
NORTH FORK FORKED DEER RIVER WATERSHED (08010204)

OF THE MISSISSIPPI RIVER BASIN

WATERSHED WATER QUALITY MANAGEMENT PLAN

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL WATERSHED MANAGEMENT SECTION 2003

GLOSSARY

1Q20. The lowest average 1 consecutive days flow with average recurrence frequency of once every 20 years.

30Q2. The lowest average 3 consecutive days flow with average recurrence frequency of once every 2 years.

7Q10. The lowest average 7 consecutive days flow with average recurrence frequency of once every 10 years.

303(d). The section of the federal Clean Water Act that requires a listing by states, territories, and authorized tribes of impaired waters, which do not meet the water quality standards that states, territories, and authorized tribes have set for them, even after point sources of pollution have installed the minimum required levels of pollution control technology.

305(b). The section of the federal Clean Water Act that requires EPA to assemble and submit a report to Congress on the condition of all water bodies across the Country as determined by a biennial collection of data and other information by States and Tribes.

AFO. Animal Feeding Operation.

Ambient Sites. Those sites established for long term instream monitoring of water quality.

ARAP. Aquatic Resource Alteration Permit.

Assessment. The result of an analysis of how well streams meet the water quality criteria assigned to them.

Bankfull Discharge. The momentary maximum peak flow before a stream overflows its banks onto a floodplain.

Basin. An area that drains several smaller watersheds to a common point. Most watersheds in Tennessee are part of the Cumberland, Mississippi, or Tennessee Basin (The Conasauga River and Barren River Watersheds are the exceptions).

Benthic. Bottom dwelling.

Biorecon. A qualitative multihabitat assessment of benthic macroinvertebrates that allows rapid screening of a large number of sites. A Biorecon is one tool used to recognize stream impairment as judged by species richness measures, emphasizing the presence or absence of indicator organisms without regard to relative abundance.

BMP. An engineered structure or management activity, or combination of these, that eliminates or reduces an adverse environmental effect of a pollutant.

BOD. Biochemical Oxygen Demand. A measure of the amount of oxygen consumed in the biological processes that break down organic and inorganic matter.

CAFO. Concentrated Animal Feeding Operation.

Designated Uses. The part of Water Quality Standards that describes the uses of surface waters assigned by the Water Quality Control Board. All streams in Tennessee are designated for Recreation, Fish and Aquatic Life, Irrigation, and Livestock Watering and Wildlife. Additional designated uses for some, but not all, waters are Drinking Water Supply, Industrial Water Supply, and Navigation.

DMR. Discharge Monitoring Report. A report that must be submitted periodically to the Division of Water Pollution Control by NPDES permitees.

DO. Dissolved oxygen.

EPA. Environmental Protection Agency. The EPA Region 4 web site is http://www.epa.gov/region4/

Field Parameter. Determinations of water quality measurements and values made in the field using a kit or probe. Common field parameters include pH, DO, temperature, conductivity, and flow.

Fluvial Geomorphology. The physical characteristics of moving water and adjoining landforms, and the processes by which each affects the other.

HUC-8. The 8-digit Hydrologic Unit Code corresponding to one of 54 watersheds in Tennessee.

HUC-10. The 10-digit NRCS Hydrologic Unit Code. HUC-10 corresponds to a smaller land area than HUC-8.

HUC-12. The 12-digit NRCS Hydrologic Unit Code. HUC-12 corresponds to a smaller land area than HUC-10.

MRLC. Multi-Resolution Land Classification.

MS4. Municipal Separate Storm Sewer System.

Nonpoint Source (NPS). Sources of water pollution without a single point of origin. Nonpoint sources of pollution are generally associated with surface runoff, which may carry sediment, chemicals, nutrients, pathogens, and toxic materials into receiving waterbodies. Section 319 of the Clean Water Act of 1987 requires all states to assess the impact of nonpoint source pollution on the waters of the state and to develop a program to abate this impact.

NPDES. National Pollutant Discharge Elimination System. Section 402 of the Clean Water Act of 1987 requires dischargers to waters of the U.S. to obtain NPDES permits.

