00637
9/12/2018	0.00839
12/4/2018	0.00744
3/5/2019	0.00638
6/4/2019	0.0088
9/5/2019	0.00686
11/20/2019	0.00468
2/27/2020	0.00803
6/2/2020	0.0063
8/26/2020	0.00512

Date
11/17/2020Count
1Mean
0.00632Significant
FALSE

Intra-Well Comparison for MW-1 Parameter: Mercury

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

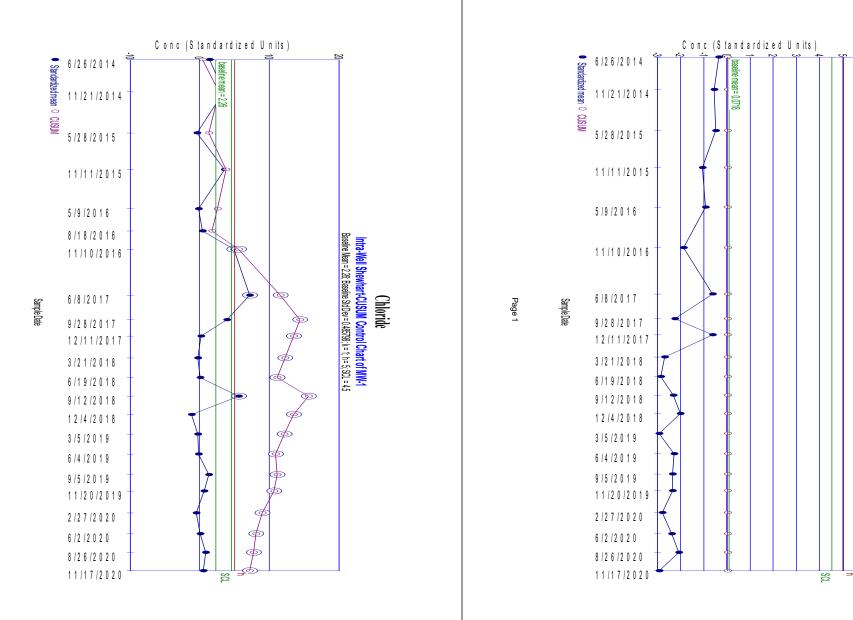
Total Percent Non-Detects = 33.3333% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 30 **Maximum Baseline Concentration = 0.00319** Confidence Level = 96.8% False Positive Rate = 3.2%

Baseline Measurem Date

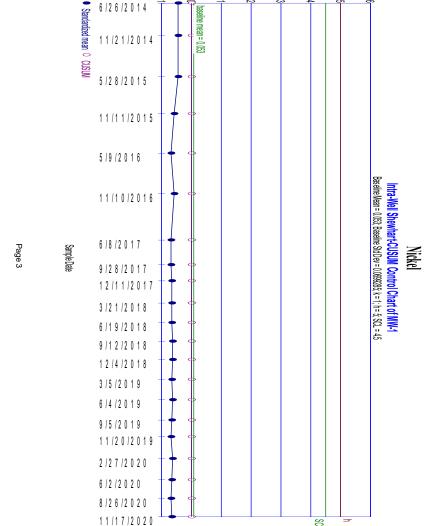
4/19/2008	ND<0.0002
1/21/2009	0.00045
4/9/2009	ND<0.0002
5/19/2009	ND<0.0002
7/16/2010	0.0005
2/8/2011	0.00024
2/17/2012	0.00083
7/31/2012	0.00063
3/27/2013	0.00028
12/23/2013	0.00077
6/26/2014	ND<0.0002
11/21/2014	ND<0.0002
5/28/2015	ND<0.0002
11/11/2015	ND<0.0002
5/9/2016	0.000858
11/10/2016	ND<0.0002
6/8/2017	0.000222
9/28/2017	ND<0.0002
12/11/2017	0.000473
3/21/2018	0.000651
6/19/2018	0.00319
9/12/2018	0.000244
12/4/2018	0.00101
3/5/2019	0.000922
6/4/2019	0.000889
9/5/2019	0.00108
11/20/2019	0.00121
2/27/2020	0.000796
6/2/2020	0.000888
8/26/2020	ND<0.0002

Value

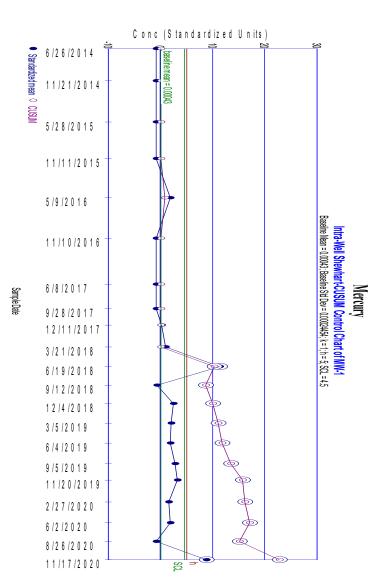
Date


Count

Mean


Significant FALSE

11/17/2020


0.00256

Arsenic
Intra-Well Shewhart-CUSUM Control Chart of NW-1
Baseline Mean = 0.0718; Baseline Std Dev = 0.0228951; k = 1; h = 5; SOL = 4.5

Conc (Standardized Units)

Wilcoxon Non-Parametric Analysis (Intra-Well)

Parameter: Mercury Location: MW-1

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total non detects is 10 Non detect rank is 5.5

Wilcoxon Ranks

Group Baseline Values	Date 4/19/2008 1/21/2009 4/9/2009 5/19/2009	Conc. ND<0.0002 0.00045 ND<0.0002 ND<0.0002	Rank 5.5 15 5.5 5.5
Comparison Values	7/16/2010 2/8/2011 2/17/2012 7/31/2012 3/27/2013 12/23/2013 6/26/2014 11/21/2014 5/28/2015 11/11/2015 5/9/2016 11/10/2016 6/8/2017 9/28/2017 12/11/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019	0.0005 0.00024 0.00083 0.00063 0.00028 0.00077 ND<0.0002 ND<0.0002 ND<0.0002 ND<0.0002 0.000858 ND<0.0002 0.000222 ND<0.0002 0.000473 0.000651 0.00319 0.000244 0.00101 0.000922 0.000889 0.00108 0.00101	17 12 22 18 14 20 5.5 5.5 5.5 5.5 5.5 11 5.5 16 19 31 13 27 26 25 28 29
	2/27/2020 6/2/2020 8/26/2020 11/17/2020	0.000796 0.000888 ND<0.0002 0.00256	21 24 5.5 30

The Wilcoxon Statistic is 86.5

The Expected value is is 54

The Standard Deviation is 16.9706

The Z Score is 1.88562

The Standard Deviation adjusted for ties is 16.6859

The Z Score adjusted for ties is 1.91779

1.88562 < 2.326 indicating no statistical significance at 1% level

1.91779 < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Aluminum All Locations

Normality Test of Parameter Concentrations

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit Total Number of Measurements = 148

Data Set Standard Deviation = 1.18606 Numerator = 8632.87 Denominator = 29107.1 W Statistic = 0.296589 = 8632.87 / 29107.1

5% Critical value of 0.976 exceeds 0.296589 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.296589
Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Barium All Locations

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
Total Number of Measurements = 149

Data Set Standard Deviation = 0.0845134 Numerator = 64.1867 Denominator = 149.526 W Statistic = 0.429267 = 64.1867 / 149.526

5% Critical value of 0.976 exceeds 0.429267 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.429267 Evidence of non-normality at 99% level of significance

Page 1

Page 2

Shapiro-Francia Test of Normality

Parameter: Total Cadmium All Locations

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
Total Number of Measurements = 150

Data Set Standard Deviation = 0.031521 Numerator = 3.07981 Denominator = 21.1271 W Statistic = 0.145775 = 3.07981 / 21.1271

5% Critical value of 0.976 exceeds 0.145775 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.145775 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Chloride

All Locations

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
Total Number of Measurements = 159

Data Set Standard Deviation = 59.8308 Numerator = 4.78015e+007 Denominator = 8.55766e+007 W Statistic = 0.558582 = 4.78015e+007 / 8.55766e+007

5% Critical value of 0.976 exceeds 0.558582 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.558582 Evidence of non-normality at 99% level of significance

Page 3 Page 4

Parameter: Chromium All Locations

Normality Test of Parameter Concentrations

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit Total Number of Measurements = 148

Data Set Standard Deviation = 0.0140331 Numerator = 0.994373 Denominator = 4.07464 W Statistic = 0.244039 = 0.994373 / 4.07464

5% Critical value of 0.976 exceeds 0.244039 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.244039
Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Cobalt All Locations

Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with Detection Limit Total Number of Measurements = 148

Data Set Standard Deviation = 0.0152376 Numerator = 3.18117 Denominator = 4.80414 W Statistic = 0.662172 = 3.18117 / 4.80414

5% Critical value of 0.976 exceeds 0.662172 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.662172 Evidence of non-normality at 99% level of significance

Page 6

Shapiro-Francia Test of Normality

Page 5

Parameter: Fluoride **All Locations**

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
Total Number of Measurements = 119

Data Set Standard Deviation = 0.0618323 Numerator = 23.9523 Denominator = 50.3218 W Statistic = 0.475983 = 23.9523 / 50.3218

5% Critical value of 0.976 exceeds 0.475983 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.475983 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Nickel **All Locations**

Normality Test of Parameter Concentrations
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit
Total Number of Measurements = 150

Data Set Standard Deviation = 0.0263648 Numerator = 5.42605 Denominator = 14.7804 W Statistic = 0.367112 = 5.42605 / 14.7804

5% Critical value of 0.976 exceeds 0.367112 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.367112 Evidence of non-normality at 99% level of significance

Page 7 Page 8

Parameter: Sulfate All Locations

Normality Test of Parameter Concentrations

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit Total Number of Measurements = 150

Data Set Standard Deviation = 53.1112 Numerator = 1.58662e+007 Denominator = 5.99805e+007 W Statistic = 0.264522 = 1.58662e+007 / 5.99805e+007

5% Critical value of 0.976 exceeds 0.264522 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.264522 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Zinc All Locations

Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with Detection Limit Total Number of Measurements = 150

Data Set Standard Deviation = 0.218356 Numerator = 192.12 Denominator = 1013.83 W Statistic = 0.189498 = 192.12 / 1013.83

5% Critical value of 0.976 exceeds 0.189498 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.189498 Evidence of non-normality at 99% level of significance

Page 9

Page 10

Shapiro-Francia Test of Normality

Parameter: Aluminum **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 148

Data Set Standard Deviation = 1.23781 Numerator = 27620.1 Denominator = 31702.4 W Statistic = 0.87123 = 27620.1 / 31702.4

5% Critical value of 0.976 exceeds 0.87123 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.87123 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Barium **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 149

Data Set Standard Deviation = 0.929627 Numerator = 17495.3 Denominator = 18091.9 W Statistic = 0.967026 = 17495.3 / 18091.9

5% Critical value of 0.976 exceeds 0.967026 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 is less than 0.967026 Data is normally distributed at 99% level of significance

Page 11 Page 12

Parameter: Total Cadmium All Locations

Normality Test of Parameter Concentrations

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL Total Number of Measurements = 150

Data Set Standard Deviation = 1.19032 Numerator = 11444.8 Denominator = 30127.5 W Statistic = 0.379879 = 11444.8 / 30127.5

5% Critical value of 0.976 exceeds 0.379879 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.379879
Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Chloride All Locations

Normality Test of Parameter Concentrations

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL Total Number of Measurements = 159

Data Set Standard Deviation = 1.31583 Numerator = 40588 Denominator = 41390.6 W Statistic = 0.980608 = 40588 / 41390.6

5% Critical value of 0.976 is less than 0.980608 Data is normally distributed at 95% level of significance

1% Critical value of 0.967 is less than 0.980608 Data is normally distributed at 99% level of signific

Page 13

Shapiro-Francia Test of Normality

Parameter: Chromium **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 148

Data Set Standard Deviation = 0.941161 Numerator = 13742.9 Denominator = 18327.9 W Statistic = 0.749837 = 13742.9 / 18327.9

5% Critical value of 0.976 exceeds 0.749837 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.749837 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Page 14

Parameter: Cobalt **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 148

Data Set Standard Deviation = 1.40376 Numerator = 33146.7 Denominator = 40772.5 W Statistic = 0.812967 = 33146.7 / 40772.5

5% Critical value of 0.976 exceeds 0.812967 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.812967 Evidence of non-normality at 99% level of significance

Page 15 Page 16

Parameter: Fluoride All Locations

Normality Test of Parameter Concentrations

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL Total Number of Measurements = 119

Data Set Standard Deviation = 0.533856 Numerator = 2156.82 Denominator = 3751.22 W Statistic = 0.574963 = 2156.82 / 3751.22

5% Critical value of 0.976 exceeds 0.574963 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.574963 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Nickel All Locations

Normality Test of Parameter Concentrations

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL Total Number of Measurements = 150 Data Set Standard Deviation = 1.2443 Numerator = 27758 Denominator = 32921.9 W Statistic = 0.843146 = 27758 / 32921.9

5% Critical value of 0.976 exceeds 0.843146 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.843146
Evidence of non-normality at 99% level of significance

Page 17

Page 18

Shapiro-Francia Test of Normality

Parameter: Sulfate **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 150

Data Set Standard Deviation = 1.19715 Numerator = 20438.1 Denominator = 30474.6 W Statistic = 0.670661 = 20438.1 / 30474.6

5% Critical value of 0.976 exceeds 0.670661 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.670661 Evidence of non-normality at 99% level of significance

Shapiro-Francia Test of Normality

Parameter: Zinc **All Locations**

Normality Test of Parameter Concentrations
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL
Total Number of Measurements = 150

Data Set Standard Deviation = 0.971607 Numerator = 11618.8 Denominator = 20073.3 W Statistic = 0.578818 = 11618.8 / 20073.3

5% Critical value of 0.976 exceeds 0.578818 Evidence of non-normality at 95% level of significance

1% Critical value of 0.967 exceeds 0.578818 Evidence of non-normality at 99% level of significance

Page 19 Page 20

Parametric Prediction Interval Analysis

Inter-Well Comparison Parameter: Chloride

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Inter-Well Unified Guid. Formula 95% One-Sided Comparison

Background Samples = 32 Background Mean = 0.939785 Background Std Dev = 0.320702

Number of comparisons = 6 Future Samples (k) = 6 Actual confidence level is 1.0 - (0.05/6) = 99.1667 % t is Percentile of Student's T-Test (0.95/6) = 0.991667 Degrees of Freedom = 32 (background observations) - 1 t(0.991667, 32) = 2.5499

Well MW-3

Date Samples Mean Interval Significant

11/17/2020 1 2.92852 [0, 1.77022] TRUE

Well MW-4

Date Samples Mean Interval Significant

11/17/2020 1 2.20166 [0, 1.77022] TRUE

Well MW-5

Date Samples Mean Interval Significant

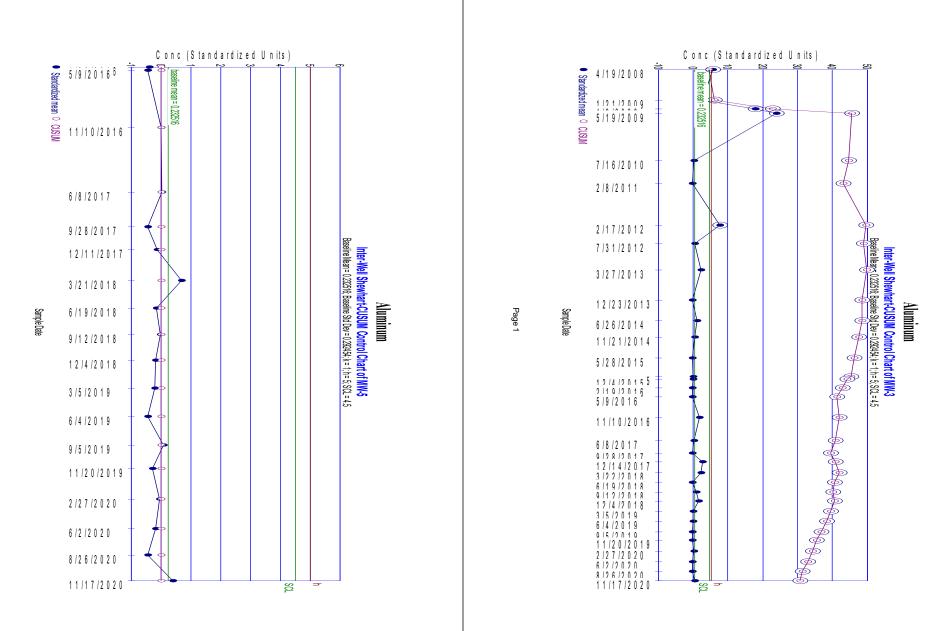
11/17/2020 1 4.31482 [0, 1.77022] TRUE

Well TMW-1

Date Samples Mean Interval Significant

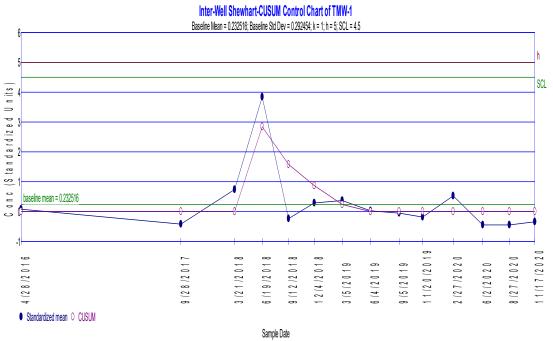
11/17/2020 1 3.19048 [0, 1.77022] TRUE

Well TMW-2


Date Samples Mean Interval Significant

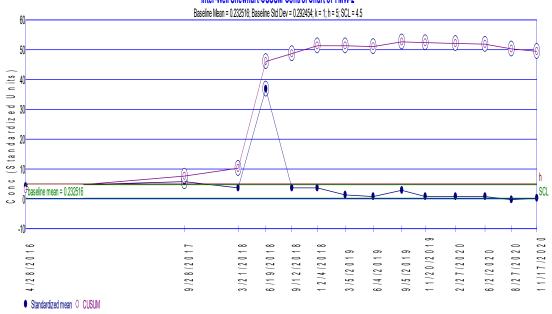
11/17/2020 1 3.627 [0, 1.77022] TRUE

Well TMW-3


Date Samples Mean Interval Significant

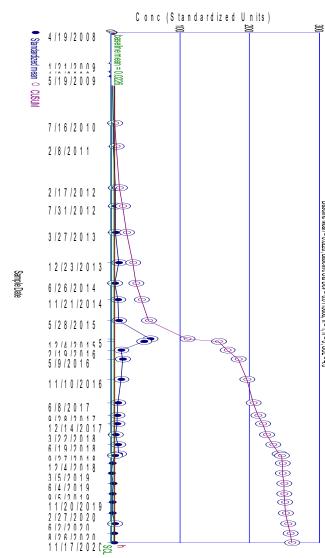
11/17/2020 1 4.14155 [0, 1.77022] TRUE

Page 2

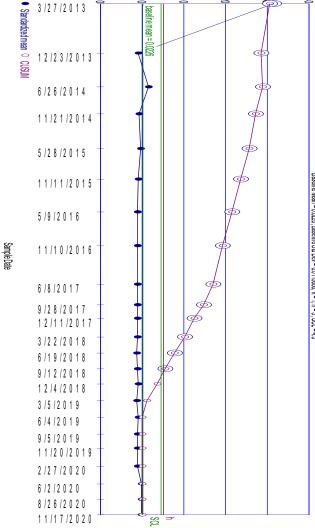

Aluminum

Page 3

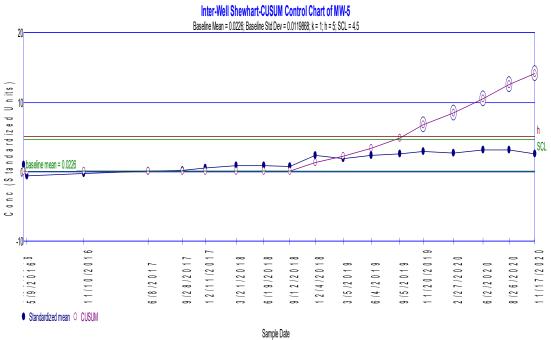
Aluminum


Inter-Well Shewhart-CUSUM Control Chart of TMW-2

Page 4

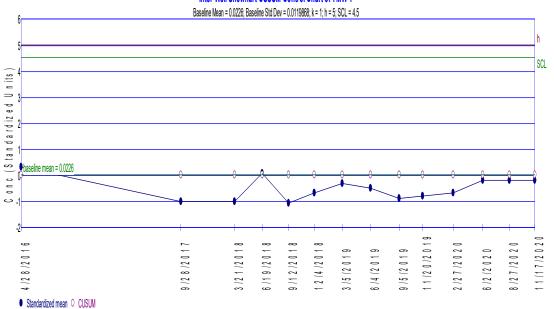

Sample Date

Page 5



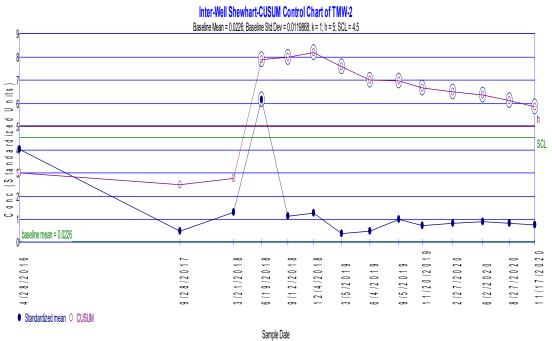
Conc (Standardized Units)

3 / 2 7 / 2 0 1 3



Page 7

Barium


Inter-Well Shewhart-CUSUM Control Chart of TMW-1

Sample Date

Page 9

Sample Date

Inter-Well Comparison Parameter: Total Cadmium

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 87.3333%

Number of comparisons = 6

Future Samples (k) = 6

Recent Dates = 1

Background Measurements (n) = 30

Maximum Background Value = 0.001

Confidence Level = 83.3%

False Positive Rate = 16.7%

Location _{MW-3}	Date 12/8/2020	Count	Mean 0.00906	Significant TRUE
MW-4	11/17/2020	1	0.001	FALSE
MW-5	11/17/2020	1	0.001	FALSE
TMW-1	11/17/2020	1	0.001	FALSE
TMW-2	11/17/2020	1	0.001	FALSE
TMW-3	11/17/2020	1	0.001	FALSE

Inter-Well Comparison Parameter: Chromium

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 74.3243% Number of comparisons = 6 Future Samples (k) = 6 Recent Dates = 1 Background Measurements (n) = 31 Maximum Background Value = 0.12 Confidence Level = 83.8% False Positive Rate = 16.2%

Location MW-3	Date 11/17/2020	Count 1	Mean 0.002	Significant FALSE
MW-4	11/17/2020	1	0.002	FALSE
MW-5	11/17/2020	1	0.00391	FALSE
TMW-1	11/17/2020	1	0.002	FALSE
TMW-2	11/17/2020	1	0.002	FALSE
TMW-3	11/17/2020	1	0.002	FALSE

Inter-Well Comparison Parameter: Cobalt

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 59.4595% Number of comparisons = 6 Future Samples (k) = 6 Recent Dates = 1 Background Measurements (n) = 31 Maximum Background Value = 0.0763 Confidence Level = 83.8% False Positive Rate = 16.2%

Location MW-3	Date 11/17/2020	Count 1	Mean 0.00444	Significant FALSE
MW-4	11/17/2020	1	0.002	FALSE
MW-5	11/17/2020	1	0.002	FALSE
TMW-1	11/17/2020	1	0.002	FALSE
TMW-2	11/17/2020	1	0.002	FALSE
TMW-3	11/17/2020	1	0.002	FALSE

Inter-Well Comparison Parameter: Fluoride

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 85.7143%

Number of comparisons = 6

Future Samples (k) = 6

Recent Dates = 1

Background Measurements (n) = 21

Maximum Background Value = 0.178

Confidence Level = 77.8%

False Positive Rate = 22.2%

Location _{MW-3}	Date 11/17/2020	Count	Mean 0.179	Significant TRUE
MW-4	11/17/2020	1	0.15	FALSE
MW-5	11/17/2020	1	0.15	FALSE
TMW-1	11/17/2020	1	0.15	FALSE
TMW-2	11/17/2020	1	0.15	FALSE
TMW-3	11/17/2020	1	0.15	FALSE

Inter-Well Comparison Parameter: Nickel

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 60% Number of comparisons = 6 Future Samples (k) = 6 Recent Dates = 1 Background Measurements (n) = 31 Maximum Background Value = 0.2 Confidence Level = 83.8% False Positive Rate = 16.2%

Location MW-3	Date 11/17/2020	Count	Mean 0.00708	Significant FALSE
MW-4	11/17/2020	1	0.002	FALSE
MW-5	11/17/2020	1	0.00713	FALSE
TMW-1	11/17/2020	1	0.002	FALSE
TMW-2	11/17/2020	1	0.002	FALSE
TMW-3	11/17/2020	1	0.002	FALSE

Inter-Well Comparison Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 64.6667%
Number of comparisons = 6
Future Samples (k) = 6
Recent Dates = 1
Background Measurements (n) = 30
Maximum Background Value = 18.8
Confidence Level = 83.3%
False Positive Rate = 16.7%

Location _{MW-3}	Date 11/17/2020	Count 1	Mean 61.4	Significant TRUE
MW-4	11/17/2020	1	5	FALSE
MW-5	11/17/2020	1	11.2	FALSE
TMW-1	11/17/2020	1	5	FALSE
TMW-2	11/17/2020	1	5	FALSE
TMW-3	11/17/2020	1	5	FALSE

Inter-Well Comparison Parameter: Zinc

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 68%
Number of comparisons = 6
Future Samples (k) = 6
Recent Dates = 1
Background Measurements (n) = 31
Maximum Background Value = 0.0281
Confidence Level = 83.8%
False Positive Rate = 16.2%

Location _{MW-3}	Date 11/17/2020	Count	Mean 0.0507	Significant TRUE
MW-4	11/17/2020	1	0.025	FALSE
MW-5	11/17/2020	1	0.11	TRUE
TMW-1	11/17/2020	1	0.025	FALSE
TMW-2	11/17/2020	1	0.025	FALSE
TMW-3	11/17/2020	1	0.025	FALSE

Parameter: Aluminum Location: MW-3

95% Confidence Level

S Statistic = 38 - 72 = -34

Tied GrouValue **Members Time Period Observations** 11/10/2016 6/8/2017 9/28/2017 12/14/2017 12/14/2017 3/22/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 300 B = 0 C = 60 D = 0 E = 20 F = 0 a = 8880 b = 30240 c = 480

C - 400 Group Variance = 476.667
Z-Score = -1.51149
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed)
|-1.51149| <= 1.97737 indicating no evidence of a trend

Page 1

Mann-Kendall Trend Analysis

Parameter: Aluminum Location: MW-5

S Statistic = 48 - 69 = -21

Tied GrouValue Members

Time Period Observations 11/10/2016 6/8/2017 6/8/2017 9/28/2017 12/11/2017 12/11/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 8/26/2020 11/17/2020

There are 0 time periods with multiple data

A = 66 B = 0 C = 6 D = 0 E = 6 F = 0 a = 8880 b = 30240 c = 480

C-vev
Group Variance = 489.667
Z-Score = -0.903815
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed)
|-0.903815| c= 1.97737 indicating no evidence of a trend

Page 2

Mann-Kendall Trend Analysis

Parameter: Aluminum Location: TMW-1 Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members

Time Period **Observations** 9/28/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 8/27/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 18
B = 0
C = 0
D = 0
E = 2
F = 0
B = 8886
b = 15444
c = 312
C-500 yariance = 267.667
Z-Score = -1.58919
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed) |-1.58919| <= 1.97737 indicating no evidence of a trend

Mann-Kendall Trend Analysis

Parameter: Aluminum Location: TMW-2 Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members **Time Period** Observations 9/28/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 11/17/2020 1 There are 0 time periods with multiple data

A = 0 B = 0 C = 0 D = 0 E = 0 F = 0 a = 4836 b = 15444

0 = 1944-C = 912 Group Yarlance = 268.667 Z-Score = -3.72154 Comparison Level at 95% confidence level = -1.65463 (downward trend) -3.72154 - -1.63463 indicating a downward trend

Parameter: Barium Location: MW-3

95% Confidence Level

S Statistic = 37 - 99 = -62

Tied GrouValue Members **Time Period Observations** 11/10/2016 6/8/2017 9/28/2017 9/28/2017 12/14/2017 3/22/2018 9/12/2018 9/12/2018 9/27/2018 12/4/2018 3/5/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 0 B = 0 C = 0 D = 0 E = 0 F = 0 a = 10608 b = 36720 c = 544

C - 044 Group Variance = 589.333 Z-Score = 2.51275 Comparison Level at 95% confidence level = -1.65463 (downward trend) -2.51275 < -1.65463 indicating a downward trend

Page 5

Mann-Kendall Trend Analysis

Parameter: Barium Location: MW-5

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Tied GrouValue	Members
Time Period	Observations
11/10/2016	1
6/8/2017	1
9/28/2017	1
12/11/2017	1
3/21/2018	1
6/19/2018	1
9/12/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1
8/26/2020	1
11/17/2020	1
There are 0 time periods with me	ultiple data

A = 0
B = 0
C = 0
D = 0
E = 0
B = 880
b = 30240
c = 480
Z-50240
c = 48723
Z-50200 = 4.45723
A-50200 =