NRCS. Natural Resources Conservation Service. NRCS is part of the federal Department of Agriculture. The NRCS home page is http://www.nrcs.usda.gov

Point Source. Any discernable, confined, and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged. This term does not include agricultural storm water discharges and return flows from irrigated agriculture (Clean Water Act Section 502(14)).

Q Design. The average daily flow that a treatment plant or other facility is designed to accommodate.

Reference Stream (Reference Site). A stream (site) judged to be least impacted. Data from reference streams are used for comparisons with similar streams.

SBR. Sequential Batch Reactor.

Stakeholder. Any person or organization affected by the water quality or by any watershed management activity within a watershed.

STATSGO. State Soil Geographic Database. STATSGO is compiled and maintained by the Natural Resources Conservation Service.

STORET. The EPA repository for water quality data that is used by state environmental agencies, EPA and other federal agencies, universities, and private citizens. STORET (Storage and Retrieval of National Water Quality Data System) data can be accessed at http://www.epa.gov/storet/

TDA. Tennessee Department of Agriculture. The TDA web address is http://www.state.tn.us/agriculture

TDEC. Tennessee Department of Environment and Conservation. The TDEC web address is http://www.tdec.net

TMDL. Total Maximum Daily Load. A TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of the amount to the pollutant's sources. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation includes a margin of safety to ensure that the waterbody can be used for the purposes the State has designated. The calculation must also account for seasonal variation in water quality. A TMDL is required for each pollutant in an impaired stream as described in Section 303 of the Federal Clean Water Act of 1987. Updates and information on Tennessee's TMDLs can be found at http://www.tdec.net/wpc/tmdl/

TMSP. Tennessee Multi-Sector Permit.

USGS. United States Geological Survey. USGS is part of the federal Department of the Interior. The USGS home page is http://www.usgs.gov/.

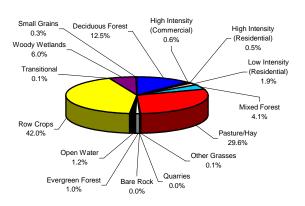
WAS. Waste Activated Sludge.

Water Quality Standards. A triad of designated uses, water quality criteria, and antidegradation statement. Water Quality Standards are established by Tennessee and approved by EPA.

Watershed. A geographic area which drains to a common outlet, such as a point on a larger stream, lake, underlying aquifer, estuary, wetland, or ocean.

WET. Whole Effluent Toxicity.

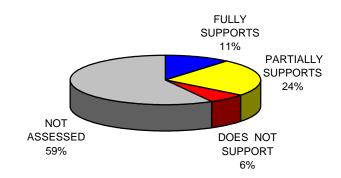
WWTP. Waste Water Treatment Plant


Summary – North Fork Forked Deer River

In 1996, the Tennessee Department of Environment and Conservation Division of Water Pollution Control adopted a watershed approach to water quality. This approach is based on the idea that many water quality problems, like the accumulation of point and nonpoint pollutants, are best addressed at the watershed level. Focusing on the whole watershed helps reach the best balance among efforts to control point sources of pollution and polluted runoff as well as protect drinking water sources and sensitive natural resources such as wetlands. Tennessee has chosen to use the USGS 8-digit Hydrologic Unit Code (HUC-8) as the organizing unit.

The Watershed Approach recognizes awareness that restoring and maintaining our waters requires crossing traditional barriers (point *vs.* nonpoint sources of pollution) when designing solutions. These solutions increasingly rely on participation by both public and private sectors, where citizens, elected officials, and technical personnel all have opportunities to participate. The Watershed Approach provides the framework for a watershed-based and community-based approach to address water quality problems.

Chapter 1 of the North Fork Forked Deer River Watershed Water Quality Management Plan discusses the Watershed Approach and emphasizes that the Watershed Approach is not a regulatory program or an EPA mandate; rather it is a decision-making process that reflects a common strategy for information collection and analysis as well as a common understanding of the roles, priorities, and responsibilities of all stakeholders within a watershed. Traditional activities like permitting, planning and monitoring are also coordinated in the Watershed Approach.


A detailed description of the watershed can be found in Chapter 2. The North Fork Forked Deer River Watershed is approximately 962 square miles and includes parts of six West Tennessee counties. A part of the Mississippi River drainage basin, the watershed has 1,314 stream miles and 655 lake acres.

Land Use in the North Fork Forked Deer River Watershed is based on MRLC Satellite Imagery.

Three interpretive areas and one wildlife management area are located in the watershed. Eleven rare plant and animal species have been documented in the watershed, including one rare fish species and one rare mussel species.

A review of water quality sampling and assessment is presented in Chapter 3. Using the Watershed Approach to Water Quality, 32 sampling sites were utilized in the North Fork Forked Deer River Watershed. These were ambient, ecoregion or watershed monitoring sites. Monitoring results support the conclusion that 11% of total stream miles (based on RF3) fully support designated uses.

Water Quality Assessment in the North Fork Forked Deer River Watershed is Based on the 1998 303(d) List.

Also in Chapter 3, a series of maps illustrate Overall Use Support in the watershed, as well as Use Support for the individual uses of Fish and Aquatic Life Support, Recreation, Irrigation, and Livestock Watering and Wildlife. Another series of maps illustrate streams that are listed for impairment by specific causes (pollutants) such as Organic Enrichment/Low Dissolved Oxygen, Pathogens, Habitat Alteration and Siltation.

Point and Nonpoint Sources are addressed in Chapter 4, which is organized by HUC-10 subwatersheds. Maps illustrating the locations of STORET monitoring sites and USGS stream gauging stations are presented in each subwatershed.

HUC-10 Subwatersheds in the North Fork Forked Deer River Watershed.

Point source contributions to the North Fork Forked Deer River Watershed consist of ten individual NPDES-permitted facilities, nine of which discharge into streams that have been listed on the 1998 303(d) list. Other point source permits in the watershed are Aquatic Resource Alteration Permits (32), Tennessee Multi-Sector Permits (49), Mining Permits (2), and Concentrated Animal Feeding Operation Permits (1). Agricultural operations include cattle, chicken, hog, and sheep farming. Maps illustrating the locations of NPDES and ARAP permit sites are presented in each subwatershed.

Chapter 5 is entitled Water Quality Partnerships in the North Fork Forked Deer River Watershed and highlights partnerships between agencies and between agencies and landowners that are essential to success. Programs of federal agencies (Natural Resources Conservation Service, U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, U.S. Geological Survey), and state agencies (TDEC Division of Community Assistance, TDEC Division of Water Supply, West Tennessee River Basin Authority and Tennessee Department of Agriculture) are summarized.

Point and Nonpoint source approaches to water quality problems in the North Fork Forked Deer River Watershed are addressed in Chapter 6. Chapter 6 also includes comments received during public meetings, along with an assessment of needs for the watershed.

The full North Fork Forked Deer River Watershed Water Quality Management Plan can be found at: http://www.state.tn.us/environment/wpc/watershed/wsmplans/.

CHAPTER 1

WATERSHED APPROACH TO WATER QUALITY

- 1.1 Background
- 1.2 Watershed Approach to Water Quality1.2.A. Components of the Watershed Approach1.2.B. Benefits of the Watershed Approach

1.1 BACKGROUND. The Division of Water Pollution Control is responsible for administration of the Tennessee Water Quality Control Act of 1977 (TCA 69–3–101). Information about the Division of Water Pollution Control, updates and announcements, may be found at http://www.state.tn.us/environment/wpc/index.html, and a summary of the organization of the Division of Water Pollution Control may be found in Appendix I.

The mission of the Division of Water Pollution Control is to abate existing pollution of the waters of Tennessee, to reclaim polluted waters, to prevent the future pollution of the waters, and to plan for the future use of the waters so that the water resources of Tennessee might be used and enjoyed to the fullest extent consistent with the maintenance of unpolluted waters.

The Division monitors, analyzes, and reports on the quality of Tennessee's water. In order to perform these tasks more effectively, the Division adopted a Watershed Approach to Water Quality in 1996.

This Chapter summarizes TDEC's Watershed Approach to Water Quality.