Mann-Kendall Trend Analysis

Parameter: Barium Location: MW-4

S Statistic = 82 - 35 = 47 Tied GrouValue Members

Time Period Observations 11/10/2016 6/8/2017 9/28/2017 12/11/2017 12/11/2017 3/22/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 11/17/2020

A = 66 B = 0 C = 6 D = 0 E = 6 F = 0 a = 8880 b = 30240 c = 480

Group Variance = 489.667 Z-Score = 2.07878

There are 0 time periods with multiple data

2-score = 2.07676 Comparison Level at 95% confidence level = 1.65463 (upward trend) 2.07878 > 1.65463 indicating an upward trend

Page 6

Mann-Kendall Trend Analysis

Parameter: Barium Location: TMW-1 Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members Time Period **Observations** 9/28/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 8/27/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 66 B = 0 C = 6 D = 0 E = 6 F = 0 a = 4836 b = 15444 c = 312

Group Variance = 265
Z-Score = 1.84289
Comparison Level at 95% confidence level = 1.65463 (upward trend)
1.84289 > 1.65463 indicating an upward trend

Parameter: Barium Location: TMW-2

S Statistic = 30 - 48 = -18

Tied GrouValue	Members
Time Period	Observations
9/28/2017	1
3/21/2018	1
6/19/2018	1
9/12/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1
8/27/2020	1
11/17/2020	1
There are 0 time periods with mul	tiple data

A = 0
B = 0
C = 0
D = 0
E = 0
F = 0
a = 4836
b = 15444
c = 312
Z-Score = -1.03715
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed) |-1.03715| <= 1.97737 indicating no evidence of a trend

Page 9

Mann-Kendall Trend Analysis

Parameter: Total Cadmium

Location: MW-3

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

S Statistic = 72 - 99 = -27

Tied GrouValue	Members
Time Period	Observations
11/10/2016	1
6/8/2017	1
8/8/2017	1
9/28/2017	1
12/14/2017	1
3/22/2018	1
6/19/2018	1
9/12/2018	1
9/27/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1
8/26/2020	1
11/17/2020	1
12/8/2020	1
There are 0 time periods with mu	ultiple data
A = 0	
B = 0	

A = U
B = 0
C = 0
D = 0
E = 0
E = 0
D = 0
E = 0
a = 14706
b = 52326
c = 884
Group Variance = 817
Z-Score = -0.909625
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed)
|-0.909625| <= 1.97737 indicating no evidence of a trend

Mann-Kendall Trend Analysis

Parameter: Barium
Location: TMW-3
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

S Statistic = 69 - 21 = 48

Tied GrouValue Members **Time Period Observations** 9/28/2017 12/11/2017 12/11/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 91/202019 2/27/2020 6/2/2020 8/27/2020 11/17/2020 There are 0

There are 0 time periods with multiple data

A = 18 B = 0 C = 0 D = 0 E = 2 F = 0 a = 6006 b = 19656 c = 364

Group Variance = 332.667 Z-Score = 2.57687

Comparison Level at 95% confidence level = 1.65463 (upward trend)
2.57687 > 1.65463 indicating an upward trend

Page 10

Mann-Kendall Trend Analysis

Parameter: Chloride

Location: MW-3

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members Time Period **Observations**

11/10/2016 6/8/2017 9/28/2017 12/14/2017 3/22/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020

6/2/2020 1 8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 18 B = 0 C = 0 D = 0 E = 2 F = 0

F = 0 a a 8880 b = 30240 c = 480 Group Variance = 492.333 Z.Score = -3.15478 Comparison Level at 95% confidence level = -1.65463 (downward trend) -3.15478 < -1.65463 indicating a downward trend

Parameter: Chloride
Location: MW-4
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level

S Statistic = 103 - 17 = 86

Tied GrouValue	Members
Time Period	Observations
11/10/2016	1
6/8/2017	1
9/28/2017	1
12/11/2017	1
3/22/2018	1
6/19/2018	1
9/12/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1
8/26/2020	1
11/17/2020	1
There are 0 time periods with m	ultiple data
A = 0	
B = 0	
C = 0	
D = 0	
E = 0	
F = 0	
a = 8880 b = 30240	
c = 480	
c = 480 Group Variance = 493.333	
Group variance = 493.333 Z-Score = 3.82691	
	dence level = 1.65463 (upward trend)
Companson Level at 95% comit	erice level – 1.00+00 (upwaru lieriu)

Page 13

Mann-Kendall Trend Analysis

Parameter: Chloride
Location: MW-5
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

S Statistic = 101 - 18 = 83

Tied GrouValue	Members 2
Time Period	Observations
11/10/2016	1
6/8/2017	1
9/28/2017	1
12/11/2017	1
3/21/2018	1
6/19/2018	1
9/12/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1

8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 18 B = 0 C = 0 D = 0 E = 2 F = 0 a = 8880 b = 30240 c = 480

C-460
Group Variance = 492.333
Z-Score = 3.69559
Comparison Level at 95% confidence level = 1.65463 (upward trend)
3.69559 > 1.65463 indicating an upward trend

Mann-Kendall Trend Analysis

Parameter: Chloride Location: TMW-1 Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Tied GrouValue	Members					
Time Period	Observations					
11/10/2016	1					
6/8/2017	1					
9/28/2017	1					
12/11/2017	1					
3/21/2018	1					
6/19/2018	1					
9/12/2018	1					
12/4/2018	1					
3/5/2019	1					
6/4/2019	1					
9/5/2019	1					
11/20/2019	1					
2/27/2020	1					
6/2/2020	1					
8/27/2020	1					
11/17/2020	1					
There are 0 time periods with mu	ultiple data					

A = 0
B = 0
C = 0
D = 0
E = 0
F = 0
F = 0
Group Variance = 493.333
C-Score = 5.17759
Comparison Level at 55% confidence level = 1.65463 (upward trend)
5.17759 > 1.85463 indicating an upward trend

Mann-Kendall Trend Analysis

Parameter: Chloride Location: TMW-2 Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue	Members				
Time Period	Observations				
11/10/2016	1				
6/8/2017	1				
9/28/2017	1				
12/11/2017	1				
3/21/2018	1				
6/19/2018	1				
9/12/2018	1				
12/4/2018	1				
3/5/2019	1				
6/4/2019	1				
9/5/2019	1				
11/20/2019	1				
2/27/2020	1				
6/2/2020	1				
8/27/2020	1				
11/17/2020	1				

Page 14

A = 0
B = 0
C = 0
D = 0
E = 0
B = 880
b = 30240
c = 480
C-50raparison Level at 95% confidence level = 1.65463 (upward trend)
3.46673 > 1.65463 indicating an upward trend

Parameter: Chloride
Location: TMW-3

95% Confidence Level

S Statistic = 112 - 8 = 104

Tied GrouValue	Members					
Time Period	Observations					
11/10/2016	1					
6/8/2017	1					
9/28/2017	1					
12/11/2017	1					
3/21/2018	1					
6/19/2018	1					
9/12/2018	1					
12/4/2018	1					
3/5/2019	1					
6/4/2019	1					
9/5/2019	1					
11/20/2019	1					
2/27/2020	1					
6/2/2020	1					
8/27/2020	1					
11/17/2020	1					

A = 0 B = 0 C = 0 D = 0 E = 0 F = 0 a = 8880 b = 30240 c = 480 Group Variance = 493.333 Z-Score = 4.63732 Comparison Level at 95% confidence level = 1.65463 (upward trend) 4.63732 > 1.65463 indicating an upward trend

Page 17

Members

Mann-Kendall Trend Analysis Parameter: Cobalt

Location: MW-3

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Time Period
11/10/2016
6/8/2017
9/28/2017
12/14/2017
3/22/2018
6/19/2018
9/12/2018 **Observations** 12/4/2018 3/5/2019 3/5/2019 1 1 6/4/2019 1 9/5/2019 1 1 9/5/2019 1 1 11/20/2019 1 1 2/277/2020 1 1 6/2/20/200 1 1 8/26/20/20 1 1 There are 0 time periods with multiple data

A = 798
B = 0
C = 210
D = 0
E = 42
F = 0
a = 8880
b = 30240
c = 480
Group Variance = 449
Z-Score = 1.03824
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed) | 1.03824| <= 1.97737 indicating no evidence of a trend

Mann-Kendall Trend Analysis

Parameter: Chromium Location: MW-5

S Statistic = 74 - 40 = 34

Tied GrouValue Members

Time Period Observations 11/10/2016 6/8/2017 6/8/2017 9/28/2017 12/11/2017 12/11/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 8/26/2020 11/17/2020

There are 0 time periods with multiple data

A = 156 B = 0 C = 24 D = 0 E = 12 F = 0 a = 8880 b = 30240 c = 480

Group Variance = 484.667 Z-Score = 1.49897 2-score = 1.49697 (two-tailed) (2.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed) (1.49897) <= 1.97737 indicating no evidence of a trend

Page 18

Mann-Kendall Trend Analysis

Parameter: Fluoride Location: MW-3

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members **Time Period Observations** 11/10/2016 6/8/2017 9/28/2017 12/14/2017 3/22/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

B = 0
C = 0
C = 0
D = 0
E = 0
F = 0
F = 0
F = 0
Group Variance = 493.333
Z-Score = 0.405203
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed)
[0.405203] <= 1.97737 Indicating no evidence of a trend

Parameter: Nickel Location: MW-3

S Statistic = 78 - 55 = 23

Tied GrouValue	Members 3
Time Period	Observations
11/10/2016	1
6/8/2017	1
9/28/2017	1
12/14/2017	1
3/22/2018	1
6/19/2018	1
9/12/2018	1
9/27/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1

8/26/2020 11/17/2020 There are 0 time periods to

A = 66
B = 0
C = 6
D = 0
E = 6
F = 0
B = 0
C = 6
D = 0
E = 6
F = 0
C = 6
F = 0
C = 6
F = 0
C = 5
C = 54
C =

Page 21

Mann-Kendall Trend Analysis

Parameter: Nickel Location: MW-5

S Statistic = 61 - 58 = 3

Tied GrouValue Members

Time Period Observations 11/10/2016 6/8/2017 6/8/2017 9/28/2017 12/11/2017 12/11/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 6/4/2019 9/5/2019 11/20/2019 2/27/2020 6/2/2020 8/26/2020 8/26/2020 11/17/2020

There are 0 time periods with multiple data

A = 18 B = 0 C = 0 D = 0 E = 2 F = 0 a = 8880 b = 30240 c = 480

U- 1909 Group Variance = 492.333
Z-Score = 0.0901364
Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed)
[0.0901364] <= 1.97737 indicating no evidence of a trend

Page 22

Mann-Kendall Trend Analysis

Parameter: Sulfate

Location: MW-3

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members

Time Period
11/10/2016
6/8/2017
9/28/2017
12/14/2017
3/22/2018
6/19/2018
9/12/2018 **Observations** 12/4/2018 3/5/2019 3/5/2019 1 1 6/4/2019 1 9/5/2019 1 1 9/5/2019 1 1 11/20/2019 1 1 2/277/2020 1 1 6/2/2020 1 1 8/26/2020 1 1 There are 0 time periods with multiple data

A = 18 B = 0 C = 0 D = 0 E = 2 F = 0 $\label{eq:Final_continuity} F=0$ a = 8880 b = 30240 c = 480 Group Variance = 492.333 Z-Score = 0 Comparison Level at 1.0 - (0.05 / 2) = 97.5% confidence level = 1.97737 (two-tailed) |0| <= 1.97737 indicating no evidence of a trend

Mann-Kendall Trend Analysis

Parameter: Sulfate

Location: MW-5

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

95% Confidence Level

Tied GrouValue Members Time Period **Observations**

11/10/2016 6/8/2017 9/28/2017 12/11/2017 3/21/2018 6/19/2018 9/12/2018 12/4/2018 3/5/2019 11/20/2019 2/27/2020 6/2/2020 1 8/26/2020 1 11/17/2020 1 There are 0 time periods with multiple data

A = 300 B = 0 C = 60 D = 0 E = 20 F = 0

F = 0
a = 8880
b = 30240
c = 480
Group Variance = 476.667
Z-Score = 4.71769
Comparison Level at 95% confidence level = 1.65463 (upward trend)
4.71769 > 1.65463 indicating an upward trend

Parameter: Zinc
Location: MW-3
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level

S Statistic = 56 - 79 = -23

Tied GrouValue	Members 2	
Time Period	Observations	
11/10/2016	1	
6/8/2017	1	
9/28/2017	1	
12/14/2017	1	
3/22/2018	1	
6/19/2018	1	
9/12/2018	1	
9/27/2018	1	
12/4/2018	1	
3/5/2019	1	
6/4/2019	1	
9/5/2019	1	
11/20/2019	1	
2/27/2020	1	
6/2/2020	1	
8/26/2020	1	
11/17/2020	1	
There are 0 time periods with	nultiple data	

A = 18
B = 0
C = 0
D = 0
B = 0
E = 2
F = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0
B = 0

Mann-Kendall Trend Analysis

Parameter: Zinc
Location: MW-5
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

95% Confidence Level S Statistic = 47 - 7 = 40

Tied GrouValue Members 12

Time Period	Observation
11/10/2016	1
6/8/2017	1
9/28/2017	1
12/11/2017	1
3/21/2018	1
6/19/2018	1
9/12/2018	1
12/4/2018	1
3/5/2019	1
6/4/2019	1
9/5/2019	1
11/20/2019	1
2/27/2020	1
6/2/2020	1
8/26/2020	1
11/17/2020	1
There are 0 time periods with	multiple data

There are 0 time periods with multiple data

A = 3828
B = 0
C = 1320
D = 0
E = 132
F = 0
a = 8880
b = 30240
c = 480
Group Variance = 280.667
Z-Score = 2.32793
Comparison Level at 95% confidence level = 1.65463 (upward trend)
2.32793 > 1.65463 indicating an upward trend

Page 25

Page 26

APPENDIX C LABORATORY ANALYTICAL REPORTS & FIELD INFORMATION LOGS

ANALYTICAL REPORT

December 01, 2020

Civil & Environmental Consultants - TN

L1287271 Sample Delivery Group:

Samples Received: 11/18/2020

Project Number: 181-364

Description: Former EWS Camden Class 2 Landfill

Site: CAMDEN, TN

Report To: Philip Campbell

117 Seaboard Ln.

Suite E100

Franklin, TN 37067

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

51

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-1 L1287271-01	7
MW-3 L1287271-02	10
MW-4 L1287271-03	13
MW-5 L1287271-04	16
TMW-1 L1287271-05	19
TMW-2 L1287271-06	22
TMW-3 L1287271-07	25
DUPLICATE L1287271-08	28
FIELD BLANK L1287271-09	31
TRIP BLANK L1287271-10	34
Qc: Quality Control Summary	35
Wet Chemistry by Method 2320 B-2011	35
Wet Chemistry by Method 350.1	36
Wet Chemistry by Method 410.4	37
Wet Chemistry by Method 9056A	38
Mercury by Method 7470A	39
Metals (ICP) by Method 6010B	40
Metals (ICPMS) by Method 6020A	41
Volatile Organic Compounds (GC/MS) by Method 8260B	44
EDB / DBCP by Method 8011	47
GI: Glossary of Terms	49
Al: Accreditations & Locations	50

Sc: Sample Chain of Custody

MANA 14207274 04 CAN			Collected by AB/AB	Collected date/time	Received da:	
MW-1 L1287271-01 GW Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Calculated Results	WG1581081	1	11/25/20 09:19	11/25/20 09:19	JPD	Mt. Juliet, Tl
Vet Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 14:33	12/01/20 14:33	DGR	Mt. Juliet, T
/et Chemistry by Method 350.1	WG1580846	1	11/24/20 18:47	11/24/20 18:47	DGR	Mt. Juliet, T
/et Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:45	LRP	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1578720	1	11/18/20 23:07	11/18/20 23:07	ELN	Mt. Juliet, T
lercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:00	ABL	Mt. Juliet, T
letals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 21:43	CCE	Mt. Juliet, T
letals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:19	JPD	Mt. Juliet, T
letals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 13:33	TM	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/23/20 23:21	11/23/20 23:21	JCP	Mt. Juliet, T
DB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 08:19	MTJ	Mt. Juliet, T
MW-3 L1287271-02 GW			Collected by AB/AB	Collected date/time 11/17/20 14:40	Received da: 11/18/20 14:30	
	Datab	Diletien	D	A l i	A b t	1 1:
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	WOAFOAOOA		date/time	date/time	IDD	NA: 1 1: 1 7
alculated Results	WG1581081	1	11/25/20 09:23	11/25/20 09:23	JPD	Mt. Juliet, 1
et Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 14:40	12/01/20 14:40	DGR	Mt. Juliet, 1
et Chemistry by Method 350.1	WG1580846	1	11/24/20 18:49	11/24/20 18:49	DGR	Mt. Juliet, 1
et Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:45	LRP	Mt. Juliet, 7
et Chemistry by Method 9056A	WG1578720	1	11/19/20 00:10	11/19/20 00:10	ELN	Mt. Juliet, 1
lercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:03	ABL	Mt. Juliet, 1
letals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 21:46	CCE	Mt. Juliet, 1
letals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:23	JPD	Mt. Juliet, 1
letals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 13:36	TM	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/23/20 23:42	11/23/20 23:42	JCP	Mt. Juliet, T
DB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 08:32	MTJ	Mt. Juliet, T
MW-4 L1287271-03 GW			Collected by AB/AB	Collected date/time 11/17/20 11:30	Received da: 11/18/20 14:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
alculated Results	WG1581081	1	11/25/20 09:26	11/25/20 09:26	JPD	Mt. Juliet, T
et Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 15:48	12/01/20 15:48	DGR	Mt. Juliet,
et Chemistry by Method 350.1	WG1580846	1	11/24/20 18:56	11/24/20 18:56	DGR	Mt. Juliet,
et Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:46	LRP	Mt. Juliet,
et Chemistry by Method 9056A	WG1578720	1	11/19/20 00:26	11/19/20 00:26	ELN	Mt. Juliet,
ercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:05	ABL	Mt. Juliet,
etals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 21:48	CCE	Mt. Juliet,
etals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:26	JPD	Mt. Juliet,
letals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 13:40	TM	Mt. Juliet,
olatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/24/20 00:02	11/24/20 00:02	JCP	Mt. Juliet,
DB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 08:44	MTJ	Mt. Juliet, 1
ЛW-5 L1287271-04 GW			Collected by AB/AB	Collected date/time 11/17/20 13:15	Received da: 11/18/20 14:30	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
alculated Results	WG1581081	1	11/25/20 09:40	11/25/20 09:40	JPD	Mt. Juliet, 1
/et Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 14:47	12/01/20 14:47	DGR	Mt. Juliet, 1
/et Chemistry by Method 350.1	WG1580846	1	11/24/20 18:57	11/24/20 18:57	DGR	Mt. Juliet, 1
	WG1580678	1	11/24/20 10:31	11/24/20 15:46	LRP	Mt. Juliet, 1
Vet Chemistry by Method 410.4	א/מואמוב)עע	- 1	11/24/70 10 01	11/24/70 1.3.40	1 1/1	

	SAMPLES	SUMIN	/IARY		ONE L	AB. NATIONWID
MW-5 L1287271-04 GW			Collected by AB/AB	Collected date/time 11/17/20 13:15	Received data	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Morcury by Mothod 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:08	ΛDI	Mt. Juliet, TN
Mercury by Method 7470A Metals (ICP) by Method 6010B	WG1578876 WG1581077	1	11/24/20 11.14	11/25/20 08:08	ABL CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581077 WG1581081	1	11/24/20 22:24	11/25/20 09:40	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581081	1	11/25/20 10:30	11/25/20 09.40	TM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1582380 WG1581368	1	11/24/20 00:23	11/24/20 00:23	JCP	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 08:56	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
TMW-1 L1287271-05 GW			AB/AB	11/17/20 12:30	11/18/20 14:30)
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1581081	1	11/25/20 09:43	11/25/20 09:43	JPD	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 14:53	12/01/20 14:53	DGR	Mt. Juliet, TN
Wet Chemistry by Method 350.1	WG1580846	1	11/24/20 18:59	11/24/20 18:59	DGR	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:46	LRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578720	1	11/19/20 00:58	11/19/20 00:58	ELN	Mt. Juliet, TN
Mercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:10	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 21:54	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:43	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 13:53	TM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/24/20 00:44	11/24/20 00:44	JCP	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 09:09	MTJ	Mt. Juliet, TN
TMW-2 L1287271-06 GW			Collected by AB/AB	Collected date/time 11/17/20 11:35	Received dat 11/18/20 14:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Baten	2 matron	date/time	date/time	, many st	200000
Calculated Results	WG1581081	1	11/25/20 09:46	11/25/20 09:46	JPD	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 15:18	12/01/20 15:18	DGR	Mt. Juliet, TN
Wet Chemistry by Method 350.1	WG1580846	1	11/24/20 19:01	11/24/20 19:01	DGR	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:46	LRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578720	1	11/19/20 01:46	11/19/20 01:46	ELN	Mt. Juliet, TN
Mercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:13	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 21:57	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:46	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 13:57	TM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B						
	WG1581368	1	11/24/20 01:05	11/24/20 01:05	JCP	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1581368 WG1578880	1 1	11/24/20 01:05 11/19/20 11:52	11/24/20 01:05 11/20/20 09:22	JCP MTJ	Mt. Juliet, TN Mt. Juliet, TN
EDB / DBCP by Method 8011						Mt. Juliet, TN
EDB / DBCP by Method 8011 TMW-3 L1287271-07 GW			11/19/20 11:52	11/20/20 09:22	MTJ	Mt. Juliet, TN
			11/19/20 11:52 Collected by	11/20/20 09:22 Collected date/time	MTJ Received dat	Mt. Juliet, TN
TMW-3 L1287271-07 GW	WG1578880	1	11/19/20 11:52 Collected by AB/AB Preparation	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis	MTJ Received dat 11/18/20 14:30	Mt. Juliet, TN
TMW-3 L1287271-07 GW Method	WG1578880 Batch	1 Dilution	Collected by AB/AB Preparation date/time	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time	MTJ Received dat 11/18/20 14:30 Analyst	Mt. Juliet, TN te/time D Location
TMW-3 L1287271-07 GW Method Calculated Results	WG1578880 Batch WG1581081	Dilution	Collected by AB/AB Preparation date/time 11/25/20 09:50	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50	MTJ Received dat 11/18/20 14:30 Analyst JPD	Mt. Juliet, TN de/time Location Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011	WG1578880 Batch WG1581081 WG1581424	Dilution	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR	Mt. Juliet, TN te/time Location Mt. Juliet, TN Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1	WG1578880 Batch WG1581081 WG1581424 WG1580846	Dilution	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR DGR	Mt. Juliet, TN te/time Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1 Wet Chemistry by Method 410.4	WG1578880 Batch WG1581081 WG1581424 WG1580846 WG1581678	Dilution 1 1 1 1	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 10:31	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 15:47	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR DGR LRP	Mt. Juliet, TN te/time Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1 Wet Chemistry by Method 410.4 Wet Chemistry by Method 9056A	WG1578880 Batch WG1581081 WG1581424 WG1580846 WG1581678 WG1578720	Dilution 1 1 1 1 1 1	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 10:31 11/19/20 02:02	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 15:47 11/19/20 02:02	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR DGR LRP ELN	Mt. Juliet, TN Location Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1 Wet Chemistry by Method 410.4 Wet Chemistry by Method 9056A Mercury by Method 7470A	Batch WG1578880 WG1581081 WG1581424 WG1580846 WG1581678 WG1578720 WG1578876	Dilution 1 1 1 1 1 1 1	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 10:31 11/19/20 02:02 11/24/20 11:14	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 15:47 11/19/20 02:02 11/25/20 08:15	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR DGR LRP ELN ABL	Mt. Juliet, TN te/time Location Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1 Wet Chemistry by Method 410.4 Wet Chemistry by Method 9056A Mercury by Method 7470A Metals (ICP) by Method 6010B	WG1578880 Batch WG1581081 WG1581424 WG1580846 WG1578720 WG1578876 WG1578876	Dilution 1 1 1 1 1 1 1 1 1	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 10:31 11/19/20 02:02 11/24/20 11:14 11/24/20 22:24	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 15:47 11/19/20 02:02 11/25/20 08:15 11/25/20 22:00	MTJ Received dat 11/18/20 14:30 Analyst JPD DGR DGR LRP ELN ABL CCE	Mt. Juliet, TN te/time Location Mt. Juliet, TN
TMW-3 L1287271-07 GW Method Calculated Results Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 350.1 Wet Chemistry by Method 410.4 Wet Chemistry by Method 9056A Mercury by Method 7470A Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020A	Batch WG1581081 WG1581424 WG1580846 WG1581678 WG1578720 WG1578876 WG1581077 WG1581081	Dilution 1 1 1 1 1 1 1 1 1 1	Collected by AB/AB Preparation date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 10:31 11/19/20 02:02 11/24/20 11:14 11/24/20 22:24 11/24/20 23:45	11/20/20 09:22 Collected date/time 11/17/20 10:15 Analysis date/time 11/25/20 09:50 12/01/20 15:26 11/24/20 19:02 11/24/20 15:47 11/19/20 02:02 11/25/20 08:15 11/25/20 22:00 11/25/20 09:50	Received data 11/18/20 14:30 Analyst JPD DGR DGR LRP ELN ABL CCE JPD	Mt. Juliet, TN te/time Location Mt. Juliet, TN Mt. Juliet, TN

TNUL 0 14007074 07 011			Collected by AB/AB	Collected date/time 11/17/20 10:15	Received da 11/18/20 14:3	
TMW-3 L1287271-07 GW					11/10/20 14.3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
EDB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 09:34	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time		
DUPLICATE L1287271-08 GW			AB/AB	11/17/20 00:00	11/18/20 14:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1581081	1	11/25/20 09:53	11/25/20 09:53	JPD	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 15:32	12/01/20 15:32	DGR	Mt. Juliet, TN
Net Chemistry by Method 350.1	WG1580846	1	11/24/20 19:04	11/24/20 19:04	DGR	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:47	LRP	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1578720	1	11/19/20 02:18	11/19/20 02:18	ELN	Mt. Juliet, TN
Mercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:18	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 22:03	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:53	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 14:03	TM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/24/20 01:46	11/24/20 01:46	JCP	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1578880	1	11/19/20 11:52	11/20/20 09:47	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FIELD BLANK L1287271-09 GW			AB/AB	11/17/20 12:20	11/18/20 14:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG1581081	1	11/25/20 09:56	11/25/20 09:56	JPD	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG1581424	1	12/01/20 15:55	12/01/20 15:55	DGR	Mt. Juliet, TN
Vet Chemistry by Method 350.1	WG1580846	1	11/24/20 19:07	11/24/20 19:07	DGR	Mt. Juliet, TN
Vet Chemistry by Method 410.4	WG1581678	1	11/24/20 10:31	11/24/20 15:47	LRP	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1578720	1	11/19/20 02:34	11/19/20 02:34	ELN	Mt. Juliet, TN
Mercury by Method 7470A	WG1578876	1	11/24/20 11:14	11/25/20 08:20	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1581077	1	11/24/20 22:24	11/25/20 22:05	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1581081	1	11/24/20 23:45	11/25/20 09:56	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1582380	1	11/25/20 10:30	11/25/20 14:07	TM	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1581368	1	11/23/20 22:19	11/23/20 22:19	JCP	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1579623	1	11/20/20 07:14	11/21/20 00:39	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1287271-10 GW			AB/AB	11/17/20 00:00	11/18/20 14:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			1 . /	4 . 4.4		

Volatile Organic Compounds (GC/MS) by Method 8260B

WG1581368

date/time

11/23/20 20:56

date/time

11/23/20 20:56

JCP

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²Tc

³Ss

PAGE:

6 of 52

Chris McCord Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Hardness (calculated) as CaCO3	17.8		2.50	1	11/25/2020 09:19	WG1581081	

Ss

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	30.1		20.0	1	12/01/2020 14:33	WG1581424

Sample Narrative:

L1287271-01 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 18:47	WG1580846

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:45	WG1581678

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/18/2020 23:07	WG1578720
Chloride	2.48		1.00	1	11/18/2020 23:07	WG1578720
Fluoride	ND		0.150	1	11/18/2020 23:07	WG1578720
Nitrate	ND		0.100	1	11/18/2020 23:07	WG1578720
Sulfate	ND		5.00	1	11/18/2020 23:07	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	0.00258		0.000200	1	11/25/2020 08:00	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:43	WG1581077

Metals (ICPMS) by Method 6020A

Result	Qualifier	RDL	Dilution	Analysis	Batch
mg/l		mg/l		date / time	
0.190		0.100	1	11/25/2020 09:19	WG1581081
ND		0.00400	1	11/25/2020 13:33	WG1582380
0.00513		0.00200	1	11/25/2020 09:19	WG1581081
ND		0.0200	1	11/25/2020 09:19	WG1581081
ND		0.00200	1	11/25/2020 09:19	WG1581081
ND		0.00100	1	11/25/2020 09:19	WG1581081
3.25		1.00	1	11/25/2020 09:19	WG1581081
ND		0.00200	1	11/25/2020 09:19	WG1581081
0.0291		0.00200	1	11/25/2020 09:19	WG1581081
ND		0.00500	1	11/25/2020 09:19	WG1581081
	mg/l 0.190 ND 0.00513 ND ND ND ND ND ND ND 0.0291	mg/l 0.190 ND 0.00513 ND ND ND ND ND ND ND ND 0.0291	mg/l mg/l 0.190 0.100 ND 0.00400 0.00513 0.00200 ND 0.00200 ND 0.00100 3.25 1.00 ND 0.00200 ND 0.00200 0.00 0.00200 0.0291 0.00200	mg/l mg/l 0.190 0.100 1 ND 0.00400 1 0.00513 0.00200 1 ND 0.0200 1 ND 0.00200 1 ND 0.00100 1 3.25 1.00 1 ND 0.00200 1 0.0291 0.00200 1	mg/l mg/l date / time 0.190 0.100 1 11/25/2020 09:19 ND 0.00400 1 11/25/2020 13:33 0.00513 0.00200 1 11/25/2020 09:19 ND 0.0200 1 11/25/2020 09:19 ND 0.00200 1 11/25/2020 09:19 ND 0.00100 1 11/25/2020 09:19 3.25 1.00 1 11/25/2020 09:19 ND 0.00200 1 11/25/2020 09:19 0.0291 0.00200 1 11/25/2020 09:19