1.2 WATERSHED APPROACH TO WATER QUALITY. The Watershed Approach to Water Quality is a coordinating framework designed to protect and restore aquatic systems and protect human health more effectively (EPA841-R-95-003). The Approach is based on the concept that many water quality problems, like the accumulation of pollutants or nonpoint source pollution, are best addressed at the watershed level. In addition, a watershed focus helps identify the most cost-effective pollution control strategies to meet clean water goals. Tennessee's Watershed Approach, updates and public participation opportunities, be found may on the web http://www.state.tn.us/environment/wpc/wshed1.htm.

Watersheds are appropriate as organizational units because they are readily identifiable landscape units with readily identifiable boundaries that integrate terrestrial, aquatic, and geologic processes. Focusing on the whole watershed helps reach the best balance among efforts to control point source pollution and polluted runoff as well as protect drinking water sources and sensitive natural resources such as wetlands (EPA-840-R-98-001).

Four main features are typical of the Watershed Approach: 1) Identifying and prioritizing water quality problems in the watershed, 2) Developing increased public involvement, 3) Coordinating activities with other agencies, and 4) Measuring success through increased and more efficient monitoring and other data gathering.

Typically, the Watershed Approach meets the following description (EPA841-R-95-003):

- Features watersheds or basins as the basic management units
- Targets priority subwatersheds for management action
- Addresses all significant point and nonpoint sources of pollution
- Addresses all significant pollutants
- Sets clear and achievable goals
- Involves the local citizenry in all stages of the program
- Uses the resources and expertise of multiple agencies
- Is not limited by any single agency's responsibilities
- Considers public health issues

An additional characteristic of the Watershed Approach is that it complements other environmental activities. This allows for close cooperation with other state agencies and local governments as well as with federal agencies such as the Tennessee Valley Authority and the U.S. Army Corps of Engineers, U.S. Department of Agriculture (e.g., Natural Resources Conservation Service, United States Forest Service), U.S. Department of the Interior (e.g. United States Geological Survey, U.S. Fish and Wildlife Service, National Park Service). When all permitted dischargers are considered together, agencies are better able to focus on those controls necessary to produce measurable improvements in water quality. This also results in a more efficient process: It encourages agencies to focus staff and financial resources on prioritized geographic locations and makes it easier to coordinate between agencies and individuals with an interest in solving water quality problems (EPA841-R-003).

The Watershed Approach is not a regulatory program or a new EPA mandate; rather it is a decision making process that reflects a common strategy for information collection and analysis as well as a common understanding of the roles, priorities, and responsibilities of all stakeholders within a watershed. The Watershed Approach utilizes features already in state and federal law, including:

- Water Quality Standards
- National Pollutant Discharge Elimination System (NPDES)
- Total Maximum Daily Loads (TMDLs)
- Clean Lakes Program
- Nonpoint Source Program
- Groundwater Protection

Traditional activities like permitting, planning, and monitoring are also coordinated in the Watershed Approach. A significant change from the past, however, is that the Watershed Approach encourages integration of traditional regulatory (point source pollution) and nonregulatory (nonpoint sources of pollution) programs. There are additional changes from the past as well:

THE PAST	WATERSHED APPROACH		
Focus on fixed-station ambient monitoring	Focus on comprehensive watershed monitoring		
Focus on pollutant discharge sites	Focus on watershed-wide effects		
Focus on WPC programs	Focus on coordination and cooperation		
Focus on point sources of pollution	Focus on all sources of pollution		
Focus on dischargers as the problem	Focus on dischargers as an integral part of the solution		
Focus on short-term problems	Focus on long-term solutions		

Table 1-1. Contrast Between the Watershed Approach and the Past.

This approach places greater emphasis on all aspects of water quality, including chemical water quality (conventional pollutants, toxic pollutants), physical water quality (temperature, flow), habitat quality (channel morphology, composition and health of benthic communities), and biodiversity (species abundance, species richness).

1.2.A. Components of the Watershed Approach. Tennessee is composed of fifty-five watersheds corresponding to the 8-digit USGS Hydrologic Unit Codes (HUC-8). These watersheds, which serve as geographic management units, are combined in five groups according to year of implementation.