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

Metals (ICPMS) by Method 6020A

Metals (161 MS) by Metalod 6020A									
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l		date / time				
Iron	5.36		0.100	1	11/25/2020 09:19	WG1581081			
Lead	ND		0.00500	1	11/25/2020 09:19	WG1581081			
Magnesium	2.36		1.00	1	11/25/2020 09:19	WG1581081			
Manganese	0.486		0.00500	1	11/25/2020 09:19	WG1581081			
Nickel	0.00632		0.00200	1	11/25/2020 09:19	WG1581081			
Potassium	ND		2.00	1	11/25/2020 09:19	WG1581081			
Selenium	ND		0.00200	1	11/25/2020 09:19	WG1581081			
Silver	ND		0.00200	1	11/25/2020 09:19	WG1581081			
Sodium	2.59		2.00	1	11/25/2020 09:19	WG1581081			
Thallium	ND		0.00200	1	11/25/2020 09:19	WG1581081			
Vanadium	ND		0.00500	1	11/25/2020 09:19	WG1581081			
Zinc	ND		0.0250	1	11/25/2020 09:19	WG1581081			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/23/2020 23:21	WG1581368
Acrylonitrile	ND		0.0100	1	11/23/2020 23:21	WG1581368
Benzene	ND		0.00100	1	11/23/2020 23:21	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/23/2020 23:21	WG1581368
Bromodichloromethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
Bromoform	ND		0.00100	1	11/23/2020 23:21	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/23/2020 23:21	WG1581368
Carbon disulfide	ND		0.00100	1	11/23/2020 23:21	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/23/2020 23:21	WG1581368
Chlorobenzene	ND		0.00100	1	11/23/2020 23:21	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
Chloroethane	ND		0.00500	1	11/23/2020 23:21	WG1581368
Chloroform	ND		0.00500	1	11/23/2020 23:21	WG1581368
Chloromethane	ND		0.00250	1	11/23/2020 23:21	WG1581368
Dibromomethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/23/2020 23:21	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/23/2020 23:21	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/23/2020 23:21	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/23/2020 23:21	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 23:21	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/23/2020 23:21	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 23:21	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 23:21	WG1581368
Ethylbenzene	ND		0.00100	1	11/23/2020 23:21	WG1581368
2-Hexanone	ND		0.0100	1	11/23/2020 23:21	WG1581368
lodomethane	ND		0.0100	1	11/23/2020 23:21	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/23/2020 23:21	WG1581368
Methylene Chloride	ND		0.00500	1	11/23/2020 23:21	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/23/2020 23:21	WG1581368
Styrene	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
Tetrachloroethene	ND		0.00100	1	11/23/2020 23:21	WG1581368
Toluene	ND		0.00100	1	11/23/2020 23:21	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368

12/01/20 22:15

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

L1287271

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/23/2020 23:21	WG1581368
Trichloroethene	ND		0.00100	1	11/23/2020 23:21	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/23/2020 23:21	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/23/2020 23:21	WG1581368
Vinyl acetate	ND		0.0100	1	11/23/2020 23:21	WG1581368
Vinyl chloride	ND		0.00100	1	11/23/2020 23:21	WG1581368
Xylenes, Total	ND		0.00300	1	11/23/2020 23:21	WG1581368
(S) Toluene-d8	98.5		80.0-120		11/23/2020 23:21	WG1581368
(S) 4-Bromofluorobenzene	92.6		77.0-126		11/23/2020 23:21	WG1581368
(S) 1,2-Dichloroethane-d4	105		70.0-130		11/23/2020 23:21	WG1581368

СQс

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 08:19	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 08:19	WG1578880

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 14:40

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	76.2		2.50	1	11/25/2020 09:23	WG1581081

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 14:40	WG1581424

Sample Narrative:

L1287271-02 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 18:49	WG1580846

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:45	WG1581678

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 00:10	WG1578720
Chloride	18.7		1.00	1	11/19/2020 00:10	WG1578720
Fluoride	0.179		0.150	1	11/19/2020 00:10	WG1578720
Nitrate	0.302		0.100	1	11/19/2020 00:10	WG1578720
Sulfate	61.4		5.00	1	11/19/2020 00:10	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:03	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:46	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	0.284		0.100	1	11/25/2020 09:23	WG1581081
Antimony	ND		0.00400	1	11/25/2020 13:36	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:23	WG1581081
Barium	0.0709		0.0200	1	11/25/2020 09:23	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:23	WG1581081
Cadmium	0.00816		0.00100	1	11/25/2020 09:23	WG1581081
Calcium	19.2		1.00	1	11/25/2020 09:23	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:23	WG1581081
Cobalt	0.00445		0.00200	1	11/25/2020 09:23	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:23	WG1581081

Zinc

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 14:40

Metals (ICPMS) by Method 6020A

0.0507

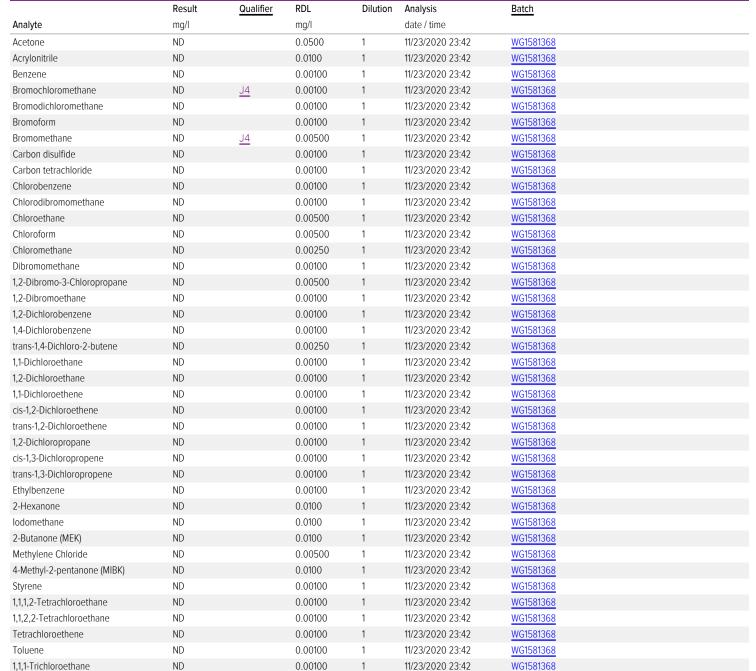
Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020A									
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l		date / time				
Iron	0.172		0.100	1	11/25/2020 09:23	WG1581081			
Lead	ND		0.00500	1	11/25/2020 09:23	WG1581081			
Magnesium	6.86		1.00	1	11/25/2020 09:23	WG1581081			
Manganese	0.545		0.00500	1	11/25/2020 09:23	WG1581081			
Nickel	0.00708		0.00200	1	11/25/2020 09:23	WG1581081			
Potassium	6.28		2.00	1	11/25/2020 09:23	WG1581081			
Selenium	ND		0.00200	1	11/25/2020 09:23	WG1581081			
Silver	ND		0.00200	1	11/25/2020 09:23	WG1581081			
Sodium	7.35		2.00	1	11/25/2020 09:23	WG1581081			
Thallium	ND		0.00200	1	11/25/2020 09:23	WG1581081			
Vanadium	ND		0.00500	1	11/25/2020 09:23	WG1581081			

11/25/2020 09:23

WG1581081

0.0250



ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 14:40

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (OC/M3) by Method 8280B										
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>				
Analyte	mg/l		mg/l		date / time					
1,1,2-Trichloroethane	ND		0.00100	1	11/23/2020 23:42	WG1581368				
Trichloroethene	ND		0.00100	1	11/23/2020 23:42	WG1581368				
Trichlorofluoromethane	ND		0.00500	1	11/23/2020 23:42	WG1581368				
1,2,3-Trichloropropane	ND		0.00250	1	11/23/2020 23:42	WG1581368				
Vinyl acetate	ND		0.0100	1	11/23/2020 23:42	WG1581368				
Vinyl chloride	ND		0.00100	1	11/23/2020 23:42	WG1581368				
Xylenes, Total	ND		0.00300	1	11/23/2020 23:42	WG1581368				
(S) Toluene-d8	94.1		80.0-120		11/23/2020 23:42	WG1581368				
(S) 4-Bromofluorobenzene	93.0		77.0-126		11/23/2020 23:42	WG1581368				
(S) 1.2-Dichloroethane-d4	106		70.0-130		11/23/2020 23:42	WG1581368				

СQс

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 08:32	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 08:32	WG1578880

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:30

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	26.7		2.50	1	11/25/2020 09:26	WG1581081

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 15:48	WG1581424

Sample Narrative:

L1287271-03 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 18:56	<u>WG1580846</u>

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
COD	ND		20.0	1	11/24/2020 15:46	WG1581678	

ΆΙ

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 00:26	WG1578720
Chloride	9.04		1.00	1	11/19/2020 00:26	WG1578720
Fluoride	ND		0.150	1	11/19/2020 00:26	WG1578720
Nitrate	0.900		0.100	1	11/19/2020 00:26	WG1578720
Sulfate	ND		5.00	1	11/19/2020 00:26	WG1578720

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:05	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:48	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	ND		0.100	1	11/25/2020 09:26	WG1581081
Antimony	ND		0.00400	1	11/25/2020 13:40	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:26	WG1581081
Barium	ND		0.0200	1	11/25/2020 09:26	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:26	WG1581081
Cadmium	ND		0.00100	1	11/25/2020 09:26	WG1581081
Calcium	5.58		1.00	1	11/25/2020 09:26	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:26	WG1581081
Cobalt	ND		0.00200	1	11/25/2020 09:26	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:26	WG1581081

Analyte

Iron

Lead

Magnesium

Manganese

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

2-Hexanone

lodomethane

Styrene

Toluene

2-Butanone (MEK)

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,1,1-Trichloroethane

Zinc

SAMPLE RESULTS - 03

Analysis

date / time

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

11/25/2020 09:26

Dilution

1

1

1

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:30

dte/time: 11/1//20 11:30

Metals (ICPMS) by Method 6020A

Result

mg/l

4.94

ND

3.10

ND

ND

ND

ND

3.94

ND

0.0587

Qualifier

RDL

mg/l

0.100

1.00

0.00500

0.00500

0.00200

0.00200

0.00200

0.00200

0.00500

0.0250

0.0100

0.0100

0.0100

0.00500

0.0100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

1

1

1

1

2.00

2.00

KLJULIJ - ()3
L1287271	

Batch

WG1581081

WG1581368

WG1581368

WG1581368

WG1581368

WG1581368

WG1581368

WG1581368 WG1581368

WG1581368

WG1581368

WG1581368

Αl

Sc

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Acetone	ND		0.0500	1	11/24/2020 00:02	WG1581368	
Acrylonitrile	ND		0.0100	1	11/24/2020 00:02	WG1581368	
Benzene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 00:02	WG1581368	
Bromodichloromethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Bromoform	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 00:02	WG1581368	
Carbon disulfide	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Carbon tetrachloride	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Chlorobenzene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Chlorodibromomethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Chloroethane	ND		0.00500	1	11/24/2020 00:02	WG1581368	
Chloroform	ND		0.00500	1	11/24/2020 00:02	WG1581368	
Chloromethane	ND		0.00250	1	11/24/2020 00:02	WG1581368	
Dibromomethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 00:02	WG1581368	
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 00:02	WG1581368	
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 00:02	WG1581368	
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:02	WG1581368	
Ethylbenzene	ND		0.00100	1	11/24/2020 00:02	WG1581368	

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

11/24/2020 00:02

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 00:02	WG1581368
Trichloroethene	ND		0.00100	1	11/24/2020 00:02	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 00:02	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 00:02	WG1581368
Vinyl acetate	ND		0.0100	1	11/24/2020 00:02	WG1581368
Vinyl chloride	ND		0.00100	1	11/24/2020 00:02	WG1581368
Xylenes, Total	ND		0.00300	1	11/24/2020 00:02	WG1581368
(S) Toluene-d8	98.4		80.0-120		11/24/2020 00:02	WG1581368
(S) 4-Bromofluorobenzene	94.6		77.0-126		11/24/2020 00:02	WG1581368
(S) 1,2-Dichloroethane-d4	106		70.0-130		11/24/2020 00:02	WG1581368

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 08:44	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 08:44	WG1578880

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 13:15

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	90.6		2.50	1	11/25/2020 09:40	WG1581081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 14:47	WG1581424

Sample Narrative:

L1287271-04 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 18:57	<u>WG1580846</u>

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:46	WG1581678

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 00:42	WG1578720
Chloride	74.8		1.00	1	11/19/2020 00:42	WG1578720
Fluoride	ND		0.150	1	11/19/2020 00:42	WG1578720
Nitrate	1.30		0.100	1	11/19/2020 00:42	WG1578720
Sulfate	11.2		5.00	1	11/19/2020 00:42	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:08	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:51	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	0.344		0.100	1	11/25/2020 09:40	WG1581081
Antimony	ND		0.00400	1	11/25/2020 13:43	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:40	WG1581081
Barium	0.0531		0.0200	1	11/25/2020 09:40	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:40	WG1581081
Cadmium	ND		0.00100	1	11/25/2020 09:40	WG1581081
Calcium	17.2		1.00	1	11/25/2020 09:40	WG1581081
Chromium	0.00391		0.00200	1	11/25/2020 09:40	WG1581081
Cobalt	ND		0.00200	1	11/25/2020 09:40	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:40	WG1581081

16 of 52

Analyte

Iron

Lead Magnesium

Manganese

Potassium

Selenium

Silver

Sodium

Thallium

Zinc

Vanadium

Nickel

SAMPLE RESULTS - 04

11/25/2020 09:40

11/25/2020 09:40

11/25/2020 09:40

11/25/2020 09:40

11/25/2020 09:40

11/25/2020 09:40

11/25/2020 09:40

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 13:15

RDL

mg/l

0.100

1.00

0.00500

0.00500

0.00200

0.00200

0.00200

0.00200

0.00500

0.0250

2.00

2.00

Qualifier

Metals (ICPMS) by Method 6020A

Result

mg/l

0.287

ND

11.5

ND

ND

ND

19.8

ND

ND

0.110

0.235

0.00714

Dilution	Analysis	Batch	ŀ
	date / time		L
1	11/25/2020 09:40	WG1581081	-
1	11/25/2020 09:40	WG1581081	·
1	11/25/2020 09:40	WG1581081	ľ
1	11/25/2020 09:40	WG1581081	l
1	11/25/2020 09:40	WG1581081	L

WG1581081

WG1581081

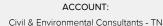
WG1581081

WG1581081

WG1581081

WG1581081

WG1581081



	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/24/2020 00:23	WG1581368
Acrylonitrile	ND		0.0100	1	11/24/2020 00:23	WG1581368
Benzene	ND		0.00100	1	11/24/2020 00:23	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 00:23	WG1581368
Bromodichloromethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
Bromoform	ND		0.00100	1	11/24/2020 00:23	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 00:23	WG1581368
Carbon disulfide	ND		0.00100	1	11/24/2020 00:23	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/24/2020 00:23	WG1581368
Chlorobenzene	ND		0.00100	1	11/24/2020 00:23	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
Chloroethane	ND		0.00500	1	11/24/2020 00:23	WG1581368
Chloroform	ND		0.00500	1	11/24/2020 00:23	WG1581368
Chloromethane	ND		0.00250	1	11/24/2020 00:23	WG1581368
Dibromomethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 00:23	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:23	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 00:23	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 00:23	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:23	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 00:23	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:23	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:23	WG1581368
Ethylbenzene	ND		0.00100	1	11/24/2020 00:23	WG1581368
2-Hexanone	ND		0.0100	1	11/24/2020 00:23	WG1581368
lodomethane	ND		0.0100	1	11/24/2020 00:23	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/24/2020 00:23	WG1581368
Methylene Chloride	ND		0.00500	1	11/24/2020 00:23	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/24/2020 00:23	WG1581368
Styrene	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
Tetrachloroethene	ND		0.00100	1	11/24/2020 00:23	WG1581368
Toluene	ND		0.00100	1	11/24/2020 00:23	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368

ΆΙ

12/01/20 22:15

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 13:15

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l	<u>uuuo.</u>	mg/l	2	date / time	<u> </u>
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 00:23	WG1581368
Trichloroethene	ND		0.00100	1	11/24/2020 00:23	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 00:23	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 00:23	WG1581368
Vinyl acetate	ND		0.0100	1	11/24/2020 00:23	WG1581368
Vinyl chloride	ND		0.00100	1	11/24/2020 00:23	WG1581368
Xylenes, Total	ND		0.00300	1	11/24/2020 00:23	WG1581368
(S) Toluene-d8	97.1		80.0-120		11/24/2020 00:23	WG1581368
(S) 4-Bromofluorobenzene	94.8		77.0-126		11/24/2020 00:23	WG1581368
(S) 1,2-Dichloroethane-d4	109		70.0-130		11/24/2020 00:23	WG1581368

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 08:56	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 08:56	WG1578880

SDG:

L1287271

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:30

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	44.8		2.50	1	11/25/2020 09:43	WG1581081

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 14:53	WG1581424

Sample Narrative:

L1287271-05 WG1581424: Endpoint pH 4.5

Cn

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 18:59	<u>WG1580846</u>

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:46	WG1581678

GI

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 00:58	WG1578720
Chloride	24.3		1.00	1	11/19/2020 00:58	WG1578720
Fluoride	ND		0.150	1	11/19/2020 00:58	WG1578720
Nitrate	1.72		0.100	1	11/19/2020 00:58	WG1578720
Sulfate	ND		5.00	1	11/19/2020 00:58	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:10	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:54	WG1581077

Metals (ICPMS) by Method 6020A

Result	Qualifier	RDL	Dilution	Analysis	Batch
mg/l		mg/l		date / time	
0.126		0.100	1	11/25/2020 09:43	WG1581081
ND		0.00400	1	11/25/2020 13:53	WG1582380
ND		0.00200	1	11/25/2020 09:43	WG1581081
ND		0.0200	1	11/25/2020 09:43	WG1581081
ND		0.00200	1	11/25/2020 09:43	WG1581081
ND		0.00100	1	11/25/2020 09:43	WG1581081
12.2		1.00	1	11/25/2020 09:43	WG1581081
ND		0.00200	1	11/25/2020 09:43	WG1581081
ND		0.00200	1	11/25/2020 09:43	WG1581081
ND		0.00500	1	11/25/2020 09:43	WG1581081
	mg/l 0.126 ND 12.2 ND ND	mg/l 0.126 ND	mg/l mg/l 0.126 0.100 ND 0.00400 ND 0.0200 ND 0.0200 ND 0.00200 ND 0.00100 12.2 1.00 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200	mg/l mg/l 0.126 0.100 1 ND 0.00400 1 ND 0.00200 1 ND 0.0200 1 ND 0.00200 1 ND 0.00100 1 12.2 1.00 1 ND 0.00200 1 ND 0.00200 1 ND 0.00200 1 ND 0.00200 1	mg/l date / time 0.126 0.100 1 11/25/2020 09:43 ND 0.00400 1 11/25/2020 13:53 ND 0.00200 1 11/25/2020 09:43 ND 0.0200 1 11/25/2020 09:43 ND 0.00200 1 11/25/2020 09:43 ND 0.00100 1 11/25/2020 09:43 12.2 1.00 1 11/25/2020 09:43 ND 0.00200 1 11/25/2020 09:43 ND 0.00200 1 11/25/2020 09:43 ND 0.00200 1 11/25/2020 09:43

Analyte

Iron

Lead

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Magnesium

Manganese

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:30

e. 11/1//20 12.30

Result

mg/l

0.242

ND

3.47

ND

ND

ND

ND

3.83

ND

ND

ND

0.00552

Qualifier

RDL

mg/l

0.100

1.00

2.00

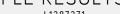
2.00

0.00500

0.00500

0.00200

0.00200


0.00200

0.00200

0.00500

0.0250

Metals (ICPMS) by Method 6020A

11/25/2020 09:43

11/25/2020 09:43

11/25/2020 09:43

11/25/2020 09:43

11/25/2020 09:43

11/25/2020 09:43

11/25/2020 09:43

WG1581081

WG1581081

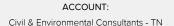
WG1581081

WG1581081

WG1581081

WG1581081

WG1581081



	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/24/2020 00:44	WG1581368
Acrylonitrile	ND		0.0100	1	11/24/2020 00:44	WG1581368
Benzene	ND		0.00100	1	11/24/2020 00:44	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 00:44	WG1581368
Bromodichloromethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
Bromoform	ND		0.00100	1	11/24/2020 00:44	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 00:44	WG1581368
Carbon disulfide	ND		0.00100	1	11/24/2020 00:44	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/24/2020 00:44	WG1581368
Chlorobenzene	ND		0.00100	1	11/24/2020 00:44	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
Chloroethane	ND		0.00500	1	11/24/2020 00:44	WG1581368
Chloroform	ND		0.00500	1	11/24/2020 00:44	WG1581368
Chloromethane	ND		0.00250	1	11/24/2020 00:44	WG1581368
Dibromomethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 00:44	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 00:44	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 00:44	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 00:44	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:44	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 00:44	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:44	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 00:44	WG1581368
Ethylbenzene	ND		0.00100	1	11/24/2020 00:44	WG1581368
2-Hexanone	ND		0.0100	1	11/24/2020 00:44	WG1581368
lodomethane	ND		0.0100	1	11/24/2020 00:44	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/24/2020 00:44	WG1581368
Methylene Chloride	ND		0.00500	1	11/24/2020 00:44	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/24/2020 00:44	WG1581368
Styrene	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
Tetrachloroethene	ND		0.00100	1	11/24/2020 00:44	WG1581368
Toluene	ND		0.00100	1	11/24/2020 00:44	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368

12/01/20 22:15

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:30

L1287271

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 00:44	WG1581368
Trichloroethene	ND		0.00100	1	11/24/2020 00:44	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 00:44	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 00:44	WG1581368
Vinyl acetate	ND		0.0100	1	11/24/2020 00:44	WG1581368
Vinyl chloride	ND		0.00100	1	11/24/2020 00:44	WG1581368
Xylenes, Total	ND		0.00300	1	11/24/2020 00:44	WG1581368
(S) Toluene-d8	103		80.0-120		11/24/2020 00:44	WG1581368
(S) 4-Bromofluorobenzene	96.1		77.0-126		11/24/2020 00:44	WG1581368
(S) 1,2-Dichloroethane-d4	111		70.0-130		11/24/2020 00:44	WG1581368

СQс

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 09:09	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 09:09	WG1578880

SDG:

L1287271

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:35

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	54.4		2.50	1	11/25/2020 09:46	WG1581081

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 15:18	WG1581424

Sample Narrative:

L1287271-06 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 19:01	WG1580846

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:46	WG1581678

ΆΙ

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 01:46	WG1578720
Chloride	37.6		1.00	1	11/19/2020 01:46	WG1578720
Fluoride	ND		0.150	1	11/19/2020 01:46	WG1578720
Nitrate	0.830		0.100	1	11/19/2020 01:46	WG1578720
Sulfate	ND		5.00	1	11/19/2020 01:46	WG1578720

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:13	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 21:57	WG1581077

Metals (ICPMS) by Method 6020A

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Aluminum	0.235		0.100	1	11/25/2020 09:46	WG1581081
Antimony	ND		0.00400	1	11/25/2020 13:57	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:46	WG1581081
Barium	0.0313		0.0200	1	11/25/2020 09:46	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:46	WG1581081
Cadmium	ND		0.00100	1	11/25/2020 09:46	WG1581081
Calcium	13.6		1.00	1	11/25/2020 09:46	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:46	WG1581081
Cobalt	ND		0.00200	1	11/25/2020 09:46	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:46	WG1581081

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:35

Metals (ICPMS) by Method 6020A

		•				
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Iron	0.153		0.100	1	11/25/2020 09:46	WG1581081
Lead	ND		0.00500	1	11/25/2020 09:46	WG1581081
Magnesium	4.98		1.00	1	11/25/2020 09:46	WG1581081
Manganese	ND		0.00500	1	11/25/2020 09:46	WG1581081
Nickel	ND		0.00200	1	11/25/2020 09:46	WG1581081
Potassium	ND		2.00	1	11/25/2020 09:46	WG1581081
Selenium	ND		0.00200	1	11/25/2020 09:46	WG1581081
Silver	ND		0.00200	1	11/25/2020 09:46	WG1581081
Sodium	5.63		2.00	1	11/25/2020 09:46	WG1581081
Thallium	ND		0.00200	1	11/25/2020 09:46	WG1581081
Vanadium	ND		0.00500	1	11/25/2020 09:46	WG1581081
Zinc	ND		0.0250	1	11/25/2020 09:46	WG1581081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/24/2020 01:05	WG1581368
Acrylonitrile	ND		0.0100	1	11/24/2020 01:05	WG1581368
Benzene	ND		0.00100	1	11/24/2020 01:05	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 01:05	WG1581368
Bromodichloromethane	ND	_	0.00100	1	11/24/2020 01:05	WG1581368
Bromoform	ND		0.00100	1	11/24/2020 01:05	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 01:05	WG1581368
Carbon disulfide	ND	_	0.00100	1	11/24/2020 01:05	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/24/2020 01:05	WG1581368
Chlorobenzene	ND		0.00100	1	11/24/2020 01:05	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
Chloroethane	ND		0.00500	1	11/24/2020 01:05	WG1581368
Chloroform	ND		0.00500	1	11/24/2020 01:05	WG1581368
Chloromethane	ND		0.00250	1	11/24/2020 01:05	WG1581368
Dibromomethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 01:05	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:05	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 01:05	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 01:05	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:05	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 01:05	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:05	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:05	WG1581368
Ethylbenzene	ND		0.00100	1	11/24/2020 01:05	WG1581368
2-Hexanone	ND		0.0100	1	11/24/2020 01:05	WG1581368
lodomethane	ND		0.0100	1	11/24/2020 01:05	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/24/2020 01:05	WG1581368
Methylene Chloride	ND		0.00500	1	11/24/2020 01:05	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/24/2020 01:05	WG1581368
Styrene	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368
Tetrachloroethene	ND		0.00100	1	11/24/2020 01:05	WG1581368
Toluene	ND		0.00100	1	11/24/2020 01:05	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 11:35

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/WS) by Wethou 0200b									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l		date / time				
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 01:05	WG1581368			
Trichloroethene	ND		0.00100	1	11/24/2020 01:05	WG1581368			
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 01:05	WG1581368			
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 01:05	WG1581368			
Vinyl acetate	ND		0.0100	1	11/24/2020 01:05	WG1581368			
Vinyl chloride	ND		0.00100	1	11/24/2020 01:05	WG1581368			
Xylenes, Total	ND		0.00300	1	11/24/2020 01:05	WG1581368			
(S) Toluene-d8	102		80.0-120		11/24/2020 01:05	WG1581368			
(S) 4-Bromofluorobenzene	101		77.0-126		11/24/2020 01:05	WG1581368			
(S) 1,2-Dichloroethane-d4	108		70.0-130		11/24/2020 01:05	WG1581368			

Qc

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 09:22	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 09:22	WG1578880

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	81.2		2.50	1	11/25/2020 09:50	WG1581081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 15:26	WG1581424

Cn

Sample Narrative:

L1287271-07 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 19:02	WG1580846

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:47	WG1581678

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 02:02	WG1578720
Chloride	62.9		1.00	1	11/19/2020 02:02	WG1578720
Fluoride	ND		0.150	1	11/19/2020 02:02	WG1578720
Nitrate	5.35		0.100	1	11/19/2020 02:02	WG1578720
Sulfate	ND		5.00	1	11/19/2020 02:02	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:15	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 22:00	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	ND		0.100	1	11/25/2020 09:50	WG1581081
Antimony	ND		0.00400	1	11/25/2020 14:00	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:50	WG1581081
Barium	0.0454		0.0200	1	11/25/2020 09:50	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:50	WG1581081
Cadmium	ND		0.00100	1	11/25/2020 09:50	WG1581081
Calcium	21.2		1.00	1	11/25/2020 09:50	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:50	WG1581081
Cobalt	ND		0.00200	1	11/25/2020 09:50	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:50	WG1581081

Analyte

Iron

Lead Magnesium

Manganese

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Nickel

SAMPLE RESULTS - 07

11/25/2020 09:50

11/25/2020 09:50

11/25/2020 09:50

11/25/2020 09:50

11/25/2020 09:50

11/25/2020 09:50

11/25/2020 09:50

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

Qualifier

2.00

2.00

0.00200

0.00200

0.00200

0.00500

0.0250

Metals (ICPMS) by Method 6020A

	L1207	-/-		
				F
RDL	Dilution	Analysis	Batch	ľ
mg/l		date / time		L
0.100	1	11/25/2020 09:50	WG1581081	-
0.00500	1	11/25/2020 09:50	WG1581081	-
1.00	1	11/25/2020 09:50	WG1581081	ľ
0.00500	1	11/25/2020 09:50	WG1581081	
0.00200	1	11/25/2020 09:50	WG1581081	L

WG1581081

WG1581081

WG1581081

WG1581081

WG1581081

WG1581081

WG1581081

Result

mg/l

ND

ND

ND

ND

ND

ND

13.7

ND

ND

ND

6.86

0.00985

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/24/2020 01:25	WG1581368
Acrylonitrile	ND		0.0100	1	11/24/2020 01:25	WG1581368
Benzene	ND		0.00100	1	11/24/2020 01:25	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 01:25	WG1581368
Bromodichloromethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
Bromoform	ND		0.00100	1	11/24/2020 01:25	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 01:25	WG1581368
Carbon disulfide	ND		0.00100	1	11/24/2020 01:25	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/24/2020 01:25	WG1581368
Chlorobenzene	ND		0.00100	1	11/24/2020 01:25	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
Chloroethane	ND		0.00500	1	11/24/2020 01:25	WG1581368
Chloroform	ND		0.00500	1	11/24/2020 01:25	WG1581368
Chloromethane	ND		0.00250	1	11/24/2020 01:25	WG1581368
Dibromomethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 01:25	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:25	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 01:25	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 01:25	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:25	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 01:25	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:25	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:25	WG1581368
Ethylbenzene	ND		0.00100	1	11/24/2020 01:25	WG1581368
2-Hexanone	ND		0.0100	1	11/24/2020 01:25	WG1581368
lodomethane	ND		0.0100	1	11/24/2020 01:25	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/24/2020 01:25	WG1581368
Methylene Chloride	ND		0.00500	1	11/24/2020 01:25	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/24/2020 01:25	WG1581368
Styrene	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
Tetrachloroethene	ND		0.00100	1	11/24/2020 01:25	WG1581368
Toluene	ND		0.00100	1	11/24/2020 01:25	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368

ΑI

PAGE:

26 of 52

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 10:15

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 01:25	WG1581368
Trichloroethene	ND		0.00100	1	11/24/2020 01:25	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 01:25	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 01:25	WG1581368
Vinyl acetate	ND		0.0100	1	11/24/2020 01:25	WG1581368
Vinyl chloride	ND		0.00100	1	11/24/2020 01:25	WG1581368
Xylenes, Total	ND		0.00300	1	11/24/2020 01:25	WG1581368
(S) Toluene-d8	95.8		80.0-120		11/24/2020 01:25	WG1581368
(S) 4-Bromofluorobenzene	94.6		77.0-126		11/24/2020 01:25	WG1581368
(S) 1,2-Dichloroethane-d4	105		70.0-130		11/24/2020 01:25	WG1581368

СQс

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 09:34	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 09:34	WG1578880

SDG:

L1287271

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 00:00

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	76.5		2.50	1	11/25/2020 09:53	WG1581081

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 15:32	WG1581424

Cn

Sample Narrative:

L1287271-08 WG1581424: Endpoint pH 4.5

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 19:04	<u>WG1580846</u>

Gl

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:47	WG1581678

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 02:18	WG1578720
Chloride	18.3		1.00	1	11/19/2020 02:18	WG1578720
Fluoride	0.180		0.150	1	11/19/2020 02:18	WG1578720
Nitrate	0.268	<u>T8</u>	0.100	1	11/19/2020 02:18	WG1578720
Sulfate	61.4		5.00	1	11/19/2020 02:18	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:18	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 22:03	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	0.339		0.100	1	11/25/2020 09:53	WG1581081
Antimony	ND		0.00400	1	11/25/2020 14:03	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:53	WG1581081
Barium	0.0710		0.0200	1	11/25/2020 09:53	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:53	WG1581081
Cadmium	0.00817		0.00100	1	11/25/2020 09:53	WG1581081
Calcium	19.3		1.00	1	11/25/2020 09:53	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:53	WG1581081
Cobalt	0.00460		0.00200	1	11/25/2020 09:53	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:53	WG1581081

Zinc

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 00:00

Metals (ICPMS) by Method 6020A

Metals (ICPMS) by Metalod 6020A								
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l		date / time			
Iron	0.187		0.100	1	11/25/2020 09:53	WG1581081		
Lead	ND		0.00500	1	11/25/2020 09:53	WG1581081		
Magnesium	6.91		1.00	1	11/25/2020 09:53	WG1581081		
Manganese	0.549		0.00500	1	11/25/2020 09:53	WG1581081		
Nickel	0.00664		0.00200	1	11/25/2020 09:53	WG1581081		
Potassium	6.36		2.00	1	11/25/2020 09:53	WG1581081		
Selenium	ND		0.00200	1	11/25/2020 09:53	WG1581081		
Silver	ND		0.00200	1	11/25/2020 09:53	WG1581081		
Sodium	7.39		2.00	1	11/25/2020 09:53	WG1581081		
Thallium	ND		0.00200	1	11/25/2020 09:53	WG1581081		
Vanadium	ND		0.00500	1	11/25/2020 09:53	WG1581081		

11/25/2020 09:53

WG1581081

0.0250

0.0484

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/24/2020 01:46	WG1581368
Acrylonitrile	ND		0.0100	1	11/24/2020 01:46	WG1581368
Benzene	ND		0.00100	1	11/24/2020 01:46	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/24/2020 01:46	WG1581368
Bromodichloromethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
Bromoform	ND		0.00100	1	11/24/2020 01:46	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/24/2020 01:46	WG1581368
Carbon disulfide	ND		0.00100	1	11/24/2020 01:46	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/24/2020 01:46	WG1581368
Chlorobenzene	ND		0.00100	1	11/24/2020 01:46	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
Chloroethane	ND		0.00500	1	11/24/2020 01:46	WG1581368
Chloroform	ND		0.00500	1	11/24/2020 01:46	WG1581368
Chloromethane	ND		0.00250	1	11/24/2020 01:46	WG1581368
Dibromomethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/24/2020 01:46	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/24/2020 01:46	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/24/2020 01:46	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/24/2020 01:46	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:46	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/24/2020 01:46	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:46	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/24/2020 01:46	WG1581368
Ethylbenzene	ND		0.00100	1	11/24/2020 01:46	WG1581368
2-Hexanone	ND		0.0100	1	11/24/2020 01:46	WG1581368
lodomethane	ND		0.0100	1	11/24/2020 01:46	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/24/2020 01:46	WG1581368
Methylene Chloride	ND		0.00500	1	11/24/2020 01:46	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/24/2020 01:46	WG1581368
Styrene	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
Tetrachloroethene	ND		0.00100	1	11/24/2020 01:46	WG1581368
Toluene	ND		0.00100	1	11/24/2020 01:46	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 00:00

Volatile Organic Compounds (GC/MS) by Method 8260B

- Volume Organic Con	, ,	, ,			A 1 .	D
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/24/2020 01:46	WG1581368
Trichloroethene	ND		0.00100	1	11/24/2020 01:46	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/24/2020 01:46	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/24/2020 01:46	WG1581368
Vinyl acetate	ND		0.0100	1	11/24/2020 01:46	WG1581368
Vinyl chloride	ND		0.00100	1	11/24/2020 01:46	WG1581368
Xylenes, Total	ND		0.00300	1	11/24/2020 01:46	WG1581368
(S) Toluene-d8	103		80.0-120		11/24/2020 01:46	WG1581368
(S) 4-Bromofluorobenzene	93.5		77.0-126		11/24/2020 01:46	WG1581368
(S) 1,2-Dichloroethane-d4	107		70.0-130		11/24/2020 01:46	WG1581368

СQс

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/20/2020 09:47	WG1578880
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/20/2020 09:47	WG1578880

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:20

Calculated Results

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	ND		2.50	1	11/25/2020 09:56	WG1581081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/01/2020 15:55	WG1581424

Sample Narrative:

L1287271-09 WG1581424: Endpoint pH 4.5

Cn

Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	ND		0.250	1	11/24/2020 19:07	WG1580846

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	ND		20.0	1	11/24/2020 15:47	WG1581678

Gl

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	11/19/2020 02:34	WG1578720
Chloride	ND		1.00	1	11/19/2020 02:34	WG1578720
Fluoride	ND		0.150	1	11/19/2020 02:34	WG1578720
Nitrate	ND		0.100	1	11/19/2020 02:34	WG1578720
Sulfate	ND		5.00	1	11/19/2020 02:34	WG1578720

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/25/2020 08:20	WG1578876

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/25/2020 22:05	WG1581077

Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	ND		0.100	1	11/25/2020 09:56	WG1581081
Antimony	ND		0.00400	1	11/25/2020 14:07	WG1582380
Arsenic	ND		0.00200	1	11/25/2020 09:56	WG1581081
Barium	ND		0.0200	1	11/25/2020 09:56	WG1581081
Beryllium	ND		0.00200	1	11/25/2020 09:56	WG1581081
Cadmium	ND		0.00100	1	11/25/2020 09:56	WG1581081
Calcium	ND		1.00	1	11/25/2020 09:56	WG1581081
Chromium	ND		0.00200	1	11/25/2020 09:56	WG1581081
Cobalt	ND		0.00200	1	11/25/2020 09:56	WG1581081
Copper	ND		0.00500	1	11/25/2020 09:56	WG1581081

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:20

Metals (ICPMS) by Method 6020A

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Iron	ND		0.100	1	11/25/2020 09:56	WG1581081
Lead	ND		0.00500	1	11/25/2020 09:56	WG1581081
Magnesium	ND		1.00	1	11/25/2020 09:56	WG1581081
Manganese	ND		0.00500	1	11/25/2020 09:56	WG1581081
Nickel	ND		0.00200	1	11/25/2020 09:56	WG1581081
Potassium	ND		2.00	1	11/25/2020 09:56	WG1581081
Selenium	ND		0.00200	1	11/25/2020 09:56	WG1581081
Silver	ND		0.00200	1	11/25/2020 09:56	WG1581081
Sodium	ND		2.00	1	11/25/2020 09:56	WG1581081
Thallium	ND		0.00200	1	11/25/2020 09:56	WG1581081
Vanadium	ND		0.00500	1	11/25/2020 09:56	WG1581081
Zinc	ND		0.0250	1	11/25/2020 09:56	WG1581081

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/23/2020 22:19	WG1581368
Acrylonitrile	ND		0.0100	1	11/23/2020 22:19	WG1581368
Benzene	ND		0.00100	1	11/23/2020 22:19	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/23/2020 22:19	WG1581368
Bromodichloromethane	ND	_	0.00100	1	11/23/2020 22:19	WG1581368
Bromoform	ND		0.00100	1	11/23/2020 22:19	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/23/2020 22:19	WG1581368
Carbon disulfide	ND		0.00100	1	11/23/2020 22:19	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/23/2020 22:19	WG1581368
Chlorobenzene	ND		0.00100	1	11/23/2020 22:19	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
Chloroethane	ND		0.00500	1	11/23/2020 22:19	WG1581368
Chloroform	ND		0.00500	1	11/23/2020 22:19	WG1581368
Chloromethane	ND		0.00250	1	11/23/2020 22:19	WG1581368
Dibromomethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/23/2020 22:19	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/23/2020 22:19	WG1581368
trans-1,4-Dichloro-2-butene	ND		0.00250	1	11/23/2020 22:19	WG1581368
1,1-Dichloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,2-Dichloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/23/2020 22:19	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 22:19	WG1581368
trans-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,2-Dichloropropane	ND		0.00100	1	11/23/2020 22:19	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 22:19	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 22:19	WG1581368
Ethylbenzene	ND		0.00100	1	11/23/2020 22:19	WG1581368
2-Hexanone	ND		0.0100	1	11/23/2020 22:19	WG1581368
lodomethane	ND		0.0100	1	11/23/2020 22:19	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/23/2020 22:19	WG1581368
Methylene Chloride	ND		0.00500	1	11/23/2020 22:19	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/23/2020 22:19	WG1581368
Styrene	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
Tetrachloroethene	ND		0.00100	1	11/23/2020 22:19	WG1581368
Toluene	ND		0.00100	1	11/23/2020 22:19	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368

ONE LAB. NATIONWIDE.

Collected date/time: 11/17/20 12:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,1,2-Trichloroethane	ND		0.00100	1	11/23/2020 22:19	WG1581368
Trichloroethene	ND		0.00100	1	11/23/2020 22:19	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/23/2020 22:19	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/23/2020 22:19	WG1581368
Vinyl acetate	ND		0.0100	1	11/23/2020 22:19	WG1581368
Vinyl chloride	ND		0.00100	1	11/23/2020 22:19	WG1581368
Xylenes, Total	ND		0.00300	1	11/23/2020 22:19	WG1581368
(S) Toluene-d8	104		80.0-120		11/23/2020 22:19	WG1581368
(S) 4-Bromofluorobenzene	97.9		77.0-126		11/23/2020 22:19	WG1581368
(S) 1,2-Dichloroethane-d4	105		70.0-130		11/23/2020 22:19	WG1581368

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	11/21/2020 00:39	WG1579623
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	11/21/2020 00:39	WG1579623

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

105

99.6

108

Collected date/time: 11/17/20 00:00

SAM

L1287271

Volatile Organic Compounds (GC/MS) by Method 8260B

PLE RESULTS - 10	NE LAB. NATIONWII
------------------	-------------------

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	11/23/2020 20:56	WG1581368
Acrylonitrile	ND		0.0100	1	11/23/2020 20:56	WG1581368
Benzene	ND		0.00100	1	11/23/2020 20:56	WG1581368
Bromochloromethane	ND	<u>J4</u>	0.00100	1	11/23/2020 20:56	WG1581368
Bromodichloromethane	ND	_	0.00100	1	11/23/2020 20:56	WG1581368
Bromoform	ND		0.00100	1	11/23/2020 20:56	WG1581368
Bromomethane	ND	<u>J4</u>	0.00500	1	11/23/2020 20:56	WG1581368
Carbon disulfide	ND	_	0.00100	1	11/23/2020 20:56	WG1581368
Carbon tetrachloride	ND		0.00100	1	11/23/2020 20:56	WG1581368
Chlorobenzene	ND		0.00100	1	11/23/2020 20:56	WG1581368
Chlorodibromomethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
Chloroethane	ND		0.00500	1	11/23/2020 20:56	WG1581368
Chloroform	ND		0.00500	1	11/23/2020 20:56	WG1581368
Chloromethane	ND		0.00250	1	11/23/2020 20:56	WG1581368
Dibromomethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/23/2020 20:56	WG1581368
1,2-Dibromoethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,2-Dichlorobenzene	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,4-Dichlorobenzene	ND		0.00100	1	11/23/2020 20:56	WG1581368
rans-1,4-Dichloro-2-butene	ND		0.00250	1	11/23/2020 20:56	WG1581368
,1-Dichloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
,2-Dichloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,1-Dichloroethene	ND		0.00100	1	11/23/2020 20:56	WG1581368
cis-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 20:56	WG1581368
rans-1,2-Dichloroethene	ND		0.00100	1	11/23/2020 20:56	WG1581368
I,2-Dichloropropane	ND		0.00100	1	11/23/2020 20:56	WG1581368
cis-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 20:56	WG1581368
trans-1,3-Dichloropropene	ND		0.00100	1	11/23/2020 20:56	WG1581368
Ethylbenzene	ND		0.00100	1	11/23/2020 20:56	WG1581368
2-Hexanone	ND		0.0100	1	11/23/2020 20:56	WG1581368
odomethane	ND		0.0100	1	11/23/2020 20:56	WG1581368
2-Butanone (MEK)	ND		0.0100	1	11/23/2020 20:56	WG1581368
Methylene Chloride	ND		0.00500	1	11/23/2020 20:56	WG1581368
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/23/2020 20:56	WG1581368
Styrene	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,1,1,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,1,2,2-Tetrachloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
Tetrachloroethene	ND		0.00100	1	11/23/2020 20:56	WG1581368
Toluene	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,1,1-Trichloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
1,1,2-Trichloroethane	ND		0.00100	1	11/23/2020 20:56	WG1581368
Trichloroethene	ND		0.00100	1	11/23/2020 20:56	WG1581368
Trichlorofluoromethane	ND		0.00500	1	11/23/2020 20:56	WG1581368
1,2,3-Trichloropropane	ND		0.00250	1	11/23/2020 20:56	WG1581368
Vinyl acetate	ND		0.0100	1	11/23/2020 20:56	WG1581368
Vinyl chloride	ND		0.00100	1	11/23/2020 20:56	WG1581368
Xylenes, Total	ND		0.00300	1	11/23/2020 20:56	WG1581368
•						

11/23/2020 20:56

11/23/2020 20:56

11/23/2020 20:56

80.0-120

77.0-126

70.0-130

WG1581368

WG1581368

WG1581368

ONE LAB. NATIONWIDE.

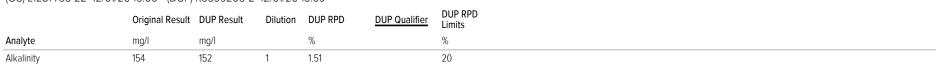
Wet Chemistry by Method 2320 B-2011

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3599205-1 12/01/20 14:23

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0


Sample Narrative:

BLANK: Endpoint pH 4.5

L1287735-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1287735-22 12/01/20 15:00 • (DUP) R3599205-2 12/01/20 15:09

Sample Narrative:

OS: Endpoint pH 4.5

DUP: Endpoint pH 4.5

⁸ Al	

L1288554-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1288554-01 12/01/20 18:11 • (DUP) R3599205-4 12/01/20 18:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	79.4	72.4	1	9.23		20

Sample Narrative:

OS: Endpoint pH 4.5

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R3599205-3	12/01/20 15:38
------------------	----------------

(LCS) R3599205-3 12/01/	20 15:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	96.2	96.2	90.0-110	

Sample Narrative:

LCS: Endpoint pH 4.5

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 350.1

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3597161-1	11/24/20 18:34	
	MD D	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Ammonia Nitrogen	U		0.117	0.250

³Ss

L1287269-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1287269-01 11/24/20 18:42 • (DUP) R3597161-5 11/24/20 18:44

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ammonia Nitrogen	17.0	16.8	5	1.15		10

(OS) L1287271-09 11/24/20 19:07 • (DUP) R3597161-7 11/24/20 19:09

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ammonia Nitrogen	ND	ND	1	0.000		10

Laboratory Control Sample (LCS)

(LCS) R3597161-2 11/24/20 18:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Ammonia Nitrogen	7.50	7.86	105	90.0-110	

monia Nitrogen 7.50 7.86 105 90.0-110

L1287253-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1287253-01 11/24/20 18:37 • (MS) R3597161-3 11/24/20 18:39 • (MSD) R3597161-4 11/24/20 18:41

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Ammonia Nitrogen	5.00	8.74	13.2	13.6	90.0	97.5	1	90.0-110	<u>E</u>	<u>E</u>	2.79	10

L1287271-08 Original Sample (OS) • Matrix Spike (MS)

(US) L128/2/1-U8 11/24/20	J 19:04 • (IVIS) R	359/101-0 11/2	4/20 19:06				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Ammonia Nitrogen	5.00	ND	5.17	103	1	90.0-110	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 410.4

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3597008-1 11/24/	20 15:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
COD	11		11 7	20.0

L1287233-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1287233-07 11/24/20 15:45 • (DUP) R3597008-5 11/24/20 15:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	ND	ND	1	0.000		20

L1287271-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1287271-05 11/24/20 15:46 • (DUP) R3597008-6 11/24/20 15:46

(00, 1.20, 27, 00 1, 2 1, 20	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	ND	ND	1	0.000		20

PAGE:

37 of 52

Laboratory Control Sample (LCS)

(LCS) R3597008-2 11/24/20 15:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
COD	500	505	101	90.0-110	

L1287230-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1287230-15 11/24/20 15:43 • (MS) R3597008-3 11/24/20 15:43 • (MSD) R3597008-4 11/24/20 15:43

(OS) E1207230-13 11/24/20 13.43 · (NIS) NOS37000-3 11/24/20 13.43 · (NISD) NOS37000-4 11/24/20 13.43													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
COD	500	ND	526	520	105	104	1	80.0-120			1.11	20	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3595084-1	11/18/20 22:35
-----------------	----------------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Bromide	U		0.353	1.00
Chloride	U		0.379	1.00
Fluoride	U		0.0640	0.150
Nitrate	U		0.0480	0.100
Sulfate	U		0.594	5.00

L1287271-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1287271-09 11/19/20 02:34 • (DUP) R3595084-5 11/19/20 02:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	ND	ND	1	0.000		15
Chloride	ND	ND	1	0.000		15
Fluoride	ND	ND	1	0.000		15
Nitrate	ND	ND	1	0.000		15
Sulfate	ND	ND	1	0.000		15

QC	
·	
7	

Laboratory Control Sample (LCS)

(LCS) R3595084-2 11/18/20 22:51

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Bromide	40.0	40.1	100	80.0-120
Chloride	40.0	39.2	98.1	80.0-120
Fluoride	8.00	8.45	106	80.0-120
Nitrate	8.00	8.14	102	80.0-120
Sulfate	40.0	40.7	102	80 O-120

L1287271-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1287271-01 11/18/20 23:07 • (MS) R3595084-3 11/18/20 23:23 • (MSD) R3595084-4 11/18/20 23:38

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Bromide	50.0	ND	51.7	52.3	103	105	1	80.0-120			1.10	15
Chloride	50.0	2.48	53.7	54.3	102	104	1	80.0-120			1.02	15
Fluoride	5.00	ND	5.32	5.39	106	108	1	80.0-120			1.35	15
Nitrate	5.00	ND	5.18	5.21	104	104	1	80.0-120			0.662	15
Sulfate	50.0	ND	54.6	55.1	104	105	1	80.0-120			0.936	15

LCS Qualifier

ONE LAB. NATIONWIDE.

L1287271-01,02,03,04,05,06,07,08,09

Mercury by Method 7470A Method Blank (MB)

(MB) R3597298-1 11/25/20 07:27

Laboratory Control Sample (LCS)

(LCS) R3597298-2 11/25/20 07:30

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.00300	0.00293	97.7	80.0-120	

(OS) L1287233-01 11/25/20 07:32 • (MS) R3597298-3 11/25/20 07:35 • (MSD) R3597298-4 11/25/20 07:37

(03) 1120/233 01 11/2	3/20 07.32 - (1413)	100072000 11	123120 01.33	· (IVISD) 1(5557	230 7 11/23/2	20 07.57							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/I	mg/l	mg/l	mg/l	%	%		%			%	%	
Mercury	0.00300	ND	0.00294	0.00290	98.0	96.7	1	75 0-125			1 37	20	

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3597769-1 11/25/20 21:09

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

Laboratory Control Sample (LCS)

(LCS) R3597769-2 11/25/20 21:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Roron	1.00	0.968	96.8	80 O-120	

(OS) L1287230-09 11/25/20 21:14 • (MS) R3597769-4 11/25/20 21:20 • (MSD) R3597769-5 11/25/20 21:23

,	Spike Amount	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	1.00	ND	1.06	1.06	99.0	98.4	1	75.0-125			0.511	20

ONE LAB. NATIONWIDE.

Ss

Sc

Metals (ICPMS) by Method 6020A

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3597272-1 11/	25/20 08:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	_
Analyte	mg/l		mg/l	mg/l	_
Aluminum	U		0.0185	0.100	
Arsenic	U		0.000180	0.00200	3
Barium	U		0.000381	0.0200	
Beryllium	U		0.000190	0.00200	4
Cadmium	U		0.000150	0.00100	
Calcium	U		0.0936	1.00	<u> </u>
Chromium	U		0.00124	0.00200	5
Copper	U		0.00151	0.00500	
Cobalt	U		0.0000596	0.00200	6
Iron	U		0.0281	0.100	
Lead	U		0.000849	0.00500	,
Magnesium	U		0.0735	1.00	7
Manganese	U		0.000704	0.00500	
Nickel	U		0.000816	0.00200	[8
Potassium	U		0.108	2.00	
Selenium	U		0.000300	0.00200	<u> </u>
Silver	U		0.0000700	0.00200	9
Sodium	U		0.376	2.00	
Thallium	U		0.000121	0.00200	

Laboratory Control Sample (LCS)

U

Vanadium

Zinc

(LCS) R3597272-2 11	1/25/20 00:00				
(LC3) K3397272-2 II					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Aluminum	5.00	4.82	96.5	80.0-120	
Arsenic	0.0500	0.0477	95.4	80.0-120	
Barium	0.0500	0.0479	95.7	80.0-120	
Beryllium	0.0500	0.0480	96.0	80.0-120	
Cadmium	0.0500	0.0511	102	80.0-120	
Calcium	5.00	4.88	97.6	80.0-120	
Chromium	0.0500	0.0502	100	80.0-120	
Copper	0.0500	0.0487	97.4	80.0-120	
Cobalt	0.0500	0.0504	101	80.0-120	
Iron	5.00	4.91	98.2	80.0-120	
Lead	0.0500	0.0483	96.5	80.0-120	
Magnesium	5.00	4.84	96.7	80.0-120	

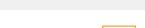
0.00500

0.0250

0.000664

0.00302

ONE LAB. NATIONWIDE.