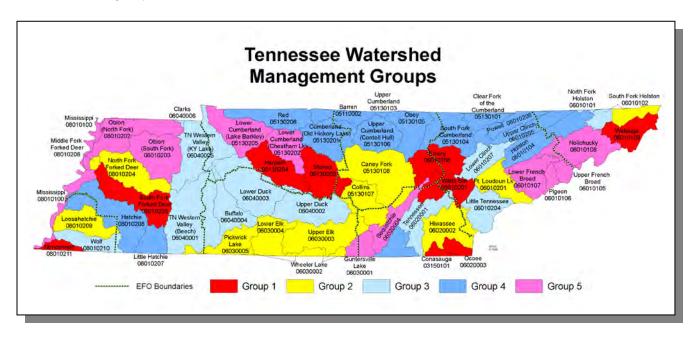


Figure 1-1. Watershed Groups in Tennessee's Watershed Approach to Water Quality.

Each year, TDEC conducts monitoring in one-fifth of Tennessee's watersheds; assessment, priority setting and follow-up monitoring are conducted in another one fifth of watersheds; modeling and TMDL studies in another one fifth; developing management plans in another one fifth of watersheds.

GROUP	WEST TENNESSEE	MIDDLE TENNESSEE	EAST TENNESSEE
GROUP	TENNESSEE	IENNESSEE	IENNESSEE
1	Nonconnah South Fork Forked Deer	Harpeth Stones	Conasauga Emory Ocoee Watauga Watts Bar
2	Loosahatchie Middle Fork Forked Deer North Fork Forked Deer	Caney Fork Collins Lower Elk Pickwick Lake Upper Elk Wheeler Lake	Fort Loudoun Hiwassee South Fork Holston (Upper) Wheeler Lake
3	Tennessee Western Valley (Beech River) Tennessee Western Valley (KY Lake) Wolf River	Buffalo Lower Duck Upper Duck	Little Tennessee Lower Clinch North Fork Holston South Fork Holston (Lower) Tennessee (Upper)
4	Lower Hatchie Upper Hatchie	Barren Obey Red Upper Cumberland (Cordell Hull Lake) Upper Cumberland (Old Hickory Lake) Upper Cumberland (Cumberland Lake)	Holston Powell South Fork Cumberland Tennessee (Lower) Upper Clinch Upper Cumberland (Clear Fork)
5	Mississippi North Fork Obion South Fork Obion	Guntersville Lake Lower Cumberland (Cheatham Lake) Lower Cumberland (Lake Barkley)	Lower French Broad Nolichucky Pigeon Upper French Broad

Table 1-2. Watershed Groups in Tennessee's Watershed Approach.

In succeeding years of the cycle, efforts rotate among the watershed groups. The activities in the five year cycle provide a reference for all stakeholders.

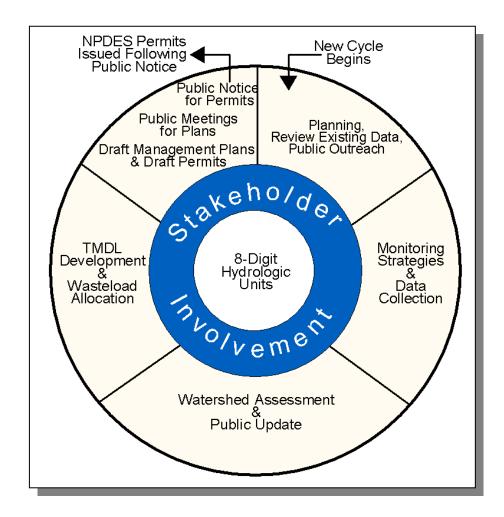


Figure 1-2. The Watershed Approach Cycle.