Metals (ICPMS) by Method 6020A

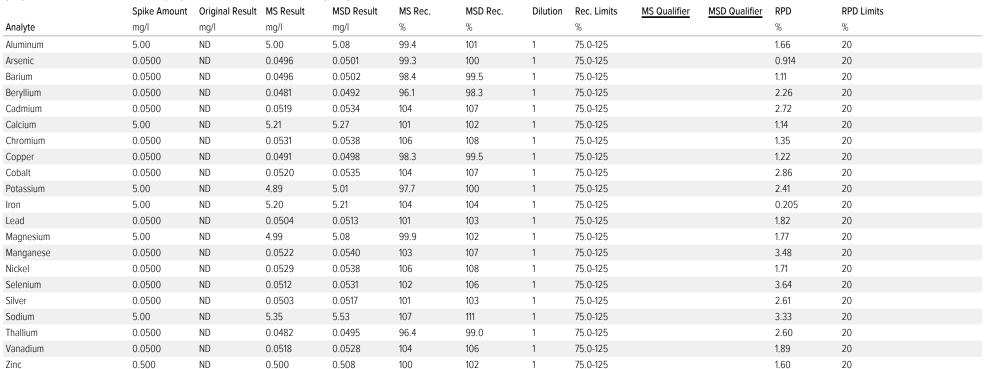
L1287271-01,02,03,04,05,06,07,08,09

LCS Qualifier

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Manganese	0.0500	0.0496	99.3	80.0-120
Nickel	0.0500	0.0511	102	80.0-120
Potassium	5.00	4.68	93.6	80.0-120
Selenium	0.0500	0.0502	100	80.0-120
Silver	0.0500	0.0493	98.6	80.0-120
Sodium	5.00	5.02	100	80.0-120
Thallium	0.0500	0.0462	92.4	80.0-120
Vanadium	0.0500	0.0498	99.7	80.0-120
Zinc	0.500	0.477	95.5	80.0-120

Ср



 $(OS) \, L1287249 - 11 \, 11/25/20 \, 09:03 \bullet (MS) \, R3597272 - 4 \, 11/25/20 \, 09:10 \bullet (MSD) \, R3597272 - 5 \, 11/25/20 \, 09:13 \, (MSD) \, R3597272 - 5 \, 11/25/20 \, (MSD) \, R3597272 - 5 \, 11/25/20 \, (MSD) \, R3597272 - 5 \, (MSD) \, R3$

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020A

L1287271-01,02,03,04,05,06,07,08,09

Method Blank (MB)

 (MB) R3597439-1
 11/25/20
 13:13

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

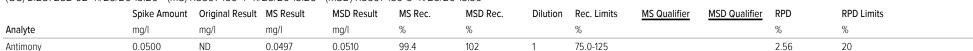
 Antimony
 U
 0.00103
 0.00400

Laboratory Control Sample (LCS)

 (LCS) R3597439-2
 11/25/20 13:16

 Spike Amount
 LCS Result
 LCS Rec.
 Rec. Limits
 LCS Qualifier

 Analyte
 mg/l
 mg/l
 %


 Antimony
 0.0500
 0.0487
 97.4
 80.0-120

Ss

L1287282-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1287282-02 11/25/20 13:20 • (MS) R3597439-4 11/25/20 13:26 • (MSD) R3597439-5 11/25/20 13:30

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1287271-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

Method Blank (MB)				
(MB) R3597095-2 11/23/20	0 20:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/I
Acetone	U		0.0113	0.0500
Acrylonitrile	U		0.000671	0.0100
Benzene	U		0.0000941	0.00100
Bromodichloromethane	U		0.000136	0.00100
Bromochloromethane	U		0.000128	0.00100
Bromoform	U		0.000129	0.00100
Bromomethane	U		0.000605	0.00500
Carbon disulfide	U		0.0000962	0.00100
Carbon tetrachloride	U		0.000128	0.00100
Chlorobenzene	U		0.000116	0.00100
Chlorodibromomethane	U		0.000140	0.00100
Chloroethane	U		0.000192	0.00500
Chloroform	U		0.000111	0.00500
Chloromethane	U		0.000960	0.00250
1,2-Dibromo-3-Chloropropane	U		0.000276	0.00500
1,2-Dibromoethane	U		0.000126	0.00100
Dibromomethane	U		0.000122	0.00100
1,2-Dichlorobenzene	U		0.000107	0.00100
1,4-Dichlorobenzene	U		0.000120	0.00100
trans-1,4-Dichloro-2-butene	U		0.000467	0.00250
1,1-Dichloroethane	U		0.000100	0.00100
1,2-Dichloroethane	U		0.0000819	0.00100
1,1-Dichloroethene	U		0.000188	0.00100
cis-1,2-Dichloroethene	U		0.000126	0.00100
trans-1,2-Dichloroethene	U		0.000149	0.00100
1,2-Dichloropropane	U		0.000149	0.00100
cis-1,3-Dichloropropene	U		0.000111	0.00100
trans-1,3-Dichloropropene	U		0.000118	0.00100
Ethylbenzene	U		0.000137	0.00100
2-Hexanone	U		0.000787	0.0100
lodomethane	U		0.00600	0.0100
2-Butanone (MEK)	U		0.00119	0.0100
Methylene Chloride	U		0.000430	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.000478	0.0100
Styrene	U		0.000118	0.00100
1,1,1,2-Tetrachloroethane	U		0.000147	0.00100
1,1,2,2-Tetrachloroethane	U		0.000133	0.00100
Tetrachloroethene	U		0.000300	0.00100
Toluene	U		0.000278	0.00100
1,1,1-Trichloroethane	U		0.000149	0.00100

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1287271-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

trans-1,4-Dichloro-2-butene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

(MB) R3597095-2 11/23/2	0 20:35					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
1,1,2-Trichloroethane	U		0.000158	0.00100		
Trichloroethene	U		0.000190	0.00100		
Trichlorofluoromethane	U		0.000160	0.00500		
1,2,3-Trichloropropane	U		0.000237	0.00250		
Vinyl acetate	U		0.000692	0.0100		
Vinyl chloride	U		0.000234	0.00100		
Xylenes, Total	U		0.000174	0.00300		
(S) Toluene-d8	102			80.0-120		
(S) 4-Bromofluorobenzene	94.1			77.0-126		

107

Laboratory Control	Laboratory Control Sample (LCS)									
(LCS) R3597095-1 11/23/20	O 19:54									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Acetone	0.0250	0.0264	106	19.0-160						
Acrylonitrile	0.0250	0.0260	104	55.0-149						
Benzene	0.00500	0.00437	87.4	70.0-123						
Bromodichloromethane	0.00500	0.00458	91.6	75.0-120						
Bromochloromethane	0.00500	0.00616	123	76.0-122	<u>J4</u>					
Bromoform	0.00500	0.00440	88.0	68.0-132						
Bromomethane	0.00500	0.00830	166	10.0-160	<u>J4</u>					
Carbon disulfide	0.00500	0.00436	87.2	61.0-128						
Carbon tetrachloride	0.00500	0.00463	92.6	68.0-126						
Chlorobenzene	0.00500	0.00478	95.6	80.0-121						
Chlorodibromomethane	0.00500	0.00476	95.2	77.0-125						
Chloroethane	0.00500	0.00484	96.8	47.0-150						
Chloroform	0.00500	0.00444	88.88	73.0-120						
Chloromethane	0.00500	0.00294	58.8	41.0-142						
1,2-Dibromo-3-Chloropropane	0.00500	0.00453	90.6	58.0-134						
1,2-Dibromoethane	0.00500	0.00531	106	80.0-122						
Dibromomethane	0.00500	0.00477	95.4	80.0-120						
1,2-Dichlorobenzene	0.00500	0.00475	95.0	79.0-121						
1,4-Dichlorobenzene	0.00500	0.00518	104	79.0-120						

0.00500

0.00500

0.00500

0.00500

0.00562

0.00440

0.00537

0.00427

112

88.0

107

85.4

33.0-144

70.0-126

70.0-128

71.0-124

70.0-130

12/01/20 22:15

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

97.2

97.2

109

80.0-120

77.0-126

70.0-130

L1287271-01,02,03,04,05,06,07,08,09,10

Laboratory Control Sample (LCS)

	(-	/				1 7
(LCS) R3597095-1 11/23/2	0 19:54					1
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	2
Analyte	mg/l	mg/l	%	%		
cis-1,2-Dichloroethene	0.00500	0.00436	87.2	73.0-120		<u> </u>
trans-1,2-Dichloroethene	0.00500	0.00423	84.6	73.0-120		3
1,2-Dichloropropane	0.00500	0.00451	90.2	77.0-125		L
cis-1,3-Dichloropropene	0.00500	0.00453	90.6	80.0-123		4
trans-1,3-Dichloropropene	0.00500	0.00470	94.0	78.0-124		(
Ethylbenzene	0.00500	0.00453	90.6	79.0-123		느
2-Hexanone	0.0250	0.0238	95.2	67.0-149		5
lodomethane	0.0250	0.0318	127	33.0-147		L
2-Butanone (MEK)	0.0250	0.0247	98.8	44.0-160		6
Methylene Chloride	0.00500	0.00418	83.6	67.0-120		(
4-Methyl-2-pentanone (MIBK)	0.0250	0.0239	95.6	68.0-142		,
Styrene	0.00500	0.00455	91.0	73.0-130		7
1,1,1,2-Tetrachloroethane	0.00500	0.00465	93.0	75.0-125		L
1,1,2,2-Tetrachloroethane	0.00500	0.00431	86.2	65.0-130		8
Tetrachloroethene	0.00500	0.00572	114	72.0-132		-
Toluene	0.00500	0.00446	89.2	79.0-120		<u></u>
1,1,1-Trichloroethane	0.00500	0.00474	94.8	73.0-124		9
1,1,2-Trichloroethane	0.00500	0.00437	87.4	80.0-120		L
Trichloroethene	0.00500	0.00503	101	78.0-124		
Trichlorofluoromethane	0.00500	0.00593	119	59.0-147		
1,2,3-Trichloropropane	0.00500	0.00539	108	73.0-130		
Vinyl acetate	0.0250	0.0214	85.6	11.0-160		
Vinyl chloride	0.00500	0.00463	92.6	67.0-131		
Xylenes, Total	0.0150	0.0144	96.0	79.0-123		

ONE LAB. NATIONWIDE.

EDB / DBCP by Method 8011

L1287271-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3595620-1 11/20/20	0 04:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Ethylene Dibromide	U		0.00000536	0.0000200
1,2-Dibromo-3-Chloropropane	U		0.00000748	0.0000200

[†]Cn

L1287022-02 Original Sample (OS) • Duplicate (DUP)

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ethylene Dibromide	ND	ND	1	0.000		20
1,2-Dibromo-3-Chloropropane	ND	ND	1	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3595620-4 11/20/20 07:27 • (LCSD) R3595620-5 11/20/20 10:10

, ,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Ethylene Dibromide	0.000250	0.000253	0.000250	101	100	60.0-140			1.19	20
1,2-Dibromo-3-Chloropropane	0.000250	0.000227	0.000226	90.8	90.4	60.0-140			0.441	20

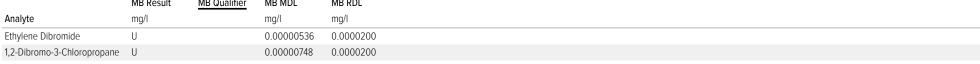
L1287022-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1287022-03 11/20/20 04:59 • (MS) R3595620-2 11/20/20 04:47

` '	٠,					
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Ethylene Dibromide	0.000100	ND	0.000104	104	1	64.0-159
1,2-Dibromo-3-Chloropropane	0.000100	ND	0.0000930	93.0	1	72.0-148

12/01/20 22:15

ONE LAB. NATIONWIDE.


EDB / DBCP by Method 8011

L1287271-09

Method Blank (MB)

(MB) R3596438-1 1'	1/20/20 22:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ma/l		ma/l	ma/l

L1287754-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1287754-04 11/20/20 23:22 • (DUP) R3596438-3 11/20/20 23:09

. ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ethylene Dibromide	ND	ND	1	0.000		20
1,2-Dibromo-3-Chloropropane	ND	ND	1	0.000		20

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3596438-4 11/21/20 01:30

(200) 1.0000 100 1 1.12 1/21	0 000				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Ethylene Dibromide	0.000250	0.000276	110	60.0-140	
1,2-Dibromo-3-Chloropropane	0.000250	0.000258	103	60.0-140	

L1287754-02 Original Sample (OS) • Matrix Spike (MS)

(OS) | 1287754 O2 11/20/20 22:58 - (MS) | D3596438 2 11/20/20 22:45

(O3) L1207734=02 11/20/2	0 22.30 • (1013)	K3330436-2 T	1/20/20 22.4	,			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Ethylene Dibromide	0.000100	ND	0.000134	134	1	64.0-159	
1,2-Dibromo-3-Chloropropane	0.000100	ND	0.000118	118	1	72.0-148	

12/01/20 22:15

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDI	Mathad Datastian Limit
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J4 The associated batch QC was outside the established quality control range for accuracy.

Т8 Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

			Billing Info	rmation:						A	nalysis /	Contain	ner / Pre	servati	/e			Chain of Custody	Page of
Civil & Environmental Co	onsultan	ts - TN		117 Seaboard Ln.			Pres Chk			D			19					Pace	Analytical*
117 Seaboard Ln.			Suite E1		.7		1			PARK	1		0						1287271
Suite E100 Franklin TN 37067			Franklin						A SEC					1					EN TO TO
Report to:	15,411		Email To: p	campbell@	ecinc.	com	1						m		BIK			12065 Lebanon Rd Mount Juliet, TN 3	
Philip Campbell	12.36	City/State		-1	,	Please Ci	cle:	es	5m.		1		NO NO		-5			Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5859	59
Project Description: Former EWS Camden Class 2 Landfill		Collected:	dude	-		PT MT C	ET	oPr	長書		9		7.		4-di			The state of the s	
Phone: 615-333-7797	Client Project	t#		CEC-18				250mIHDPE-NoPres	10	12504	250mlHDPE-HNO		mIHDF	D	40mlAmb-HCI-BIk			Table #	04
Collected by (print): Alex Black/Adrin Dansh	Site/Facility CAMDEN,			P.O. #				50mlH	Amb-NoPres	1DPE-	50mlH	40mlClr-NaThio	(D 250	H-qm	Blank 4			Acctnum: CEC	
Collected by (signature):	Rush?	(Lab MUST Be	Notified)	Quote #	2		16180	* 2	N-dn			Cir	HAR	mlA		(0,0)		Prelogin: P81	
Immediately Packed on Ice N Y			511100 UT		Date Results Needed		No. of	WetChem*	ALK 100ml Amb-NoPres COD,NH3 250mlHDPE-H2SO4	NH3 250	Metals-FF	The second secon	Metals, HARD 250mlHDPE-HNO3	V8260AP1 40mlAmb-HCl	V8260AP1-Trip			PM: 526 - Chris McCord PBW 13 60 10 Shipped Via: Courier	
Sample ID	Comp/Grab	Matrix *	Depth	Da	te	Time	Cntrs	**We	ALK 1	COD,	Diss.	SV8011	Total	V826	V826			Remarks	Sample # {lab onl
MW-1	(-	GW	L	11/17	/20	1015	10	X	X	X	X	X	X	X		lange.		Continu	- 01
MW-3	1	GW	Sec.	1		1440	110	X	Х	X	X	X	Х	X			M 1	138 440	-0
MW-4	1201	GW			2 35	1130	110	X	X	X	x	X	X	X	46.00		W 19	(1)	.0
MW-5		GW			40	1315	100	Х	Х	X	X	X	Х	X					-0
TMW-1	- Lead	GW				1230	10	X	X	X	×	X	х	X					- 0
TMW-2		GW				1135	10	X	X	X	×	X	х	X				- 4	(
TMW-3		GW			NEW YEAR	1015	10	X	X	X	×	X	Х	X	.60				-(
DUPLICATE		GW	1	Section 1	1.0	_	10	X	X	X	×	X	X	X	Serva M	Herbin.			- 0
FIELD BLANK		GW	-75158	1 2 3		1220	10	X	X	X		X	X	X					1
EQUIPMENT BLANK		GW	1900			IVA	10	X	X	X		X	X	X	- 1				
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	atrix: Remarks:**WetChem** = *NITRATE*,CHLORIDE,BROMIDE,SUL. Tot/Diss Metals=M6020AP1+AI,Ca,Fe,K,Mg,Mn,Na,B(6010/7470)							ORIDE			pH		_ Temp)		COC Si Bottle	al Pre gned// s arri	e Receipt Desent/Intact scourate: tve intact:	Hecklist
WW - WasteWater DW - Drinking Water OT - Other	amples returne		X		Trackin	ng#		FIOW OUTER						Suffic VOA Ze	ro Hea	les used: volume sent: If Applicated adspace:	ole Zy		
Relinquished by : (Signature)		Date: 11/18/20	Time 10	:20	Receiv	ed by: (Signa	ture)				Trip Blar	nk Recei	21	HQ / MI	Но	RAD Sc	reen	Correct/Ch	X -
Relinquished by : (Signature)	1	Date:	Time	4:30	Receiv	d by: (Signa	ture)				Temp:	-15-	C Bott	les Recei	PO	If prese	rvation	required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	fime		Receiv	ed for lab by	Isignati	ure)			Date:	4	Tim	e:	70	Hold:			Condition:

	16%		Billing Info	rmation:	100	1			A	nalvsis /	Contai	ner / Pre	servati	ve			Chain of Custody	Page of
Civil & Environmental	Consultan	ts - TN	Dr. Kevir 117 Seal Suite E1	board Ln.		Pres Chk		Ü		-							Pace P National Cas	Analytical *
Suite E100	100		Franklin	, TN 37067													11	
Franklin TN 37067 Report to: Philip Campbell	Franklin TN 37067 Report to:		Email To: p	Email To: pcampbell@cecinc.com								03		-Bik			12065 Lebanon Rd Mount Juliet, TM 371 Phone: 615-758-585	8 75 20 20
Project Description: Former EWS Camden Class 2 Landfill		City/State Collected:	Camb		Please C PT MT		oPres			NO3		E-HN		P-HC			Phone: 800-767-585 Fax: 615-758-5859	■ 258.7
Phone: 615-333-7797	Client Project	#		Lab Project # CEC-181364			N-34C		12504	DPE-H		пІНБР	-	40mlAmb-HCI-BIk			SDG #	1287871
Collected by (print): A drian Bo	Site/Facility II			P.O.#		1	250mIHDPE-N	Amb-NoPres	DPE-H	0mlHI	40mlClr-NaThio	D 250	mb-H(Blank 40		S.	Acctnum: CEC	
Collected by (signature):	TANKS OF THE PARTY	Lab MUST Be		Quote #		Ì	*	A-dmA	50mlH	-FF 25	nICIr-N	S,HAR	10mlA	rip Bl			Template:T13:	0068
Immediately Packed on Ice N Y	Next Da	y 10 D	y (Rad Only) Jay (Rad Only)	Date Resul	ts Needed	No. of	WetChem*	100ml #	COD,NH3 250mlHDPE-H2SO4	Metals-FF 250mlHDPE-HNO3	11 40n	Total Metals, HARD 250mlHDPE-HNO3	V8260AP1 40mlAmb-HCl	V8260AP1-Trip			PM: 526 Chris	20, L
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	**We	ALK 1	cop,r	Diss. 1	SV8011	Total	V826(V8260			Shipped Via: Co	Sample # (lab o
TRIP BLANK		GW	-	11/17/10	-	1								Х				-16
part of the second			100000000000000000000000000000000000000									120.11					181	
17.2	e de					-				_				-				
	120						4										164	
		-				1						-		-		_		
- A			101	4.705				- C									(8.5)	
Carrier of the Carrier						de		1000						1		-26	1800	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater WW - WasteWater Remarks: **WetChem** = *NITRATE*, CHLORIDE, BROMIDE, SULF, Tot/Diss Metals = M6020AP1+AI, Ca, Fe, K, Mg, Mn, Na, B(6010/7470)							JORIDE			pH Flow		_ Temp			COC Si Bottle	eal Pr igned/ es arr	le Receipt Ch esent/Intact: Accurate: ive intact: tles used:	
DW - Drinking Water OT - Other	X	Tracki	ing#							Suffic VOA Ze	cient ero He	volume sent: If Applicable adspace:	1					
Relinquished by : (Signature)	D	ate: 11/18/7	I Time	Recei	ved by: (Signa	alure)	er		1	Trip Blar	0	7	es / No HC / M TBR	еоН	RAD Sc	creen	on Correct/Che	_14_
Relinquished by : (Signature)		ate: • /8 • 2	D 14	F:30	ved by. (Signa		2			Temp: 2. 2 -	1-2	C AT	4	ived:		ervation	required by Log	
		ate:	Time	Parais	ved for lab by	1. Isidnat	tufal		- Fred 1	Date: /		Tim	e:		Hold:			NCF / d

GROUNDWATER MONITORING FIELD INFORMATION LOG

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-1
LOCATION	Camden, TN	TEMPERATURE & WEATHER	405 Suny
DATE & TIME	11/17/2020 950	EVENT FREQUENCY	Quarterly
PURGE METHOD	Peristaltic Pump	FIELD REPRESENTATIVE	A. Baugy / A. Bleck
TOTAL WELL DEPTH (feet)	30.5	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	22.38	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	N
WATER COLUMN (feet)	8.12	FIELD BLANK COLLECTED?	N
PURGE VOLUME (gallons)	1.0	EQUIPMENT BLANK COLLECTED?	N

PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	•c	pH	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
Ø	22.38	956	15.3	5.94	61.5	49.9	5.63	207.7	13 ./5
,25	72.48	1000	15.5	5.25	46.5	38.0	7,67	214.0	7.78
. 4	2248	1804	15.4	5.20	44.8	38.6	7.38	714.0	8.49
. 75	27.48	1008	15.9	5.17	44.6	368	2.04	229.4	6.92
1.0	22.55	1012	16.0	5.28	49.4	40.9	1,62	164,1	7.12
							543	×	

SAMPLE DATA

Gallons Purged	DTW (ft)	Time (00:00)	*c	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
1.0	22.55	1015	16,0	5.28	41.4	40.0	1.67	164.1	7.12
Preservatives Used	5	ee COC		Sample Chara	teristics (Odor, Col	or)	Clea	r ¿ oderlex	
Number of Containers		See Coc		Sampler Signa	ture		Al	Sauth	
				WELL DATA	Δ				

WELL DATA

Number of Baffles	4	Well Cap Dedicated/In Place?	Ves
Lock Condition	3000	Fittings/Well Head Condition	9000
Pad/Casing Quality	good	Well Clear of Weeds/Accessible?	Dirt mounded in front of well gate

difficult to open

GROUNDWATER MONITORING FIELD INFORMATION LOG

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-2
LOCATION	Camden, TN	TEMPERATURE & WEATHER	\$05 Sunny
DATE & TIME	11/17/2020 1045	EVENT FREQUENCY	Quarterly
PURGE METHOD	NA, parameters only	FIELD REPRESENTATIVE	1. Baugh / A. Black
TOTAL WELL DEPTH (feet)	10	SAMPLING EQUIPMENT	Bailer J
DEPTH TO WATER (feet)	7.97	IS SAMPLE EQUIPMENT DEDICATED?	No
CASING DIAMETER (inches)	2	DUPLICATE COLLECTED?	N
WATER COLUMN (feet)	7-03	FIELD BLANK COLLECTED?	N
PURGE VOLUME (gallons)		EQUIPMENT BLANK COLLECTED?	N

				SAMPLE DA	TA				
Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (μs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
	7.97	1050	17.4	5.86	786.3	244.8	3.54	190.0	3.99
Preservatives Used	N/4			Sample Charateristics (Odor, Color)			N/A		
Number of Containers	NA			Sampler Signature			ABulyh		
				WELL DAT	A			0	
Number of Baffles	4			Well Cap Dedicated/In Place?			Yes		
Lock Condition	9 ocd			Fittings/Well Head Condition			NA		
Pad/Casing Quality	fair			Well Clear of Weeds/Accessible?			Yes		

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-3
LOCATION	Camden, TN	TEMPERATURE & WEATHER	505 Suny
DATE & TIME	11/17/2020 1330	EVENT FREQUENCY	Quarterly
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	A. Bargh / A. Black
TOTAL WELL DEPTH (feet)	~ 27	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	19.60	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	Ye5
WATER COLUMN (feet)	7.34	FIELD BLANK COLLECTED?	N
PURGE VOLUME (gallons)	3,9	EQUIPMENT BLANK COLLECTED?	N

PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	°C	pH	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
Ø	19.66	1334	18.3	5,73	764.0	235.4	4.24	243.3	11.0
, 6	20.51	1334	19.3	5.34	315.0	280.0	1.15	2 2 2,6	10.5
,85	20.89	1342	19.4	5.43	283.8	752.7	.61	729.8	21.6
1,1	21.15	1346	19.3	5.42	309.1	272.1	-42	231,7	18.3
1,5	21.41	13 50	19.3	5.41	321.1	293,4	197	734.8	13.3
1.8	21.49	13 \$4	14.5	5.38	331.0	294.5	-25-	237M	17.4
2,1	21.80	1358	19.2	5.37	324,4	788.6	133	239.2	36.1
2.3	21.85	1402	19.2	5.34	314.6	779.8	149	742.1	29-1
2.4	72.0	1406	11.2	5.35	3 00.4	26.4.7	177	247.6	43.8
2.75	22.0	1419	18.7	5.34	300.1	264.0	.87	743.8	44.4
2.85	21.7	14:4	18.7	5.33	295.0	259,2	198	245.7	33.7
2.95	71.7	1418	18.7	5.33	276.7	243.5	1.65	246.6	30.6

SAMPLE DATA

Gallons Purged	DTW (ft)	Time (00:00)	°C	pH	Specific Cond (us/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
3.9	20.8	1990	(8.5	5.31	249.4	818.9	2.37	2538	14.0
Preservatives Used		Seu Cac		Sample Chara	teristics (Odor, Col	or)	Tan color	7	
Number of Containers	sel col			Sampler Signature			A Bury M		
				WELL DATA	4			,	

Number of Baffles Uell Cap Dedicated/In Place? Fittings/Well Head Condition Pad/Casing Quality Well Clear of Weeds/Accessible? Well Clear of Weeds/Accessible?

11/17/20

EWS 4220

Gallogis	DTW	Time	°c	PH	spead	cond	DO	01	NTU
3.1	21.5	1422	18.5	5.33	267,0	233.9	2.00	2478	23.C
3.3	21,3	1426	18.6	5,31	760.8	228.6	7.28	750.0	18.1
3.5	21.2	1430	18.6	5.31	257.3	225.1	2.31	751,1	14.8
3.7	21.0		18.5	5.31	2525	1.125		257.5	_
3.9	20.8	1438	18.5	5.31	249.4	218.9	て・37	757.8	14.0

10. m

12 - **0**5

Sumpled @

- 1

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-4
LOCATION	Camden, TN	TEMPERATURE & WEATHER	504 Sunay
DATE & TIME	11/17/2020 1100	EVENT FREQUENCY	Quarterly
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	1. Bargh /A. Black
TOTAL WELL DEPTH (feet)	23.1	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	11.38	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	N
WATER COLUMN (feet)	11.72	FIELD BLANK COLLECTED?	N
PURGE VOLUME (gallons)	2.0	EQUIPMENT BLANK COLLECTED?	N

PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
Ø	11.36	1110	17.0	6.00	845	745	3.71	211.9	168
.75	1145	1114	11.1	5.86	82.2	69.8	2.67	198.3	44.3
1.0	11.45	1118	17.1	5.84	82,2	64.8	2,77	197.7	27.8
1.5	11.45	1122	17,2	5.82	82.1	69.4	2,70	196.2	14.00
1.75	11.45	1126	17.2	5.78	87.2	70.0	2.68	1940	10-16
2.0	11.45	1130	17.2	5.75	81.4	69.0	2.60	197.4	1.29

SAMPLE DATA

Gallons Purged	DTW (ft)	Time (00:00)	°c	pH	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
7.0	11.45	1130	17.2	5.75	81.8	69.0	7.60	197.4	4.89
Preservatives Used		See coc			eristics (Odor, Col	Or)	light-orange Suspended Solids		
Number of Containers	Seewe			Sampler Signat	иге		A. Barwh		
				WELL DATA			0		

WELL DATA

Number of Baffles	$oldsymbol{arphi}$	Well Cap Dedicated/In Place?	y es
Lock Condition	9000	Fittings/Well Head Condition	9001
Pad/Casing Quality	Covered in overs / wilt	Well Clear of Weeds/Accessible?	Tree down on fence
	4		

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-5 50x Sunny		
LOCATION	Camden, TN	TEMPERATURE & WEATHER			
DATE & TIME	11/17/2020 1145	EVENT FREQUENCY	Quarterly		
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	A. Baugh /A. Black		
TOTAL WELL DEPTH (feet)	33.85	SAMPLING EQUIPMENT	Bladder Pump		
DEPTH TO WATER (feet)	9.11	IS SAMPLE EQUIPMENT DEDICATED?	Yes		
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	N		
WATER COLUMN (feet)	24.74	FIELD BLANK COLLECTED?	N		
PURGE VOLUME (gallons)	5.0	EQUIPMENT BLANK COLLECTED?	V		

PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	°C	pH	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
Ø	9.11	1282	17.1	5.42	386.1	327.9	3.30	193.5	62.1
,5	9.63	1206	17,1	5.12	3 77.1	3/7.6	1.93	204.1	43.98
475	9.85	1210	17.7	4.87	361.5	302.0	,58	726,1	38.71
1,25	9.85	RIY	12.1	4.77	354,2	301.4	162	242.3	31.6
1.6	9.0	1218	17.2	4.77	351.0	298.5	+65	748.3	28.6
1.8	9.46	1525	17.1	4.80	349.8	946.1	. 70	249.3	22.1
2.0	9.70	1226	17.2	4.85	346.0	294.0	174	750.4	26.9
2.25	9.90	1230	12.1	9.91	343,4	291.0	178	24914	22.4
5,40	9.90	1534	17.1	4.95	342-1	290.7	.83	2.49,4	19.6
5.72	9.90	1238	17.1	4-96	341,1	289.9	186	249.6	18.2
3.0	9.90	1242	17.2	4.98	3325	298.8	.90	249.8	16.3
3.25	9.9	1246	17.2	5-00	3350	286.4	•97	750.9	15.3

SAMPLE DATA

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU	
5.0	9.90	1315	7.2	5-05	329.0	27.9.6	1.11	255.2	9.48	
Preservatives Used	See Cox			Sample Charateristics (Odor, Color)			ten car			
Number of Containers		Sce Coc		Sampler Signa	iture		Sisa	Cuch		
				MATERIA DAT				7		

WELL DATA

Number of Baffles	4	Well Cap Dedicated/In Place?	y eq	
Lock Condition	9000	Fittings/Well Head Condition	garl	
Pad/Casing Quality	d. ond	Well Clear of Weeds/Accessible?	YAS	
· II.	3			

MU-5

11/17/20

EUS	4220
-----	------

6allon5	Orw	Time	°C	PH	3p cond	Cond	DO	orp	NTU
3.5	9.90	1250	13.1	5.00	334,9	284,1	1.03	225 7	13.7
3.75	9.90	1254	17.1	5.01	3 33. 7	283.1	1.05	752.8	13.1
4.0	9,40	1258	17.1	5.01	3.33.1	283.0	1.08	754.0	13.7
4,25	4.00	1302	17.1	5.02	331.1	781.1	1,12	754.0	12,1
4, ←	9.90	1306	17.1	5.00	330-5	280.8	1.13	755.4	11.4
4.75	9.20	1310	17.1	5.04	321.2	279,6	1.77	255.6	9.81
5.0	9.90	1314	12.2	5.08	329-0	779.6	lite	25.2	9,48

Sampled Q

2

Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	TMW-1
LOCATION	Camden, TN	TEMPERATURE & WEATHER	100
DATE & TIME	11/17/20 1150	EVENT FREQUENCY	Quarterly
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	A. Black
TOTAL WELL DEPTH (feet)	32.50	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	6.76	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	//
WATER COLUMN (feet)	25.74	FIELD BLANK COLLECTED?	1220
PURGE VOLUME (gallons)	1,75	EQUIPMENT BLANK COLLECTED?	1000

PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.76	155	( b b	5.69	129.7	108.6	5.51	404.4	69.
U.5	9.16	1205	16-6	5.31	177.1	115.0	4.06	406.7	70.
1.	- 9.29	1215	166	5.70	137-4	115.4	3.97	407.7	16.6
1.75	9.37	1225	16.7	5-30	136.5	114,9	3.88	405.1	8.57
									0 3

#### SAMPLE DATA

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
1,75	937	1230	b.7	5.30	136.5	1149	3.88	405.1	8.57
Preservatives Used	Sei	e LOL		Sample Chara	teristics (Odor, Colo	or)	C	car	1 0,3 ,
Number of Containers		0		Sampler Signa	iture			12-	

#### **WELL DATA**

Number of Baffles	O	Well Cap Dedicated/In Place?	705
Lock Condition	No louk	Fittings/Well Head Condition	9000
Pad/Casing Quality	No pad/casing good	Well Clear of Weeds/Accessible?	Fair



Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

#### SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	TMW-2
LOCATION	Camden, TN,	TEMPERATURE & WEATHER	605, Sum
DATE & TIME	177/20 1035	EVENT FREQUENCY	Quarterly
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	A. nlack
TOTAL WELL DEPTH (feet)	27.50	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	11-25	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	N
WATER COLUMN (feet)	6.25	FIELD BLANK COLLECTED?	N
PURGE VOLUME (gallons)	2.25	EQUIPMENT BLANK COLLECTED?	N

#### **PURGE INFORMATION**

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
0	125	1040	16.6	5.70	848	71.5	7.46	370.7	8.81
0.5	13.17	1090	16-4	5.45	1604	133.7	6.73	389.7	28%
().9/	13-24	1(00	16. 2	5.52	161.3	134.6	894	401.2	52.8
1.25	13.24	110	6. 2	5.48	164.9	J-7-1	2.09	405.3	22.9
[,75	13.24	120	6.3	9.54	6+16	137.5	9.22	405.5	14.8
7.25	17.24	1130	16.2	5.54	169.1	141.0	9,26	408.4	8:40

#### **SAMPLE DATA**

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
2.25	13.24	1135	16.2	5.34	169.1	191.0	9.26	408.4	8.42
Preservatives Used	56	el loc		Sample Charateristics (Odor, Color)		or)		Cliar	
Number of Containers		10		Sampler Signa	iture		1	213~	

#### **WELL DATA**

Number of Baffles	$\bigcirc$	Well Cap Dedicated/In Place?	19 c S
Lock Condition	Jook	Fittings/Well Head Condition	3003
Pad/Casing Quality	No post/casing good	Well Clear of Weeds/Accessible?	Fair



Civil & Environmental Consultants, Inc. 117 Scaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

#### SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	TMW-3
LOCATION	Camden, TN	TEMPERATURE & WEATHER	10-0
DATE & TIME	11/17/20 6925	EVENT FREQUENCY	Quarterly
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	A. Black
TOTAL WELL DEPTH (feet)	28.00	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	a. 70	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2 2 2	DUPLICATE COLLECTED?	N
WATER COLUMN (feet)	8,30	FIELD BLANK COLLECTED?	Λ/
PURGE VOLUME (gallons)	2.25	EQUIPMENT BLANK COLLECTED?	A)

#### **PURGE INFORMATION**

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
	9,70	8942	16.5	4.92	333.Z	777,1	1.65	406.3	301
1.0	10. ナマ	1352	14.3	5.13	794.4	245.3	1,47	3540	31.6
1.7	10.89	1002	16.4	5.08	291.5	2423	1.35	307.1	121
2-25	10.92	1012	16.3	5.06	290,0	241.6	137	755.2	41.5

#### **SAMPLE DATA**

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (μs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
2,25	10.92	1015	16.3	5-06	290.0	291.6	1.33	365.2	9.53
Preservatives Used	Sec	LOL		Sample Chara	teristics (Odor, Cole	or)		Clear	1 11.7
Number of Containers		10		Sampler Signa	ture		31	aß,	

#### **WELL DATA**

Number of Baffles	$\mathcal{O}_{\mathbb{R}}$	Well Cap Dedicated/In Place?	ins / insing broken
Lock Condition	9000	Fittings/Well Head Condition	fair
Pad/Casing Quality	Nopad / casing (PUL	Well Clear of Weeds/Accessible?	Fair

broken at ground level

\$ DTU Measurements baten et top of casing ever though beten at grant.



# **EQUIPMENT CALIBRATION LOG**

Civil & Environmental Consultants, Inc. 117 Seaboard Lane Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

#### **EQUIPMENT CALIBRATION FORM**

Equipment Serial #	YSI # 3 / PACH #7
Equipment and Model # (ex. YSI Pro Plus 556)	YSI Pro Plus / HACH ZIOOQ
DATE AND TIME	11/16/20 0800
LOCATION	EVS Landfill
NAME OF REPRESENTATIVE	A. Olack

pH Calibration							
pH buffer Calibration Standard	Buffer solution exp. date	Pre-Cal Reading (S.U.)	ph mV Value	Accepted Range mV	WithIn Range? (Yes or No)	Post-Cal Reading (S.U.)	Calibrated? (yes/no)
4	4/21	4.00	102-9	160 to 180	N	3.99	Y
7	9/24	4.02	-64.0	+/-50	Y	7.04	۲
10	12/24	10.04	-229.8	-160 to -180	~	10.03	۲

Temperature Calibration Check				
Cert. Thermometer Value (deg C)	Meter Value (deg C)			
21.6	21.0			

DO Calibration							
Actual Barometric Pressure	Barometric Pressure (mm Hg)	D.O. Value (% Saturated)	Unit reading (%)	% DO accepted?			
770.8	769.3	99.6	101.2	Y			

Specific Conductivity Calibration				ORP Calibration			
Sp. Conductivity Calibration Standard buffer solution	Buffer solution exp. date	Pre Cal Reading (umhos)	Post Cal Reading (umhos)	ORP Calibration (mV)	Buffer solution exp. date	Pre Cal Reading (mV)	Post Cal Reading (mV)
1344 1413	9/21	1371	1413	220	7/21	236.9	237.0

#### Hach Model 2100P Turbidimeter Calibration

Calibration verification Test performed and passed?	NTU Standard	Within Range? (Yes/No)	Measured Value	Stored?	Final Verification test passed? (Yes/No)
(Yes)	20				
No	100				
Note: if verification passed, calibration not required	800				



# **EQUIPMENT CALIBRATION LOG**

Civil & Environmental Consultants, Inc. 117 Seaboard Lane Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecine.com

**EQUIPMENT CALIBRATION FORM** 

NAME OF REPRESENTATIVE	A Black
LOCATION	EWS CF
DATE AND TIME	11/16/20 1430
Equipment and Model #	Yale ODC
(ex. YSI Pro Plus 556)	(3(1/2.0 1/20)
Equipment Serial #	451 PRO #1

pH Calibration							
pH buffer Callbration Standard	Buffer solution exp. date	Pre-Cal Reading (S.U.)	ph mV Value	Accepted Range mV	Within Range? (Yes or No)	Post-Cal Reading (S.U.)	Calibrated? (yes/no)
4	2/21	4.00	154.5	160 to 180	N	4.03	٢
7	D174	7.01	-18.3	+/-50	Y	7.05	<u> </u>
10	12/24	10.03	-187.6	-160 to -180	$\sim$	1002	7

Temperature Calibration Check					
Cert. Thermometer Value (deg C)	Meter Value (deg C)				
224	22.2				

DO Calibration						
Actual Barometric Pressure	Barometric Pressure (mm Hg)	D.O. Value (% Saturated)	Unit reading (%)	% DO accepted?		
769.1	748.6	98.5	98.4	7		

	Specific Conductivity Calibration	ORP Calibration					
Sp. Conductivity Calibration Standard buffer solution	Buffer solution exp. date	Pre Cal Reading (umhos)	Post Cal Reading (umhos)	ORP Callbration (mV)	Buffer solution exp. date	Pre Cal Reading (mV)	Post Cal Reading (mV)
1413	9/21	1376	1377	220	3/21	227.0	277. 2

#### Hach Model 2100P Turbidimeter Calibration

Calibration verification Test performed and passed?	NTU Standard	Within Range? (Yes/No)	Measured Value	Stored?	Final Verification test passed? (Yes/No)
(Yes)	20				
No	100				
Note: if verification passed, calibration not required	800				



# ANALYTICAL REPORT

December 16, 2020

## Civil & Environmental Consultants - TN

L1294741 Sample Delivery Group:

Samples Received: 12/09/2020

Project Number: 181-364

Description: Former EWS Camden Class 2 Landfill

Site: CAMDEN, TN

Report To: Philip Campbell

117 Seaboard Ln.

Suite E100

Franklin, TN 37067

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

















Cp: Cover Page	1					
Tc: Table of Contents	2					
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
MW-3 L1294741-01	5					
DUPLICATE L1294741-02	6					
Qc: Quality Control Summary	7					
Metals (ICPMS) by Method 6020A	7					
GI: Glossary of Terms	9					
Al: Accreditations & Locations						
Sc: Sample Chain of Custody	11					





















MW-3 L1294741-01 GW			Collected by Philip Campbell	Collected date/time 12/08/20 17:10	Received da 12/09/20 15:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020A	WG1590984	1	12/12/20 19:24	12/13/20 19:20	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1591268	1	12/14/20 22:50	12/15/20 14:18	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1294741-02 GW			Philip Campbell	12/08/20 00:00	12/09/20 15:	05
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020A	WG1591268	1	12/14/20 22:50	12/15/20 14:22	LAT	Mt. Juliet, TN



















~ `

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss 4













Chris McCord
Project Manager

## SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 12/08/20 17:10

#### Metals (ICPMS) by Method 6020A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Cadmium	0.00906		0.00100	1	12/15/2020 14:18	WG1591268
Cadmium, Dissolved	0.00789		0.00100	1	12/13/2020 19:20	WG1590984



















DUPLICATE

## SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

741



Metals (ICPMS) by Method 6020A

Collected date/time: 12/08/20 00:00

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Cadmium	0.00901		0.00100	1	12/15/2020 14:22	WG1591268



















ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020A

L1294741-01

#### Method Blank (MB)





# ³Ss

#### Laboratory Control Sample (LCS)

(LCS) R3603064-2 12/13	/20 18:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Cadmium, Dissolved	0.0500	0.0449	89.8	80.0-120	





### L1293901-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1293901-02 12/13	3/20 18:33 • (MS) R	3603064-4 12	2/13/20 18:39	(MSD) R36030	064-5 12/13/2	0 18:43							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Cadmium Dissolved	0.0500	ND	0.0451	0.0451	90.3	90.2	1	75 0-125			0.113	20	







ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020A

L1294741-01,02

#### Method Blank (MB)

(MB) R3603705-1 12/1	15/20 12:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Cadmium	U		0.000150	0.00100



#### 3 Ss

#### Laboratory Control Sample (LCS)

(LCS) R3603705-2 12/15/2	20 12:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Cadmium	0.0500	0.0507	101	80.0-120	





#### L1294669-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294669-10 12/15/20 12:18 • (MS) R3603705-4 12/15/20 12:25 • (MSD) R3603705-5 12/15/20 12:28

(OS) L1234003-10 12/13	3/20 12.10 (1013) 1	3003703-4 12	/13/20 12.23	(IVISD) 1(3003)	05-5 12/15/20	12.20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Cadmium	0.0500	ND	0.0517	0.0516	103	102	1	75 0-125			0.110	20







#### **GLOSSARY OF TERMS**



The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

Abbreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

#### Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.





















### **ACCREDITATIONS & LOCATIONS**





#### State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	KY90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN00003
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN000032021-1
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-20-18
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	998093910
Wyoming	A2LA

#### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















		8	Billing Infor	rmation:				- 22	Analysis / Cor	tainer / Preserva	tive		Chain of Custody	Page of	
Civil & Environmental TN  117 Seaboard Ln., 5+0. E-						Pres Chk		B					Pace National C	Analytical® anter for Testing & Innovet	
Report to: Keri Clayton Philip	Campb	To the second	Email To: kclayton@cecinc.com  P Campbe 1/(4) CEL in C. Com  Please Circle:					7 6020					12065 Lebanon Rd Mount Juliet, TN 3: Phone: 615-758-58 Phone: 800-767-58	58	
Project Description: Former Ews Phone: 615-333-7797 Fax: 615-333-7751	Client Project	Collected:		Lab Project # CEC-171873 LEC-18	PT MT C		res .	-Method					SDG # J13	9474	
Collected by (print):  Philip Campbell  Collected by (signature):	Site/Facility II	TN	P.O.#				CDDG 250mlHDPE-NoPres	-HNO3					Acctnum: CEC	Acctnum: CEC U.4-V Templatel T125643 T 335	
My hamplesame Day X Fin Next Day 5 f		y 5 Day y 10 Da	e Notified) p Day ay (Rad Only) Day (Rad Only) Day (Rad Only)			No.	5.67308		CDG 250mIHDPE-HNO3			1.40		Prelogin: <b>P75</b> PM: <b>526 - Chri</b> PB: BF	2585 P 8 66
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CDDC	797					Remarks	Sample # (lab only	
Att 128-20	Gra	ww	All ST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	X	Х					100		
Mw-3	Grab	GW	-	17-8-70	1710	1	X	X	186		Towns			-01	
Duplicate	Grab	GW	-	17-8-70	-	1		X						-02	
	-3.5%					4						1	gives a second		
	and the same														
		7.				100			Region 1	184					
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water DT - Other Samples returned via:UPSFedEx							Flow Other Bo				COC Seal COC Sign Bottles Correct	Sample Receipt Checklist Seal Present/Intact: P Signed/Accurate: tles arrive intact: rect bottles used:			
			rier \	/ Tra	acking #								ufficient volume sent:  If Applicable OA Zero Headspace:  Y		
Relinquished by (Signature)	ca -	Date:	400	ime: Re	ceived by (Sign	ature)			Trip Blank R		No Меон	Preserva	tion Correct/Chen <0.5 mR/hr:	ecked:	
Relinquished by : Signature	h	Date: /2-9	-26	ime:   Re	ceived by: (Sign	nature)		1	het	C Bottles Ri	3	If preserva	ation required by Lo	gin: Date/Time	
Relinquished by : (Signature)		Date:	T		ceived for lab to	y signa	ture)	6	Date:	In Time:	05	Hold:		Condition: NCF / OK	



Civil & Environmental Consultants, Inc. 117 Seaboard Lane, Suite E100 Franklin, Tennessee 37067 - 800-763-2326 - www.secinc.com

#### SITE AND MONITORING WELL DATA

FACILITY NAME	EWS	MONITORING WELL I.D.	MW-3
LOCATION	Camden, TN	TEMPERATURE & WEATHER	Cloudy, 48°F
DATE & TIME	17-8-70/16:00	EVENT FREQUENCY	Quarterly - RC-Sample MW-3-40
PURGE METHOD	Low-flow	FIELD REPRESENTATIVE	Philip Campbell
TOTAL WELL DEPTH (feet)	27 0 0	SAMPLING EQUIPMENT	Bladder Pump
DEPTH TO WATER (feet)	19,55	IS SAMPLE EQUIPMENT DEDICATED?	Yes
CASING DIAMETER (Inches)	2	DUPLICATE COLLECTED?	Vec
WATER COLUMN (feet)	7.45	FIELD BLANK COLLECTED?	1/0
PURGE VOLUME (gallons)	1101 = 1,12 gallons	EQUIPMENT BLANK COLLECTED?	N

3.95 total targed PURGE INFORMATION

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
Ō	19.87	14:21	17.8	4.81	332,7	286.9	1,84	253.7	40.7
0.5	19.95	161.26	1719	4.94	330.6	285.6	1,45	234.4	15.4
1,6	29.56	16:31	18.3	4,98	312,7	172,4	1,14	2212	20,2
1,25	20,65	16:36	17.6	5,00	305.0	262.3	1,12	214.1	34,2
1,78	10.65	16:41	18.0	5,00	311,3	169.7	1.12	107,4	25.9
1,15	10,65	1.6.46	17.9	5,01	3 03.6	262.4	1,03	101.8	18.7
1,50	20,65	16:51	17.9	5.02	303.6	261.9	1,00	200.5	16,1
2,96	20.65	16:56	17.9	5.03	301.8	160.8	0,99	197,2	13,7
3,25	20.65	17:01	77.9	5.04	306.8	159,7	0,97	1946	11. 3
3,65	20,65	17:06	17.9	5.04	3 00.3	259.6	0,45	143.3	12,3
3.45	20,65	17:10	17.4	5.04	300,1	1595	6.95	193,2	10.8
									9 1 0

#### **SAMPLE DATA**

Gallons Purged	DTW (ft)	Time (00:00)	°C	рН	Specific Cond (µs/cm)	Conductivity (µs/cm)	DO (mg/L)	ORP	NTU
3.95	20.65	17:10	17.9	5.04	300.1	159.5	0.95	193.2	10.8
Preservatives Used	HNO3			Sample Charat	eristics (Odor, Cole	or)	Clear 2	No odd.	-
Number of Containers				Sampler Signat	ture		Phy A	Emple	n
				WELL DATA			- 11/	P	

WELL DATA

Number of Baffles		Well Cap Dedicated/In Place?	465/465
Lock Condition	good	Fittings/Well Head Condition	960d/ 960d
Pad/Casing Quality	4 00d	Well Clear of Weeds/Accessible?	466
	3		



# **EQUIPMENT CALIBRATION LOG**

Civil & Environmental Consultants, Inc. 117 Seaboard Lane Suite E-100 Franklin, Tennessee 37067 - 800-763-2326 - www.cecinc.com

#### **EQUIPMENT CALIBRATION FORM**

NAME OF REPRESENTATIVE	Philip Campbe	
LOCATION	Former EWS LF	
DATE AND TIME	12-7-20/ 16:00	
Equipment and Model #	RCD Arallus	
(ex. YSI Pro Plus 556)		
Equipment Serial #	平 3	

		pH Cali	bration					
pH buffer Calibration Standard	Buffer solution exp. date	Pre-Cal Reading (S.U.)	ph mV Value	Accepted Range mV	Within Range? (Yes or No)	Post-Cai Reading (S.U.)	Callbrated? (yes/no)	
4	09/11	4.05	173	160 to 180	X	4.00	yes	
7	10171	7.04	-15	+/-50	Y	7.01	yes	
10	10/11	9.46	-178	-160 to -180	Y	10.0	yes	
Temperature Calif	oration Check				DO Calibration	í		
Cert. Thermometer Value (deg C)	Meter Value (deg C)		Actual Barometric Pressure	Barometric Pressure (mm Hg)	D.O. Value (% Saturated)	Unit reading (%)	% DO accepted	
Spe	cific Conductivity Calibration		ORP Calibration					
Sp. Conductivity Calibration Standard buffer solution	Buffer solution exp. date	Pre Cal Reading (umhos)	Post Cal Reading (umhos)	ORP Calibration (mV)	Buffer solution exp. date	Pre Cal Reading (mV)	Post Cal Reading (mV)	
43 1413	09/21	1425	1913		-			
	Hach M	lodel 2100P Tur	bidimeter Calil	oration				
Calibration verification Test performed and passed?		NTU Standard	Within Range? (Yes/No)	Measured Value	Stored?		on test passed? /No)	
Yes	)	20						
No		100						
Note: if verification passed,	calibration not required	800						



# ANALYTICAL REPORT

December 21, 2020

#### Civil & Environmental Consultants - TN

L1294865 Sample Delivery Group: Samples Received: 12/10/2020

Project Number: 181-364

Description: EWS Camden Class 2 Landfill

Site: CAMDEN, TN

Report To: Philip Campbell

117 Seaboard Ln.

Suite E100

Franklin, TN 37067

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.















28



Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
IWC-L L1294865-01	5
Qc: Quality Control Summary	8
Wet Chemistry by Method 2320 B-2011	8
Wet Chemistry by Method 350.1	10
Wet Chemistry by Method 410.4	11
Wet Chemistry by Method 9056A	12
Mercury by Method 7470A	14
Metals (ICP) by Method 6010B	16
Metals (ICPMS) by Method 6020A	18
Volatile Organic Compounds (GC/MS) by Method 8260B	22
EDB / DBCP by Method 8011	25
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody



















Collected by **Brad Curtis** 

12/09/20 11:00

Collected date/time Received date/time 12/10/20 09:45

















Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG1591268	1	12/15/20 16:21	12/15/20 16:21	LD	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1592801	1	12/16/20 16:57	12/16/20 16:57	SL	Mt. Juliet, TN
Wet Chemistry by Method 350.1	WG1593084	500	12/17/20 12:37	12/17/20 12:37	JER	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1593237	20	12/17/20 04:10	12/17/20 08:39	AKA	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1589818	100	12/11/20 04:33	12/11/20 04:33	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1589818	1000	12/11/20 04:46	12/11/20 04:46	ELN	Mt. Juliet, TN
Mercury by Method 7470A	WG1589920	1	12/17/20 10:01	12/18/20 12:08	ABL	Mt. Juliet, TN
Mercury by Method 7470A	WG1592748	1	12/17/20 09:53	12/18/20 08:52	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1591702	5	12/15/20 22:51	12/16/20 22:36	EL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1592071	5	12/16/20 00:15	12/16/20 20:58	EL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1591268	5	12/14/20 22:50	12/15/20 14:35	LAT	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1591268	50	12/14/20 22:50	12/15/20 16:21	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020A	WG1593523	50	12/17/20 13:05	12/17/20 20:29	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1593815	5	12/18/20 11:07	12/18/20 11:07	ADM	Mt. Juliet, TN
EDB / DBCP by Method 8011	WG1590328	1	12/11/20 08:48	12/12/20 04:56	MTJ	Mt. Juliet, TN

SAMPLE SUMMARY

Civil & Environmental Consultants - TN

DATE/TIME:

12/21/20 17:01

PAGE:

4 of 28

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss













Chris McCord Project Manager

## SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 12/09/20 11:00

## Additional Information





	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hardness (calculated) as CaCO3	41400		125	1	12/15/2020 16:21	WG1591268



### Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/16/2020 16:57	WG1592801



Cn

#### Sample Narrative:

L1294865-01 WG1592801: Endpoint pH 4.5 Headspace



### Wet Chemistry by Method 350.1

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ammonia Nitrogen	1760		125	500	12/17/2020 12:37	WG1593084



#### Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
COD	11000		400	20	12/17/2020 08:39	WG1593237

# Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		100	100	12/11/2020 04:33	WG1589818
Chloride	88900		1000	1000	12/11/2020 04:46	WG1589818
Fluoride	ND		15.0	100	12/11/2020 04:33	WG1589818
Nitrate	ND		10.0	100	12/11/2020 04:33	WG1589818
Sulfate	609		500	100	12/11/2020 04:33	WG1589818

### Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	12/18/2020 12:08	WG1589920
Mercury, Dissolved	0.000258		0.000200	1	12/18/2020 08:52	WG1592748

### Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Boron	ND		1.00	5	12/16/2020 20:58	WG1592071	
Boron.Dissolved	ND		1.00	5	12/16/2020 22:36	WG1591702	

12/21/20 17:01

### SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Ss

Cn

СQс

Gl

³Sc

Collected date/time: 12/09/20 11:00

Metals (ICPMS) by Method 6020A

4865

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Aluminum	360		0.500	5	12/15/2020 14:35	WG1591268
Aluminum, Dissolved	356		5.00	50	12/17/2020 20:29	WG1593523
Antimony	ND		0.200	50	12/15/2020 16:21	WG1591268
Antimony, Dissolved	ND		0.200	50	12/17/2020 20:29	WG1593523
Arsenic	0.306		0.100	50	12/15/2020 16:21	WG1591268
Arsenic, Dissolved	0.224		0.100	50	12/17/2020 20:29	WG1593523
Barium	2.81		1.00	50	12/15/2020 16:21	WG1591268
Barium, Dissolved	2.98		1.00	50	12/17/2020 20:29	WG1593523
Beryllium	ND		0.100	50	12/15/2020 16:21	WG1591268
Beryllium, Dissolved	ND		0.100	50	12/17/2020 20:29	WG1593523
Cadmium	18.8		0.00500	5	12/15/2020 14:35	WG1591268
Cadmium, Dissolved	19.4		0.0500	50	12/17/2020 20:29	WG1593523
Calcium	14300		50.0	50	12/15/2020 16:21	WG1591268
Calcium, Dissolved	14600		50.0	50	12/17/2020 20:29	WG1593523
Chromium	ND		0.100	50	12/15/2020 16:21	WG1591268
Chromium, Dissolved	ND		0.100	50	12/17/2020 20:29	WG1593523
Cobalt	0.472		0.100	50	12/15/2020 16:21	WG1591268
Cobalt, Dissolved	0.478		0.100	50	12/17/2020 20:29	WG1593523
Copper	1.21		0.0250	5	12/15/2020 14:35	WG1591268
Copper, Dissolved	1.97		0.250	50	12/17/2020 20:29	WG1593523
Iron	452		5.00	50	12/15/2020 16:21	WG1591268
Iron,Dissolved	459		5.00	50	12/17/2020 20:29	WG1593523
Lead	0.785		0.250	50	12/15/2020 16:21	WG1591268
Lead,Dissolved	0.798		0.250	50	12/17/2020 20:29	WG1593523
Magnesium	1380		50.0	50	12/15/2020 16:21	WG1591268
Magnesium, Dissolved	1280		50.0	50	12/17/2020 20:29	WG1593523
Manganese	43.0		0.250	50	12/15/2020 16:21	WG1591268
Manganese, Dissolved	49.4		0.250	50	12/17/2020 20:29	WG1593523
Nickel	0.691		0.100	50	12/15/2020 16:21	WG1591268
Nickel, Dissolved	0.647		0.100	50	12/17/2020 20:29	WG1593523
Potassium	14100		100	50	12/15/2020 16:21	WG1591268
Potassium, Dissolved	14200		100	50	12/17/2020 20:29	WG1593523
Selenium	0.568		0.100	50	12/17/2020 20:23	WG1591268
Selenium, Dissolved	0.195		0.100	50	12/17/2020 20:29	WG1593523
Silver	ND		0.100	50	12/17/2020 20:29	WG1591268
Silver, Dissolved	ND		0.100	50	12/17/2020 20:29	WG1593523
Sodium	23800		100	50	12/17/2020 20:29	WG1593323 WG1591268
	22200		100		12/17/2020 20:29	
Sodium,Dissolved Thallium	22200 ND		0.100	50 50	12/17/2020 20:29	WG1593523
Thallium, Dissolved	ND ND		0.100	50 50	12/17/2020 16:21	WG1591268
,				50 50		WG1593523
Vanadium Dissalvad	ND		0.250	50	12/15/2020 16:21	WG1591268
Vanadium, Dissolved	ND 100		0.250	50	12/17/2020 20:29	WG1593523
Zinc	190		1.25	50	12/15/2020 16:21	WG1591268
Zinc,Dissolved	201		1.25	50	12/17/2020 20:29	WG1593523

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Acetone	2.35		0.250	5	12/18/2020 11:07	WG1593815
Acrylonitrile	ND		0.0500	5	12/18/2020 11:07	WG1593815
Benzene	ND		0.00500	5	12/18/2020 11:07	WG1593815
Bromochloromethane	ND		0.00500	5	12/18/2020 11:07	WG1593815
Bromodichloromethane	ND		0.00500	5	12/18/2020 11:07	WG1593815
Bromoform	ND		0.00500	5	12/18/2020 11:07	WG1593815
Bromomethane	ND		0.0250	5	12/18/2020 11:07	WG1593815
Carbon disulfide	ND		0.00500	5	12/18/2020 11:07	WG1593815

Analyte

Carbon tetrachloride

### SAMPLE RESU

Collected date/time: 12/09/20 11:00

Volatile Organic Compounds (GC/MS) by Method 8260B

Result

mg/l

ND

Qualifier

RDL

mg/l

0.00500

E RE:	SULTS - 01	ONE LAB. NATIONWIDE.	***
)B			1
Dilution	Analysis	Batch	Ср
	date / time		(40000000000000000000000000000000000000
5	12/18/2020 11:07	WG1593815	² Tc
5	12/18/2020 11:07	WG1593815	



Ss













Carbon tetracillonue	ND	0.00300	5	12/10/2020 11.07	WG1033610
Chlorobenzene	ND	0.00500	5	12/18/2020 11:07	WG1593815
Chlorodibromomethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
Chloroethane	ND	0.0250	5	12/18/2020 11:07	WG1593815
Chloroform	ND	0.0250	5	12/18/2020 11:07	WG1593815
Chloromethane	ND	0.0125	5	12/18/2020 11:07	WG1593815
Dibromomethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,2-Dibromo-3-Chloropropane	ND	0.0250	5	12/18/2020 11:07	WG1593815
1,2-Dibromoethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,2-Dichlorobenzene	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,4-Dichlorobenzene	ND	0.00500	5	12/18/2020 11:07	WG1593815
trans-1,4-Dichloro-2-butene	ND	0.0125	5	12/18/2020 11:07	WG1593815
1,1-Dichloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,2-Dichloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,1-Dichloroethene	ND	0.00500	5	12/18/2020 11:07	WG1593815
cis-1,2-Dichloroethene	ND	0.00500	5	12/18/2020 11:07	WG1593815
trans-1,2-Dichloroethene	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,2-Dichloropropane	ND	0.00500	5	12/18/2020 11:07	WG1593815
cis-1,3-Dichloropropene	ND	0.00500	5	12/18/2020 11:07	WG1593815
trans-1,3-Dichloropropene	ND	0.00500	5	12/18/2020 11:07	WG1593815
Ethylbenzene	ND	0.00500	5	12/18/2020 11:07	WG1593815
2-Hexanone	ND	0.0500	5	12/18/2020 11:07	WG1593815
Iodomethane	ND	0.0500	5	12/18/2020 11:07	WG1593815
2-Butanone (MEK)	0.269	0.0500	5	12/18/2020 11:07	WG1593815
Methylene Chloride	ND	0.0250	5	12/18/2020 11:07	WG1593815
4-Methyl-2-pentanone (MIBK)	ND	0.0500	5	12/18/2020 11:07	WG1593815
Styrene	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,1,2-Tetrachloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,1,2,2-Tetrachloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
Tetrachloroethene	ND	0.00500	5	12/18/2020 11:07	WG1593815
Toluene	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,1,1-Trichloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
1,1,2-Trichloroethane	ND	0.00500	5	12/18/2020 11:07	WG1593815
Trichloroethene	ND	0.00500	5	12/18/2020 11:07	WG1593815
Trichlorofluoromethane	ND	0.0250	5	12/18/2020 11:07	WG1593815
1,2,3-Trichloropropane	ND	0.0125	5	12/18/2020 11:07	WG1593815
Vinyl acetate	ND	0.0123	5	12/18/2020 11:07	WG1593815 WG1593815
Vinyl acetate Vinyl chloride	ND	0.0300	5	12/18/2020 11:07	WG1593815
Xylenes, Total	ND	0.00500	5	12/18/2020 11:07	WG1593815
(S) Toluene-d8	108	80.0-120	J	12/18/2020 11:07	WG1593815
(S) 4-Bromofluorobenzene	96.6	77.0-126		12/18/2020 11:07	WG1593815
. ,					
(S) 1,2-Dichloroethane-d4	118	70.0-130		12/18/2020 11:07	WG1593815

#### Sample Narrative:

L1294865-01 WG1593815: Dilution due to foam.