The six key activities that take place during the cycle are:

- Planning and Existing Data Review. Existing data and reports from appropriate agencies and organizations are compiled and used to describe the current conditions and status of rivers and streams. Reviewing all existing data and comparing agencies' work plans guide the development of an effective monitoring strategy.
- 2. Monitoring. Field data is collected for streams in the watershed. These data supplement existing data and are used for the water quality assessment.
- 3. Assessment. Monitoring data are used to determine the status of the stream's designated use supports.
- 4. Wasteload Allocation/TMDL Development. Monitoring data are used to determine nonpoint source contributions and pollutant loads for permitted dischargers releasing wastewater to the watershed. Limits are set to assure that water quality is protected.
- Permits. Issuance and expiration of all discharge permits are synchronized based on watersheds. Currently, 1700 permits have been issued in Tennessee under the federally delegated National Pollutant Discharge Elimination System (NPDES).
- 6. Watershed Management Plans. These plans include information for each watershed including general watershed description, water quality goals, major water quality concerns and issues, and management strategies.

Public participation opportunities occur throughout the entire five year cycle. Participation in Years 1, 3 and 5 is emphasized, although additional meetings are held at stakeholder's request. People tend to participate more readily and actively in protecting the quality of waters in areas where they live and work, and have some roles and responsibilities:

- Data sharing
- Identification of water quality stressors
- Participation in public meetings
- Commenting on management plans
- Shared commitment for plan implementation

1.2.B. Benefits of the Watershed Approach. The Watershed Approach fosters a better understanding of the physical, chemical and biological effects on a watershed, thereby allowing agencies and citizens to focus on those solutions most likely to be effective. The Approach recognizes the need for a comprehensive, ecosystem-based approach that depends on local governments and local citizens for success (EPA841-R-95-004). On a larger scale, many lessons integrating public participation with aquatic ecosystem-based programs have been learned in the successful Chesapeake Bay, Great Lakes, Clean Lakes, and National Estuary Programs.

Benefits of the Watershed Approach include (EPA841-R-95-004):

- Focus on water quality goals and ecological integrity rather than on program activities such as number of permits issued.
- Improve basis for management decisions through consideration of both point and nonpoint source stressors. A watershed strategy improves the scientific basis for decision making and focuses management efforts on basins and watersheds where they are most needed. Both point and nonpoint control strategies are more effective under a watershed approach because the Approach promotes timely and focused development of TMDLs.
- Enhance program efficiency, as the focus becomes watershed. A watershed focus can improve the efficiency of water management programs by facilitating consolidation of programs within each watershed. For example, handling all point source dischargers in a watershed at the same time reduces administrative costs due to the potential to combine hearings and notices as well as allowing staff to focus on more limited areas in a sequential fashion.
- Improve coordination between federal, state and local agencies including data sharing and pooling of resources. As the focus shifts to watersheds, agencies are better able to participate in data sharing and coordinated assessment and control strategies.
- Increase public involvement. The Watershed Approach provides opportunities
 for stakeholders to increase their awareness of water-related issues and
 inform staff about their knowledge of the watershed. Participation is via three
 public meetings over the five-year watershed management cycle as well as
 meetings at stakeholder's request. Additional opportunities are provided
 through the Department of Environment and Conservation homepage and
 direct contact with local Environmental Assistance Centers.
- Greater consistency and responsiveness. Developing goals and management plans for a basin or watershed with stakeholder involvement results in increased responsiveness to the public and consistency in determining management actions. In return, stakeholders can expect improved consistency and continuity in decisions when management actions follow a watershed plan.

Chapter 1

Additional benefits of working at the watershed level are described in the Clean Water Action Plan (EPA-840-R-98-001), and can be viewed at http://www.cleanwater.gov/action/toc.html.

The Watershed Approach represents awareness that restoring and maintaining our waters requires crossing traditional barriers (point *vs.* nonpoint sources of pollution) when designing solutions. These solutions increasingly rely on participation by both public and private sectors, where citizens, elected officials and technical personnel all have opportunity to participate. This integrated approach mirrors the complicated relationships in which people live, work and recreate in the watershed, and suggests a comprehensive, watershed-based and community-based approach is needed to address these (EPA841-R-97-005).