#### EDB / DBCP by Method 8011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Ethylene Dibromide	ND		0.0000200	1	12/12/2020 04:56	WG1590328
1,2-Dibromo-3-Chloropropane	ND		0.0000200	1	12/12/2020 04:56	WG1590328

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2320 B-2011

L1294865-01

#### Method Blank (MB)

(MB) R3604429-1	12/16/20 16:07

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0



Sample Narrative:

BLANK: Endpoint pH 4.5



#### L1294857-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1294857-01 12/16/20 16:24 • (DUP) R3604429-2 12/16/20 16:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	239	241	1	0.577		20



Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5



GI

#### L1295990-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1295990-04 12/16/20 21:01 • (DUP) R3604429-5 12/16/20 21:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	41.7	34.2	1	19.6		20

#### Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

### Laboratory Control Sample (LCS)

(LCS) R3604429-3	12/16/20	18:19
------------------	----------	-------

(LCS) R3604429-3 12/16/20 18:19					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	102	102	90.0-110	

#### Sample Narrative:

LCS: Endpoint pH 4.5

Sample Narrative: LCS: Endpoint pH 4.5

#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2320 B-2011

L1294865-01

#### Laboratory Control Sample (LCS)

(LCS) R3604429-4 12/16/20 18:31

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	102	102	90.0-110	













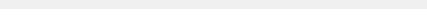






ONE LAB. NATIONWIDE.

Wet Chemistry by Method 350.1


L1294865-01

#### Method Blank (MB)

Analyte

(MB) R3604733-1	12/17/20 12:27	
	MB Result	ME

**MB** Qualifier MB MDL MB RDL mq/l mg/l mg/l Ammonia Nitrogen 0.117 0.250











(OS) L1294907-01 12/17/20 12:39 • (DUP) R3604733-5 12/17/20 12:41

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ammonia Nitrogen	0.483	0.477	1	1.25		10

# Cn







(OS) | 1294996-02 | 12/17/20 | 13:19 • (DLIP) | R3604733-7 | 12/17/20 | 13:21

(03) [123+330-02 12/17/21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ammonia Nitrogen	ND	ND	1	0.000		10







(LCS) R3604733-2 12/17/20 12:29

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Ammonia Nitrogen	7.50	7.05	94.0	90.0-110	

PAGE:

10 of 28

#### L1294844-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294844-01 12/17/20 12:30 • (MS) R3604733-3 12/17/20 12:32 • (MSD) R3604733-4 12/17/20 12:34

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Ammonia Nitrogen	5.00	0.557	6.15	5.75	112	104	1	90.0-110	<u>J5</u>		6.82	10

### L1294993-01 Original Sample (OS) • Matrix Spike (MS)

(OS) I 1294993.	-01	12/17/20	13:16 •	(MS) R3604733-6	12/17/20 13:17

(OS) L1294993-01 12/1//20	J 13:16 • (IVIS) R3	3604/33-6 12/	1//20 13:1/			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Ammonia Nitrogen	5.00	ND	5.47	105	1	90.0-110

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 410.4

L1294865-01

#### Method Blank (MB)

(MB) R3604425-1 12/17/2	0 08:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
COD	U		11.7	20.0







#### L1294739-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	31.9	28.1	1	12.6		20







(OS) L1295243-01 12/17/20 08:42 • (DUP) R3604425-6 12/17/20 08:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	29.8	30.2	1	1.31		20





#### Laboratory Control Sample (LCS)

(LCS) R3604425-2 12/17/20 08:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
COD	500	502	100	90.0-110	

### L1294895-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294895-01 12/17/20 08:39 • (MS) R3604425-4 12/17/20 08:39 • (MSD) R3604425-5 12/17/20 08:40

(03) 1234033 01	12/1//20 00.55 - (1415)	113004425 4 1.	2/1//20 00.00	* (IVISB) 1(500-	725 5 12/1//2	20 00.40						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
COD	500	22.7	532	529	102	101	1	80.0-120			0.536	20

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1294865-01

#### Method Blank (MB)

(MB) R3604134-1 12	2/10/20 22:48						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Bromide	0.513	<u>J</u>	0.353	1.00			
Chloride	U		0.379	1.00			
Fluoride	U		0.0640	0.150			
Nitrate	U		0.0480	0.100			
Sulfate	U		0.594	5.00			









#### L1294846-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1294846-03 12/11/20 01:21 • (DUP) R3604134-5 12/11/20 01:34

(00) = 120 10 10 12 12 13	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	ND	ND	1	0.0656		15
Fluoride	0.248	0.249	1	0.363		15
Nitrate	1.07	1.07	1	0.757		15
Sulfate	30.9	31.0	1	0.509		15











### L1294918-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1294918-01 12/11/20 06:41 • (DUP) R3604134-6 12/11/20 06:53

•						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	ND	ND	1	0.0585		15
Chloride	4.62	4.59	1	0.572		15
Fluoride	ND	ND	1	0.000		15
Nitrate	0.985	0.986	1	0.0203		15
Sulfate	12.4	11.6	1	6.48		15

#### Laboratory Control Sample (LCS)

(LCS) R3604134-2 12/10/20 23:01					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Bromide	40.0	39.6	99.0	80.0-120	
Chloride	40.0	39.4	98.6	80.0-120	
Fluoride	8.00	8.31	104	80.0-120	
Nitrate	8.00	8.16	102	80.0-120	
Sulfate	40.0	40.3	101	80.0-120	

Analyte

Bromide

Chloride Fluoride

Nitrate

Sulfate

#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1294865-01

80.0-120

80.0-120

80.0-120

MSD Rec.

%

55.5

0.000

54.7

55.4

54.6

#### L1294846-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

50.3

159

5.30

5.05

58.3

MSD Result

mq/l

28.3

91.4

2.90

2.77

33.5

MS Rec.

%

99.5

90.5

103

101

104

(OS) L1294846-05 12/11/20 00:05 • (MS) R3604134-3 12/11/20 00:18 • (MSD) R3604134-4 12/11/20 00:30

Spike Amount Original Result MS Result

ND

114

ND

6.17

0.165

						L
Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	2
	%			%	%	T
1	80.0-120		<u>J3 J6</u>	55.9	15	L
1	80.0-120	<u>E</u>	<u>J3 J6</u>	54.3	15	3 <

58.5

58.4

54.1

15

15

15

<u>J3 J6</u>

J3 J6

<u>J3 J6</u>













(OS) L1294918-03 12/11/20 07:19 • (MS) R3604134-7 12/11/20 07:32

mg/l

50.0

50.0

5.00

5.00

50.0

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Bromide	50.0	ND	49.6	98.1	1	80.0-120	
Chloride	50.0	5.33	57.1	104	1	80.0-120	
Fluoride	5.00	ND	5.15	100	1	80.0-120	
Nitrate	5.00	ND	5.06	101	1	80.0-120	
Sulfate	50.0	270	308	77.6	1	80.0-120	<u>E V</u>











ONE LAB. NATIONWIDE.

Mercury by Method 7470A

L1294865-01

### Method Blank (MB)

(MB) R3605116-1 12/	/18/20 11:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Mercury	U		0.000100	0.000200



# Laboratory Control Sample (LCS)

(LCS) R3605116-2 12/18/20	0 11:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.00300	0.00343	114	80.0-120	



# L1294918-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294918-03 12/18/20 11:27 • (MS) R3605116-3 12/18/20 11:35 • (MSD) R3605116-4 12/18/20 11:37

(,		Original Result	-	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.00300	ND	0.00333	0.00339	111	113	1	75.0-125			1.60	20







ONE LAB. NATIONWIDE.

Mercury by Method 7470A

L1294865-01

### Method Blank (MB)





Ss

# Laboratory Control Sample (LCS)

(LCS) R3604992-2 12/18/	CS) R3604992-2 12/18/20 08:44										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
Mercury, Dissolved	0.00300	0.00317	106	80.0-120							



# L1295639-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1295639-11 12/18	(OS) L1295639-11 12/18/20 08:46 • (MS) R3604992-3 12/18/20 08:48 • (MSD) R3604992-4 12/18/20 08:50												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Mercury Dissolved	0.00300	ND	0.00311	0.00293	104	97 5	1	75 0-125			6.20	20	





ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1294865-01

#### Method Blank (MB)

 (MB) R3604370-1
 12/16/20
 16:08

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

 Boron,Dissolved
 U
 0.0200
 0.200



Ss

# Laboratory Control Sample (LCS)

 (LCS) R3604370-2
 12/16/20 16:11

 Spike Amount
 LCS Result
 LCS Rec. Limits
 LCS Qualifier


 Analyte
 mg/l
 mg/l
 %
 %

 Boron,Dissolved
 1.00
 0.941
 94.1
 80.0-120



# L1295299-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1295299-03 12/16/20 16:14 • (MS) R3604370-4 12/16/20 16:19 • (MSD) R3604370-5 12/16/20 16:21











ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1294865-01

### Method Blank (MB)

 (MB) R3604372-1
 12/16/20
 20:16

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

 Boron
 U
 0.0200
 0.200

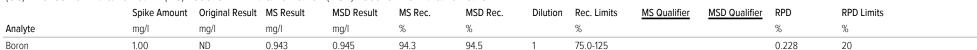


Ss

# Laboratory Control Sample (LCS)

 (LCS) R3604372-2
 12/16/20 20:18

 Spike Amount LCS Result LCS Rec.
 LCS Rec. Limits
 LCS Qualifier


 Analyte
 mg/l
 %
 %

 Boron
 1.00
 0.932
 93.2
 80.0-120



# L1294897-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294897-01 12/16/20 20:21 • (MS) R3604372-4 12/16/20 20:26 • (MSD) R3604372-5 12/16/20 20:28











ONE LAB. NATIONWIDE.

Ss

[†]Cn

GI

Sc

Metals (ICPMS) by Method 6020A

L1294865-01

### Method Blank (MB)

metrod Brank (mb)								
(MB) R3603705-1 12/15/20 12:12								
MB Result	MB Qualifier	MB MDL	MB RDL					

(11112) 11000007001 12/10	1112) 1130007001 12/16/20 12:12										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Aluminum	U		0.0185	0.100							
Antimony	U		0.00103	0.00400							







 Manganese
 U
 0.000704
 0.00500

 Nickel
 U
 0.000816
 0.00200

 Potassium
 U
 0.108
 2.00

Selenium U 0.000300 0.00200 Silver 0.0000700 0.00200 U 0.376 2.00 Sodium Thallium 0.000198 0.000121 0.00200 Vanadium U 0.00500 0.000664

# Zinc U 0.00302 0.0250

# Laboratory Control Sample (LCS)

(LCS) R3603705-2	12/15/20 12:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Aluminum	5.00	4.94	98.8	80.0-120	
Antimony	0.0500	0.0500	100	80.0-120	
Arsenic	0.0500	0.0481	96.2	80.0-120	
Barium	0.0500	0.0487	97.4	80.0-120	
Beryllium	0.0500	0.0458	91.7	80.0-120	
Cadmium	0.0500	0.0507	101	80.0-120	
Calcium	5.00	4.95	99.0	80.0-120	
Chromium	0.0500	0.0509	102	80.0-120	
Copper	0.0500	0.0485	97.1	80.0-120	
Cobalt	0.0500	0.0505	101	80.0-120	
Iron	5.00	4.95	99.1	80.0-120	

Zinc

# QUALITY CONTROL SUMMARY

Metals (ICPMS) by Method 6020A

# Laboratory Control Sample (LCS)

0.500

(1 (5)	D3603705 3	12/15/20 12:15
ILCO	K30U3/U3-Z	12/13/20 12.13

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Lead	0.0500	0.0475	95.1	80.0-120	
Magnesium	5.00	5.01	100	80.0-120	
Manganese	0.0500	0.0505	101	80.0-120	
Nickel	0.0500	0.0505	101	80.0-120	
Potassium	5.00	5.01	100	80.0-120	
Selenium	0.0500	0.0495	99.0	80.0-120	
Silver	0.0500	0.0504	101	80.0-120	
Sodium	5.00	5.04	101	80.0-120	
Thallium	0.0500	0.0472	94.3	80.0-120	
Vanadium	0.0500	0.0496	99.1	80.0-120	

80.0-120























# L1294669-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

95.0

(OS) L1294669-10 12/15/20 12:18 • (MS) R360370	5-4 12/15/20 12:25 • (MSD) R3603705-5 12/15/20 12:28
------------------------------------------------	------------------------------------------------------

0.475

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Aluminum	5.00	0.707	5.48	5.52	95.4	96.3	1	75.0-125			0.812	20
Antimony	0.0500	ND	0.0513	0.0504	103	101	1	75.0-125			1.81	20
Arsenic	0.0500	ND	0.0475	0.0483	94.2	95.9	1	75.0-125			1.80	20
Barium	0.0500	0.0700	0.117	0.118	94.4	96.0	1	75.0-125			0.669	20
Beryllium	0.0500	0.00352	0.0488	0.0488	90.6	90.5	1	75.0-125			0.134	20
Cadmium	0.0500	ND	0.0517	0.0516	103	102	1	75.0-125			0.110	20
Calcium	5.00	1.36	6.18	6.22	96.3	97.1	1	75.0-125			0.633	20
Chromium	0.0500	ND	0.0497	0.0508	99.5	102	1	75.0-125			2.01	20
Copper	0.0500	ND	0.0494	0.0518	94.0	98.6	1	75.0-125			4.60	20
Cobalt	0.0500	0.0188	0.0677	0.0689	97.8	100	1	75.0-125			1.88	20
Potassium	5.00	ND	6.39	6.46	96.9	98.4	1	75.0-125			1.14	20
Iron	5.00	1.41	6.35	6.35	98.7	98.9	1	75.0-125			0.148	20
Lead	0.0500	ND	0.0488	0.0481	95.9	94.5	1	75.0-125			1.44	20
Magnesium	5.00	1.82	6.65	6.70	96.6	97.6	1	75.0-125			0.776	20
Manganese	0.0500	0.0846	0.131	0.134	93.5	98.5	1	75.0-125			1.88	20
Nickel	0.0500	0.0290	0.0776	0.0787	97.2	99.4	1	75.0-125			1.38	20
Selenium	0.0500	ND	0.0499	0.0501	99.8	100	1	75.0-125			0.339	20
Silver	0.0500	ND	0.0499	0.0497	99.8	99.4	1	75.0-125			0.406	20
Sodium	5.00	5.62	10.4	10.4	96.6	95.8	1	75.0-125			0.354	20
Thallium	0.0500	ND	0.0482	0.0477	96.2	95.0	1	75.0-125			1.19	20
Vanadium	0.0500	ND	0.0488	0.0498	97.6	99.5	1	75.0-125			1.95	20
Zinc	0.500	0.142	0.611	0.624	93.8	96.4	1	75.0-125			2.09	20

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020A

#### L1294865-01

# Method Blank (MB)

(MB) R3604859-1 12/17/	20 19:24				_
	MB Result	MB Qualifier	MB MDL	MB RDL	ļ
Analyte	mg/l		mg/l	mg/l	
Aluminum, Dissolved	0.0243	J	0.0185	0.100	_
Antimony, Dissolved	U		0.00103	0.00400	
Arsenic, Dissolved	U		0.000180	0.00200	
Barium, Dissolved	U		0.000381	0.0200	
Beryllium, Dissolved	U		0.000190	0.00200	
Cadmium, Dissolved	U		0.000150	0.00100	
Calcium, Dissolved	U		0.0936	1.00	
Chromium, Dissolved	U		0.00124	0.00200	
Copper,Dissolved	U		0.00151	0.00500	
Cobalt, Dissolved	U		0.0000596	0.00200	
Iron,Dissolved	U		0.0281	0.100	
Lead, Dissolved	U		0.000849	0.00500	
Magnesium, Dissolved	U		0.0735	1.00	
Manganese, Dissolved	U		0.000704	0.00500	
Nickel, Dissolved	U		0.000816	0.00200	
Potassium, Dissolved	U		0.108	2.00	
Selenium,Dissolved	U		0.000300	0.00200	
Silver, Dissolved	U		0.0000700	0.00200	
Sodium,Dissolved	U		0.376	2.00	
Thallium,Dissolved	U		0.000121	0.00200	

# Laboratory Control Sample (LCS)

Vanadium, Dissolved

Zinc, Dissolved

U

U

(LCS) R3604859-2 12/17	7/20 19:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Aluminum, Dissolved	5.00	4.96	99.3	80.0-120	
Antimony, Dissolved	0.0500	0.0501	100	80.0-120	
Arsenic, Dissolved	0.0500	0.0501	100	80.0-120	
Barium, Dissolved	0.0500	0.0498	99.6	80.0-120	
Beryllium, Dissolved	0.0500	0.0497	99.4	80.0-120	
Cadmium, Dissolved	0.0500	0.0530	106	80.0-120	
Calcium, Dissolved	5.00	5.17	103	80.0-120	
Chromium, Dissolved	0.0500	0.0527	105	80.0-120	
Copper, Dissolved	0.0500	0.0519	104	80.0-120	
Cobalt, Dissolved	0.0500	0.0523	105	80.0-120	
Iron,Dissolved	5.00	5.09	102	80.0-120	

ACCOUNT:

0.00500

0.0250

0.000664

0.00302



















ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020A

L1294865-01

# Laboratory Control Sample (LCS)

(LCS	R3604859-2	12/17/20 19:27
(LCC	11300-033 2	12/1//20 13.2/

, ,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Lead, Dissolved	0.0500	0.0499	99.7	80.0-120	
Magnesium, Dissolved	5.00	4.94	98.8	80.0-120	
Manganese, Dissolved	0.0500	0.0519	104	80.0-120	
Nickel, Dissolved	0.0500	0.0533	107	80.0-120	
Potassium, Dissolved	5.00	4.96	99.2	80.0-120	
Selenium, Dissolved	0.0500	0.0521	104	80.0-120	
Silver, Dissolved	0.0500	0.0518	104	80.0-120	
Sodium, Dissolved	5.00	5.20	104	80.0-120	
Thallium, Dissolved	0.0500	0.0468	93.6	80.0-120	
Vanadium, Dissolved	0.0500	0.0510	102	80.0-120	
Zinc,Dissolved	0.500	0.504	101	80.0-120	

# L1294973-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1294973-08 12/17/20 19:30 • (MS) R3604859-4	12/17/20 19:37 • (MSD) R3604859-5 12/17/20 19:40
---------------------------------------------------	--------------------------------------------------

(03) 1294973-06 12/1.	, ,			,			Dilenter	Dec Limite	MC O U.S	MCD O LIE	DDD	DDD Limite
	•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Aluminum, Dissolved	5.00	ND	4.87	4.97	97.4	99.4	1	75.0-125			1.94	20
Antimony, Dissolved	0.0500	ND	0.0524	0.0513	105	103	1	75.0-125			2.03	20
Arsenic, Dissolved	0.0500	0.00206	0.0520	0.0529	99.9	102	1	75.0-125			1.65	20
Barium, Dissolved	0.0500	0.0256	0.0768	0.0755	102	99.8	1	75.0-125			1.72	20
Beryllium, Dissolved	0.0500	ND	0.0477	0.0468	95.3	93.7	1	75.0-125			1.77	20
Cadmium, Dissolved	0.0500	ND	0.0531	0.0533	106	107	1	75.0-125			0.468	20
Calcium, Dissolved	5.00	34.7	39.0	39.4	87.0	94.9	1	75.0-125			1.01	20
Chromium, Dissolved	0.0500	ND	0.0507	0.0516	101	103	1	75.0-125			1.74	20
Copper, Dissolved	0.0500	ND	0.0512	0.0524	97.1	99.6	1	75.0-125			2.40	20
Cobalt, Dissolved	0.0500	0.00443	0.0546	0.0553	100	102	1	75.0-125			1.40	20
Potassium, Dissolved	5.00	2.81	7.70	7.82	97.7	100	1	75.0-125			1.55	20
Iron,Dissolved	5.00	6.29	11.4	11.2	102	98.7	1	75.0-125			1.61	20
Lead,Dissolved	0.0500	ND	0.0508	0.0500	102	100	1	75.0-125			1.52	20
Magnesium, Dissolved	5.00	21.6	25.9	25.6	86.1	80.1	1	75.0-125			1.17	20
Manganese, Dissolved	0.0500	3.05	3.27	3.18	450	271	1	75.0-125	$\vee$	$\vee$	2.78	20
Nickel, Dissolved	0.0500	ND	0.0512	0.0523	100	102	1	75.0-125			1.99	20
Selenium, Dissolved	0.0500	ND	0.0516	0.0531	103	106	1	75.0-125			2.85	20
Silver, Dissolved	0.0500	ND	0.0517	0.0505	103	101	1	75.0-125			2.30	20
Sodium, Dissolved	5.00	13.9	18.7	18.4	95.7	89.0	1	75.0-125			1.82	20
Thallium, Dissolved	0.0500	ND	0.0479	0.0494	95.4	98.4	1	75.0-125			3.02	20
Vanadium, Dissolved	0.0500	ND	0.0506	0.0524	101	105	1	75.0-125			3.58	20
Zinc,Dissolved	0.500	ND	0.487	0.500	96.1	98.6	1	75.0-125			2.59	20





















ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1294865-01

#### Method Blank (MB)

Method Blank (MB)				
(MB) R3605242-3 12/18/20	0 10:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0113	0.0500
Acrylonitrile	U		0.000671	0.0100
Benzene	U		0.0000941	0.00100
Bromodichloromethane	U		0.000136	0.00100
Bromochloromethane	U		0.000128	0.00100
Bromoform	U		0.000129	0.00100
Bromomethane	U		0.000605	0.00500
Carbon disulfide	U		0.0000962	0.00100
Carbon tetrachloride	U		0.000128	0.00100
Chlorobenzene	U		0.000126	0.00100
Chlorodibromomethane	U		0.000110	0.00100
Chloroethane	U		0.000140	0.00500
Chloroform	U		0.000192	0.00500
Chloromethane	U		0.000111	0.00300
	U		0.000960	0.00230
1,2-Dibromoethane	U		0.000276	0.00500
				0.00100
Dibromomethane	U		0.000122	
1,2-Dichlorobenzene	U		0.000107	0.00100
1,4-Dichlorobenzene	U		0.000120	0.00100
trans-1,4-Dichloro-2-butene	U		0.000467	0.00250
1,1-Dichloroethane	U		0.000100	0.00100
1,2-Dichloroethane	U		0.0000819	0.00100
1,1-Dichloroethene	U		0.000188	0.00100
cis-1,2-Dichloroethene	U		0.000126	0.00100
trans-1,2-Dichloroethene	U		0.000149	0.00100
1,2-Dichloropropane	U		0.000149	0.00100
cis-1,3-Dichloropropene	U		0.000111	0.00100
trans-1,3-Dichloropropene	U		0.000118	0.00100
Ethylbenzene	U		0.000137	0.00100
2-Hexanone	U		0.000787	0.0100
lodomethane	U		0.00600	0.0100
2-Butanone (MEK)	U		0.00119	0.0100
Methylene Chloride	U		0.000430	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.000478	0.0100
Styrene	U		0.000118	0.00100
1,1,1,2-Tetrachloroethane	U		0.000147	0.00100
1,1,2,2-Tetrachloroethane	U		0.000133	0.00100
Tetrachloroethene	U		0.000300	0.00100
Toluene	U		0.000278	0.00100
1,1,1-Trichloroethane	U		0.000149	0.00100



ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

# Method Blank (MB)

(MB) R3605242-3 12/18/2	0 10:04					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
1,1,2-Trichloroethane	U		0.000158	0.00100		
Trichloroethene	U		0.000190	0.00100		
Trichlorofluoromethane	U		0.000160	0.00500		
1,2,3-Trichloropropane	U		0.000237	0.00250		
Vinyl acetate	U		0.000692	0.0100		
Vinyl chloride	U		0.000234	0.00100		
Xylenes, Total	U		0.000174	0.00300		
(S) Toluene-d8	104			80.0-120		
(S) 4-Bromofluorobenzene	93.2			77.0-126		
(S) 1,2-Dichloroethane-d4	119			70.0-130		

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3605242-1 12/18/2	0 08:43 • (LCSI	D) R3605242-	2 12/18/20 09:	03						
,	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.0250	0.0318	0.0330	127	132	19.0-160			3.70	27
Acrylonitrile	0.0250	0.0315	0.0290	126	116	55.0-149			8.26	20
Benzene	0.00500	0.00479	0.00473	95.8	94.6	70.0-123			1.26	20
Bromodichloromethane	0.00500	0.00491	0.00504	98.2	101	75.0-120			2.61	20
Bromochloromethane	0.00500	0.00569	0.00555	114	111	76.0-122			2.49	20
Bromoform	0.00500	0.00580	0.00554	116	111	68.0-132			4.59	20
Bromomethane	0.00500	0.00560	0.00543	112	109	10.0-160			3.08	25
Carbon disulfide	0.00500	0.00408	0.00425	81.6	85.0	61.0-128			4.08	20
Carbon tetrachloride	0.00500	0.00531	0.00520	106	104	68.0-126			2.09	20
Chlorobenzene	0.00500	0.00507	0.00492	101	98.4	80.0-121			3.00	20
Chlorodibromomethane	0.00500	0.00533	0.00529	107	106	77.0-125			0.753	20
Chloroethane	0.00500	0.00561	0.00534	112	107	47.0-150			4.93	20
Chloroform	0.00500	0.00515	0.00515	103	103	73.0-120			0.000	20
Chloromethane	0.00500	0.00495	0.00473	99.0	94.6	41.0-142			4.55	20
1,2-Dibromo-3-Chloropropane	0.00500	0.00550	0.00522	110	104	58.0-134			5.22	20
1,2-Dibromoethane	0.00500	0.00543	0.00537	109	107	80.0-122			1.11	20
Dibromomethane	0.00500	0.00560	0.00549	112	110	80.0-120			1.98	20
1,2-Dichlorobenzene	0.00500	0.00517	0.00470	103	94.0	79.0-121			9.52	20
1,4-Dichlorobenzene	0.00500	0.00500	0.00466	100	93.2	79.0-120			7.04	20
trans-1,4-Dichloro-2-butene	0.00500	0.00436	0.00401	87.2	80.2	33.0-144			8.36	20
1,1-Dichloroethane	0.00500	0.00527	0.00545	105	109	70.0-126			3.36	20
1,2-Dichloroethane	0.00500	0.00587	0.00567	117	113	70.0-128			3.47	20

71.0-124



0.00500

0.00460

0.00449

92.0

1,1-Dichloroethene

89.8

2.42

20

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

# QUALITY CONTROL SUMMARY



Volatile Organic Compounds (GC/MS) by Method 8260B

L1294865-01

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3605242-1 12/18/20 08:43 • (LCSD) R3605242-2 12/18/20 09:03

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
cis-1,2-Dichloroethene	0.00500	0.00486	0.00478	97.2	95.6	73.0-120			1.66	20	
trans-1,2-Dichloroethene	0.00500	0.00482	0.00484	96.4	96.8	73.0-120			0.414	20	
1,2-Dichloropropane	0.00500	0.00535	0.00512	107	102	77.0-125			4.39	20	
cis-1,3-Dichloropropene	0.00500	0.00465	0.00491	93.0	98.2	80.0-123			5.44	20	
trans-1,3-Dichloropropene	0.00500	0.00474	0.00475	94.8	95.0	78.0-124			0.211	20	
Ethylbenzene	0.00500	0.00506	0.00497	101	99.4	79.0-123			1.79	20	
2-Hexanone	0.0250	0.0256	0.0255	102	102	67.0-149			0.391	20	
lodomethane	0.0250	0.0261	0.0259	104	104	33.0-147			0.769	26	
2-Butanone (MEK)	0.0250	0.0300	0.0296	120	118	44.0-160			1.34	20	
Methylene Chloride	0.00500	0.00459	0.00472	91.8	94.4	67.0-120			2.79	20	
4-Methyl-2-pentanone (MIBK)	0.0250	0.0271	0.0265	108	106	68.0-142			2.24	20	
Styrene	0.00500	0.00460	0.00455	92.0	91.0	73.0-130			1.09	20	
1,1,1,2-Tetrachloroethane	0.00500	0.00560	0.00519	112	104	75.0-125			7.60	20	
1,1,2,2-Tetrachloroethane	0.00500	0.00469	0.00426	93.8	85.2	65.0-130			9.61	20	
Tetrachloroethene	0.00500	0.00587	0.00558	117	112	72.0-132			5.07	20	
Toluene	0.00500	0.00484	0.00467	96.8	93.4	79.0-120			3.58	20	
1,1,1-Trichloroethane	0.00500	0.00531	0.00497	106	99.4	73.0-124			6.61	20	
1,1,2-Trichloroethane	0.00500	0.00543	0.00495	109	99.0	80.0-120			9.25	20	
Trichloroethene	0.00500	0.00553	0.00568	111	114	78.0-124			2.68	20	
Trichlorofluoromethane	0.00500	0.00585	0.00541	117	108	59.0-147			7.82	20	
1,2,3-Trichloropropane	0.00500	0.00570	0.00532	114	106	73.0-130			6.90	20	
Vinyl acetate	0.0250	0.0137	0.0130	54.8	52.0	11.0-160			5.24	20	
Vinyl chloride	0.00500	0.00475	0.00488	95.0	97.6	67.0-131			2.70	20	
Xylenes, Total	0.0150	0.0144	0.0141	96.0	94.0	79.0-123			2.11	20	
(S) Toluene-d8				104	106	80.0-120					

77.0-126

70.0-130



















93.3

121

96.2

123

EDB / DBCP by Method 8011

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1294865-01

#### Method Blank (MB)

(MB) R3603255-1 12/12/20 04:07 MB RDL MB Result MB Qualifier MB MDL Analyte mq/l mg/l mg/l Ethylene Dibromide U 0.00000536 0.0000200 1,2-Dibromo-3-Chloropropane U 0.00000748 0.0000200







Cn

#### L1294865-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1294865-01 12/12/20 04:56 • (DUP) R3603255-3 12/12/20 04:43

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Ethylene Dibromide	ND	ND	1	0.000		20
1,2-Dibromo-3-Chloropropane	ND	ND	1	0.000		20









# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3603255-4 12/12/20 07:01 • (LCSD) R3603255-5 12/12/20 09:38

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Ethylene Dibromide	0.000250	0.000256	0.000262	102	105	60.0-140			2.32	20
1,2-Dibromo-3-Chloropropane	0.000250	0.000231	0.000234	92.4	93.6	60.0-140			1.29	20





# L1295241-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1295241-01 12/12/20 04:31 • (MS) R3603255-2 12/12/20 04:19

(,		Original Result		MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Ethylene Dibromide	0.000100	ND	0.000105	105	1	64.0-159
1,2-Dibromo-3-Chloropropane	0.000100	ND	0.0000893	89.3	1	72.0-148

12/21/20 17:01

# **GLOSSARY OF TERMS**

# Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

MDI	Mathad Datastian Limit
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

СР









[°]Qc









# **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	KY90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN00003
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN000032021-1
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-20-18
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	998093910
Wyoming	A2LA

#### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

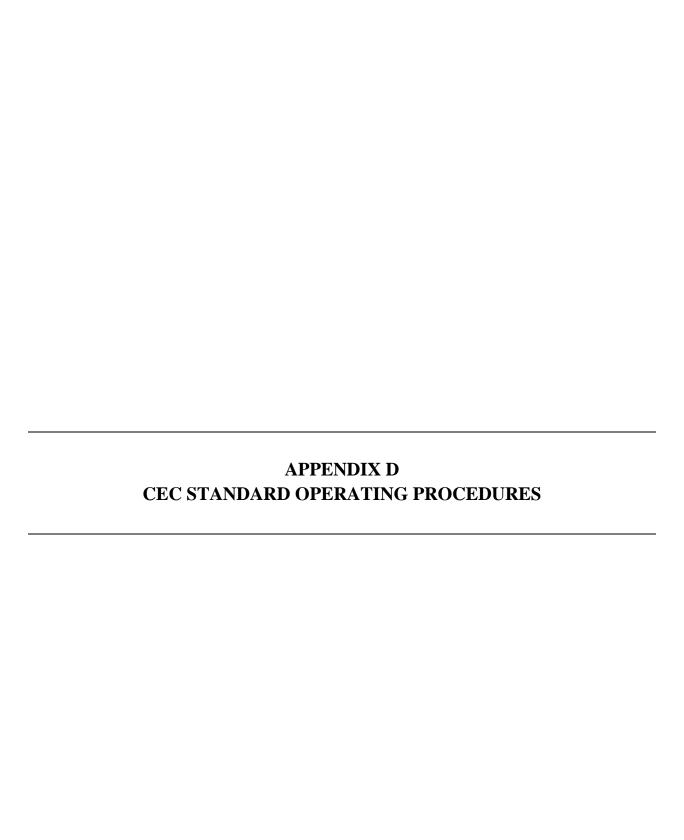


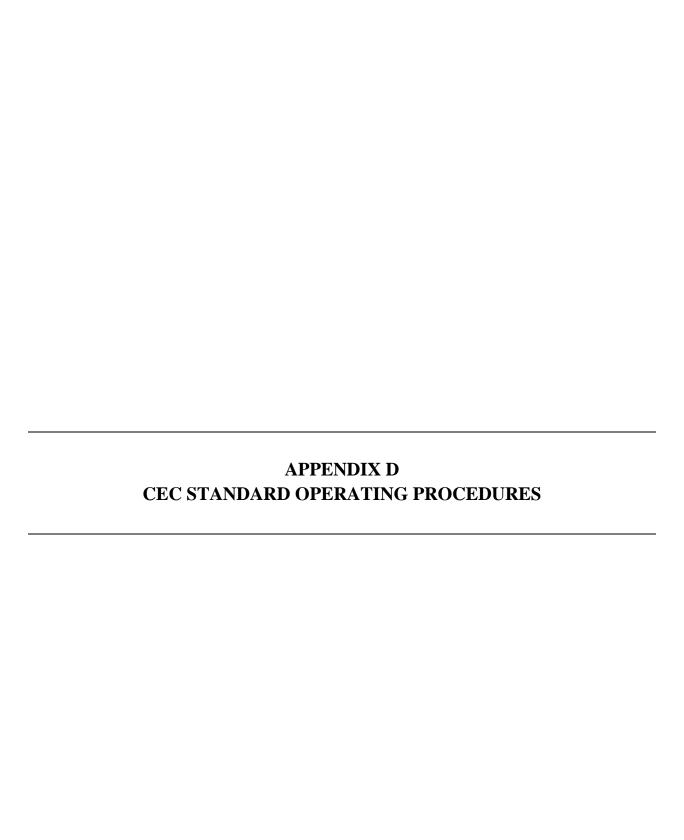















Suite £100  Franklin TN 37067  Report to. Philip Campbell  Project Description:  Ews Canden class 2 Landfill  City/State Collected by Garnt  Site/Facility ID #  CAMDEN, TN  Po. #  Site/Facility ID #  CAMDEN, TN  Po. #  Sample-ID  Comp/Grab  Matrix*  Depth  Date  Time  Comp/Grab  Matrix*  Depth  Date  Time  Control of Day (Rad Only)  Date Results Needed  No.  ON.  ON.  ON.  ON.  ON.  ON.  ON.	Seasting This Season of Life Floor   State	117 Seaboard Ln.	nental Consultants - TN	Billing Information:  Dr. Kevin Wolfe			A	nalvsis / Contains	r / Presence	Customer	
Project Description: EWS Camden Class 2 Landfill  City/State  EMail To: Pcampbell@cecinc.com  EWS Camden Class 2 Landfill  Cidlected: Project #  Collected: Project #  Collected by (Arint)  Arint (Arint)  Arint (Arint)  Collected by (Arint)  Arint (Arint)  Arint (Arint)  Collected by (Arint)  Arint (Arint)  Arint (Arint)  Arint (	Tracting of Art Au Packed on No. 10. 11 A. X.	Franklin TN 37067		117 Seaboard Ln. Suite E100					L7 Fleservat	0	
Collected by (grint)  Fix (515.738-5859)  Fix (515.738	Phone: 615-333.779  Client Project 8  California Discontinue Children Chil	Philip Campbell		Franklin, TN 37067						National (	AlidiyUGdi Center for Teeting & Innove
Phone: 615-333-7797  Client Project # Lab Project # CEC-181364  Cadlected by (sprint)  Site/Facility ID # CAMDEN, TN  Please Circle: PT MT CC JT  Collected by (sprint)  Site/Facility ID # CAMDEN, TN  Five Day  Five Day  Three Day	Please Conference (Callected by Uprost)  Starfacility (D & Callected by Uprost)  Starf	EWS Camden Class 2		Email To: pcampbell@cecinc.com					-		
	Soil AIR - Air  V. Groundwater  WasteWater  Orinking Water  Or	Collected by (grint)  Collected by (signature)  Immediately Packed on Ice N  Sample 4D	Collected: Client Project # 181-364  Site/Facility ID # CAMDEN, TN  Rush? (Lab MUST Be Not Same Day Five Day Next Day 5 Day (Rad Two Day 10 Day (Rad Three Day  Comp/Grab Matrix * De	Lab Project # CEC-181364  P.O. #  Ified)  Quote #  Only)  Date Results Needed	WTCT TT X	ALK 100ml Amb	X COD,NH3 2:	× SV8011 40mlCir-Na	× V8260AP1 40mlAm	Mount Juliet, TN 3 Phone: 615-758-51 Phone: 800-767-51 Fax: 615-758-5859  SP  To  Acctnum: CEC Template: T13 Prelogin: P81 PM: 526 Chtt PB: Chipped Via: C	081 3582 0064 McCord ourier   Sample # (lab only
Received for lab by: (Signature)  Date:  Time  Time  Time	TITLE LUMB.			1/			12/11	) ~	-1-	Hold:	NCF / O





#### 03-02-01 MONITORING WELLS USING CONVENTIONAL PURGING

- I. SCOPE AND APPLICABILITY: This procedure is applicable to the sampling of monitoring wells which do not contain free product using conventional purge methodology.
- II. PROJECT-SPECIFIC REQUIREMENTS
  - A. SAMPLE LOCATIONS AND NUMBERING SYSTEM:
  - **B. ANALYTICAL PARAMETERS AND SAMPLE FREQUENCY:**
  - C. FIELD SCREENING AND ANALYSES: Reference appropriate SOPs.
  - **D. QUALITY ASSURANCE SAMPLES:** *Number and type of blanks and duplicates. Reference SOPs* 04-01-01, 04-01-02, and 04-02-01 as appropriate.
  - E. FILTRATION:
  - F. PURGE CRITERION AND DISPOSAL OF PURGE WATER:
  - G. WELL KEYS: Indicate whether wells use CEC's standard key
  - H. DEDICATED EQUIPMENT: Indicate whether dedicated pumps or bailers have been installed.
  - I. OTHER REQUIREMENTS:
- **III. METHODOLOGY:** Monitoring wells should be sampled progressing from least contaminated to most contaminated to reduce the chances of cross contamination between samples. If a bailer is employed, use new rope for each well.
  - **A. PURGING:** Purging is performed to remove static water standing in the well bore, thereby allowing collection of a sample representative of water in the aquifer. Unless otherwise specified in Section II.F., well development may suffice for the purge, so long as the sample is collected immediately following development.
  - 1. Measure the water level from the top of the riser pipe at the pre-marked reference point (SOP 06-01-01).
  - 2. Calculate the purge volume using the data presented in Exhibit 03-02-01 and the criterion presented in Section II.F.
  - 3. Remove the required volume of water using one of the following methods. If the well goes dry, the purge can be considered complete unless otherwise specified in Section II.F. However, attempts should be made to prevent the well from going dry during purging, drying the well disrupts the flow regime and can result in the loss of volatile compounds. Therefore:
    - $\cong$  If a well is known to have a low yield, it should be purged by bailing.
    - $\cong$  If a pump is used for purging, adjust the pumping rate to maintain a water column in the well, if possible.

 $\cong$  Do not attempt to purge a well to dryness unless it is infeasible to maintain water in the well at a reasonable purge rate.

#### **METHOD A:** If the purge criterion is specified on volume of water to be removed:

- a. Remove the required volume of water using a submersible pump or bailer. If a pump is used, a check valve must be installed on the pump to prevent pumped water from returning to the well. Begin purging at the top of the water column. Minimize aeration of the water during purging by pumping at a low rate or lowering the bailer gently into the water.
- b. Lower the pump or bailer as necessary to continue purging until the well volume criterion is met.

#### **METHOD B:** If the purge criteria are specified on stabilization of field analyses:

- a. Measure initial water quality by retrieving a sample from the top of the water column using a bailer. Conduct the field analyses specified in Section II.F. Record these results on the Groundwater Monitoring Data Sheet (SOP 07-02-01).
- b. Remove one well volume of water by submersible pump or bailer. If a pump is used, a check valve must be installed to prevent water from returning to the well. Begin purging at the top of the water column. Minimize aeration of the water during purging by pumping at a low rate or lowering the bailer gently into the water.
- c. After one well volume has been removed, conduct field analyses on the groundwater being discharged. Record results on the Monitoring Sampling Data Sheet.
- d. Repeat steps b and c until the purge criteria have been met.
- **B. SAMPLE COLLECTION:** Groundwater samples should be collected immediately after purging, if the well will yield sufficiently. Some low-yielding wells may require time to recover prior to sampling. If the well will not yield a sample immediately after purging, a maximum of 24 hours between purging and sampling is permitted.
- 1. Collect water from the well by slowly lowering a decontaminated bailer into the water column.
- 2. Transfer the samples which do not require filtering directly into sample bottles in the following order:

Volatile Organic Compounds Semi-Volatile Organic Compounds Pesticides and PCBs Cations and Anions Radionuclides Bacteria.

3. If indicated in Section II.E., filter the required aliquots (SOP 05-03-02 or 05-03-03) and fill those sample bottles.

- 4. Preserve the samples immediately in accordance with SOP 07-01-02.
- 5. Conduct field analyses: pH (SOP 05-04-01 or 05-04-04), temperature, specific conductance (SOP 05-04-02), dissolved oxygen (SOP 05-04-03), Eh (SOP 05-04-08), and any other parameters listed in Section II.C.
- 6. If a dedicated sample bailer was used, return it to the well head. Otherwise, decontaminate the bailer as specified in SOP 01-01-00.
- 7. Replace the well cap and lock the protective casing.
- 8. Collect quality-assurance samples specified in Section II.D in accordance with SOP 04-01-01, 04-01-02, and 04-02-01.
- 9. Decontaminate samples in accordance with SOP 01-01-00.
- 10. Pack and ship the samples in accordance with SOP 07-01-03. Samples should be shipped on a daily basis and such that holding time requirements (SOP 07-01-02) can be met.

#### IV. PRECAUTIONS AND COMMON PROBLEMS

- A. When using a bailer, do not allow the rope to drag on the ground. If necessary, lay out plastic sheeting to catch the rope.
- B. When using a pump, exercise caution to prevent cross-contaminating samples with the hose. Do not sample from the pump discharge for trace organic compounds. Always use a check valve if not using a dedicated hose. Discard hose if there is a question about whether it can be adequately decontaminated.
- C. Check the holding times on the analyses to be conducted. The holding time for some parameters is 24 hours. Plan sampling and shipping of these samples accordingly.
- D. Preserve samples immediately after collection, including keeping them cool. Do not let samples sit in a hot vehicle until the end of the day.

#### V. DOCUMENTATION

- A. Record information on a Groundwater Monitoring Data Sheet (SOP 07-02-01).
- B. Prepare a Trip Report (SOP 07-02-04) and include:
  - $\cong$  Time, date, and method of sample shipment
  - ≅ Preservation methods and sample handling
  - ≅ Description of purge and sampling methods
  - ≅ The Groundwater Monitoring Data Sheet.

#### VII. REFERENCES

None

#### 04-01-01 EQUIPMENT BLANKS

I. SCOPE AND APPLICABILITY: Equipment blanks are collected to assess the adequacy of decontamination procedures and to determine whether sampling equipment and methods are contributing contaminants to samples.

#### II. PROJECT-SPECIFIC REQUIREMENTS:

**WATER TYPES TO BE USED FOR BLANKS:** [distilled water, deionized water, HPLC-grade water, etc.]

#### III. METHODOLOGY

- A. Review the SOP for the medium sampled to establish the frequency for collection of blanks.
- B. Assemble a complete set of decontaminated sampling equipment for the subject sampling effort.
- C. Rinse the blank water across the sampling equipment, catching it in a decontaminated stainless-steel bucket. Handle the water in the same manner as the samples. For example, if samples for metals analysis are to be filtered with a disposable filter, the blank aliquot for metals analysis should be processed through a new disposable filter. Blanks for soil sampling may be run across the split-spoon sampler, trowel, and bucket.
- D. Fill a complete set of sample bottles.
- E. Assign the blank a sample number of the same format as the other samples in the series.
- F. Store, handle, and ship the blanks in the same manner as the samples.

#### IV. PRECAUTIONS AND COMMON PROBLEMS

- A. The selection of stock solution depends upon the requirements of the project. Analyses for trace contaminants will require a purer blank solution than analyses for major constituents. Stringent analytical requirements will necessitate the use of laboratory-supplied blank water.
- B. Include ALL sampling equipment in the rinsing procedure.
- V. **DOCUMENTATION:** Record the following information in the field logbook:
  - ≅ Source of blank water
  - $\cong$  Time and sequence within the sampling event when the blanks were prepared
  - ≅ Description of the procedure for preparing the blanks
  - $\cong$  Sample numbers assigned to blanks.

Incorporate this information into the Trip Report (SOP 07-02-04).

#### VI. REFERENCES

EPA, 1986. Test Methods for Evaluating Solid Waste: SW-846; Volume II. Washington, DC.

#### **04-01-02 TRIP BLANKS**

I. SCOPE AND APPLICABILITY: Trip blanks are prepared to evaluate whether volatile constituents have migrated into samples from the air on-site, during shipping, or at the laboratory.

# II. PROJECT-SPECIFIC REQUIREMENTS:

- A. Frequency:
- B. Other Criteria:

#### III. METHODOLOGY

- A. When ordering bottles from the laboratory for the sampling event, request that trip blanks be sent also.
- B. Keep the supplied blanks with the samples being collected throughout the sampling event. Handle the blanks in the same manner as the filled sample vials.
- C. Assign the trip blank a sample number of the format used for the sampling event.
- D. Return the trip blanks to the laboratory with the samples. Include the samples on the Chain-of-Custody form (SOP 07-02-02). Analysis is typically performed for volatile organic compounds only.
- IV. PRECAUTIONS AND COMMON PROBLEMS: None.
- **V. DOCUMENTATION:** Describe handling on the trip blanks in the Trip Report (SOP 07-02-04). Include the sample numbers assigned.

### VI. REFERENCES

EPA, 1986. Test Methods for Evaluating Solid Waste: SW-846; Volume II. Washington, DC.

#### 04-02-01 LIQUID DUPLICATES

I. SCOPE AND APPLICABILITY: Duplicate samples are collected to evaluate the precision involved in the sampling effort. Duplicate samples must be collected to be as similar as possible to the original sample. This procedure is applicable of collection of duplicate samples of all liquids and flowable sludges.

# II. PROJECT-SPECIFIC REQUIREMENTS:

#### NUMBER/FREQUENCY OF DUPLICATE SAMPLING:

**DUPLICATE NUMBERING SYSTEM**: [Indicate how sample numbers are to be assigned to duplicates, and whether "blind" numbers should be assigned.]

#### III. METHODOLOGY

- A. Prepare sample bottles for the target sample and its duplicate.
- B. Collect the liquid sample in accordance with the appropriate SOP.
- C. When filling sample bottles, fill each type of bottle for the sample and duplicate in sequence. Fill both VOA vials, then both metals bottles, etc. This will assure that the duplicate is as similar to the original sample as possible.
- D. Preserve the sample and duplicate identically.

#### IV. PRECAUTIONS AND COMMON PROBLEMS

- A. Failure to fill bottles alternately between the sample and duplicate may result in poor reproducibility between analyses.
- B. Samples with free product or multiple phases present special problems. The phase distribution must be the same in both aliquots.
- **V. DOCUMENTATION:** List the sample and duplicate on the Groundwater Monitoring Data Sheet as separate samples, describing the duplicate in the "Comments" column. If a Groundwater Monitoring Data Sheet is not appropriate, incorporate this information into the Trip Report (SOP 07-02-04).
- VI. REFERENCES: None.

#### 05-03-05 BAILER

**I. EQUIPMENT SPECIFICATION:** This procedure is applicable to the use of all bottom-fill bailers.

#### II. INSPECTION AND CALIBRATION

- **A. DAILY INSPECTION AND CHECKS:** Make sure fittings at both ends of the bailer are secure. Assure that the check valve opens and closes freely.
- **B. CALIBRATION:** There is no calibration applicable to this equipment.
- **C. ROUTINE MAINTENANCE:** There is no maintenance applicable to this equipment. Bailers are typically replaced if damaged.

#### III. USE

- A. Select a rope or cable for suspension of the bailer which is appropriate to project requirements. Typically, small gauge nylon rope is used, although stainless-steel cable may be used when samples will be analyzed to very low detection limits. The rope or cable should be new and clean. Do not use materials which have been used on another project, as this may result in cross contamination.
- B. Consult the Project Manager to select a bailer composition which is compatible with the anticipated groundwater quality. For most applications, PVC bailers are adequate. Stainless-steel may be used where very low levels of organic compounds are of interest. Teflon bailers are available and may be requested on some projects.
- C. Using a strong, non-slipping knot, such as a bowline, tie the rope or cable to the top of the bailer.
- D. Lower the bailer into the well. Do not let the bailer free-fall down the well, as the device may shatter or the ball valve may become dislodged upon striking the water or the bottom of the well.
- E. Raise the bailer by pulling the rope with a smooth, uniform motion. A jerky motion may open the check valve, resulting in water loss. Check the knot periodically.

Do not allow the bailer rope to drag on the ground. Place plastic sheeting on the ground to keep the rope clean if conditions are muddy, the ground surface is contaminated, or very low levels of contaminants are of interest.

**IV. DECONTAMINATION:** The equipment should be decontaminated in accordance with SOP 01-01-00.

Typically, the bailer is washed with a potable water and non-phosphate soap solution. The bailer is then rinsed with distilled water and wrapped in plastic or foil until used.

#### V. TROUBLESHOOTING

- A. If the knot should come undone or the rope breaks, the bailer typically can be recovered using a weighted fishing hook tied to monofilament line.
- B. When bailing turbid water, it may be necessary to rinse the ball-valve at the bottom of the bailer with distilled water if it clogs.

#### 06-01-01 WATER-LEVEL MEASUREMENT IN MONITORING WELLS

I. SCOPE AND APPLICABILITY: This procedure is applicable to the measurement of water levels in monitoring wells and open boreholes.

# II. PROJECT-SPECIFIC REQUIREMENTS

# A. REQUIRED READINGS:

#### **B. APPLICABLE METHODS:**

III. METHODOLOGY: Water levels should always be recorded to ±0.01 foot. Measurements should be made from a marked point on the inner casing for monitoring wells, and from the ground surface for open boreholes. Equipment should be decontaminated in accordance with SOP 01-01-00 after each measurement. The following methods may be used:

#### A. CHALKED-TAPE METHOD

- 1. Check records for historic water levels in the well, if available.
- 2. Rub the first five feet of a steel surveyor's chain or fiberglass tape with carpenter's chalk.
- 3. Lower the tape into the well until the end of the tape enters the water.
- 4. Record the tape footing at the wellhead to within 0.01 feet.
- 5. Pull the tape out of the well and read the tape footage of the water mark to within 0.01 feet. The difference between the readings is the water level.

### **B. SOUNDING**

- 1. Attach a small float or hollow-bottom weight or sounder to the end of a tape measure.
- 2. Lower the sounder into the well and listen for the sound of the weight hitting the water surface.
- 3. When this is heard, pull the sounder back a few inches and redrop it by 1/4-inch increments until the sound is heard again.

- 4. Subsequent smaller increments of lowering the sounder will allow water-level measurements to within 0.01 feet.
- 5. Measure the length from the zero mark on the tape measure to the bottom of the weight. Add this value to all field measurements made with the sounder.

### C. ELECTRIC-WATER LEVEL METER (Solinst)

- 1. Turn the Solinst on by turning the knob clockwise. This knob is also the volume control. Test the Solinst to see if the battery is dead by pushing the button next to the volume knob. If the battery is charged the Solinst will emit an audible tone and the red indicator light will illuminate.
- 2. Lower the end of the probe into the well or borehole. The probe will cause the unit to emit the tone and illuminate the light when it contacts water.
- 3. Pull the probe back a few inches and lower the probe in smaller increments until the water level is measured to within 0.01 feet.
- 4. The water level is read directly from the Solinst tape, and already includes a correction for the length of the probe on the bottom of the tape.
- **D. INTERFACE PROBE:** This is the only reliable method for wells with floating free product.
  - 1. Push the On/Off button to turn unit on. Lower the probe into the liquid. The horn will sound a steady tone and the yellow light will illuminate when the probe contacts an oil product. Slowly raise probe until sound stops, lower until sound is heard again to refine the oil level.
  - 2. Read the tape marking and note as the surface level of product.
  - 3. Slowly lower the probe through the oil product, searching for the oil-water interface. When the probe reaches water the tone will switch from steady to a beeping tone and the red light will illuminate. Slowly move probe up and down to refine the oil/water interface to within 0.01 feet. Read the water level directly from the tape. The length of the probe is already considered.

**NOTE:** Auto Shutoff Feature: After approximately five minutes of power on, the unit will auto-shut off. A chirping sound will be heard, warning impending shut off. Press

<POWER ON/RENEW> to continue operation. During five minute interval, short "alive" beep is heard.

#### IV. PRECAUTIONS AND COMMON PROBLEMS:

- 1. Be sure to allow sufficient time after development, purging or pumping to allow the well to recover to static conditions.
- 2. Sounding may be difficult with very deep water levels or in noisy conditions because the sound is hard to hear.
- 3. Measurement of water levels in pumping wells or wells/boreholes with cascading water can be difficult. Installing a narrow PVC access tube inside the well casing can make obtaining accurate readings easier.
- 4. Free product floating on the water table depresses the natural water level. If a true water level is required, the product of the oil thickness and the oil specific gravity must be added to the oil/water interface elevation.
- 5. If there is no measurement mark on the well riser, add one in indelible ink.

#### V. DOCUMENTATION

- 1. Record water levels in a field notebook or Groundwater Monitoring Data Sheet (SOP 07-02-01). Be sure to record the date and time of the measurement.
- 2. Data should be incorporated into the Trip Report (SOP 07-02-04). Method of measurement should be reported.

### VI. REFERENCES: None

#### 07-01-01 MAINTAINING SAMPLE CHAIN OF CUSTODY

- I. SCOPE AND APPLICABILITY: This procedure is to be employed whenever samples are collected for laboratory analysis, and is designed to ensure that sample integrity is maintained. These procedures are necessary to assure that samples are defensible.
- II. PROJECT-SPECIFIC REQUIREMENTS: None.

#### III. METHODOLOGY

- **A. SAMPLE CUSTODY:** The sampling personnel must maintain custody of the samples until they are delivered to the laboratory, at which time the laboratory takes over the custody record. A sample is considered to be in custody if:
  - it is in the investigator's actual possession
  - it is in view of the investigator
  - it has been placed in a secure area
  - a signed custody seal has been placed on the sample container such that the seal would be destroyed if the container was opened.

#### **B. CUSTODY RECORD**

- 1. Complete a Chain-of-Custody Form for each shipping container of samples as described in SOP 07-02-02. Place the white copy of the completed form in the shipping container with the samples, as discussed in SOP 07-01-03.
- 2. Affix a signed custody seal to secure all samples. Seals may be placed across the lids of individual sample bottles, or on each shipping container of samples. If seals are placed on shipping containers, at least two seals must be used, and they must be placed such that the container cannot be opened without breaking the seals.

#### IV. PRECAUTIONS AND COMMON PROBLEMS

A. It may be necessary to cover custody seals with clear postal tape to prevent them from falling off.

B. Deliver or fax a copy of the custody form to the Project Manager within 24 hours of shipping the samples so that any errors can be corrected before the laboratory begins processing the samples.

#### V. DOCUMENTATION

- A. The pink copy of the Chain-of-Custody Form should be submitted to the Project Manager as soon as possible after the samples are shipped.
- B. The Project Manager or a designee must review the form for completeness and correctness. Any errors should be flagged, and the laboratory should be contacted if errors could affect analysis. The reviewer should initial and date the form, then place it in the Project File.
- C. Compliance or problems with custody procedures should be documented in the Trip Report (SOP 07-02-04).

#### VI. REFERENCES

EPA Region IV; 1991. Environmental Compliance Branch, Standard Operating Procedures and Quality Assurance Manual. Athens, Georgia.

#### 07-02-01 GROUNDWATER MONITORING DATA SHEET

- I. SCOPE AND APPLICABILITY: A Groundwater Monitoring Data Sheet is completed each time water samples are collected to document field data and sampling methodology.
- II. PROJECT-SPECIFIC REQUIREMENTS: None.
- **III. METHODOLOGY:** Complete the form (Exhibit 07-02-01) as samples are collected, as follows:
  - a. Self explanatory
  - b. CEC project number
  - c. Names or initials of all members of the sampling team
  - d. Complete well designation
  - e. Depth to water level, reported to  $\pm 0.01$  ft. (Check measurement datum at the top of the column.)
  - f. Date and time well purging is started
  - g. Volume of water removed, in gallons
  - h. Check if well was purged to dryness
  - i. Indicate method of purging, such as submersible pump or bailer
  - j. Date and time that the actual sample was withdrawn. If sample bottles were filled at multiple, separate times, these should all be indicated.
  - k. Self explanatory (Check units for temperature.)
  - 1. Unusual odors or other observations
  - m. Other atypical information, such as special handling of purge water or field problems
- **IV. PRECAUTIONS AND COMMON PROBLEMS:** All information required by the form must be provided.
- V. **DOCUMENTATION:** Attach the form to the Trip Report (SOP 07-02-04).
- VI. REFERENCES: None.