CHAPTER 2

DESCRIPTION OF THE NORTH FORK FORKED DEER RIVER WATERSHED

2.1	l	Ra	ck	ar	Λı	ınd
Z .		Dа	UN	u	υι	ariu

- 2.2. Description of the Watershed
 - 2.2.A. General Location
 - 2.2.B. Population Density Centers
- 2.3. General Hydrologic Description
 - 2.3.A. Hydrology
 - 2.3.B. Dams
- 2.4. Land Use
- 2.5. Ecoregions and Reference Streams
- 2.6. Natural Resources
 - 2.6.A. Designated State Natural Areas
 - 2.6.B. Rare Plants and Animals
 - 2.6.C. Wetlands
- 2.7. Cultural Resources
 - 2.7.A. Interpretive Areas
 - 2.7.B. Wildlife Management Areas
- 2.8. Tennessee Rivers Assessment Project

2.1. BACKGROUND. The North Fork Forked Deer Watershed contains streams with increased gradient, generally sandy substrates, and distinctive faunal characteristics. The Forked Deer river system has wide floodplains. Most of its streams have been channelized.

Waterfowl, raptors, and migratory songbirds are relatively abundant in the region. The watershed supports cotton and grain production. Wildlife Management Areas attract duck hunters.

This Chapter describes the location and characteristics of the North Fork Forked Deer River Watershed.

2.2. DESCRIPTION OF THE WATERSHED.

<u>2.2.A.</u> General Location. The North Fork Forked Deer River Watershed is located in West Tennessee and includes parts of Carroll, Crockett, Dyer, Gibson, Henderson, and Madison Counties.

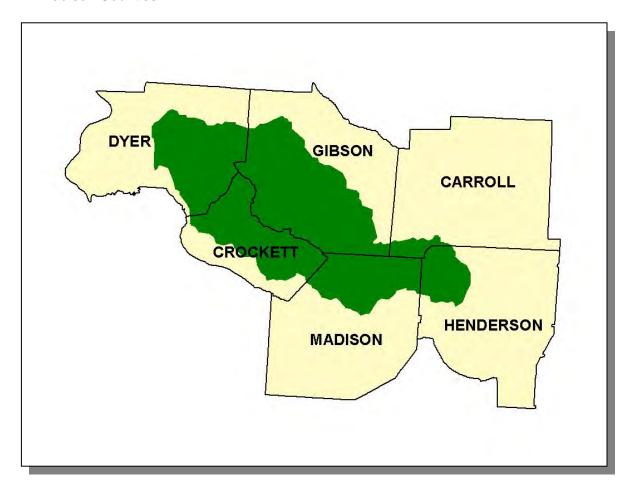


Figure 2-1. General Location of the North Fork Forked Deer River Watershed.

COUNTY	% OF WATERSHED IN EACH COUNTY
Henderson	47.5
Madison	27.6
Gibson	24.9
Dyer	19.8
Crockett	9.8
Carroll	7.4

Table 2-1. The North Fork Forked Deer River Watershed Includes Parts of Six West Tennessee Counties.

<u>2.2.B.</u> Population Density Centers. Two interstates (I-40, I-155) and six state highways serve the major communities in the North Fork Forked Deer River Watershed.

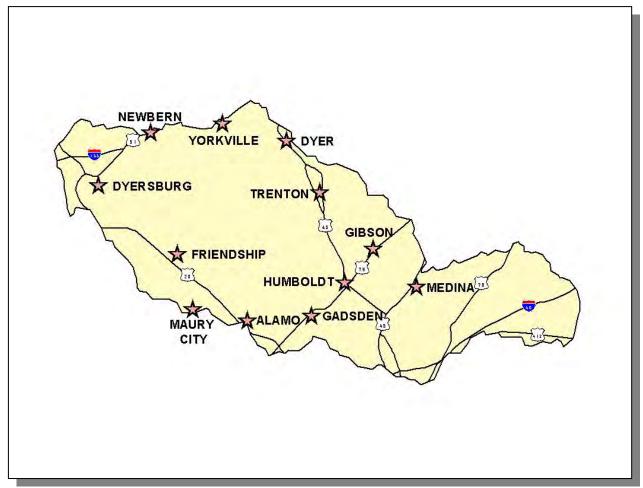


Figure 2-2. Municipalities and Roads in the North Fork Forked Deer River Watershed.

MUNICIPALITY	POPULATION	COUNTY
Alamo*	2,396	Crockett
Dyer	2,239	Gibson
Dyersburg*	18,658	Dyer
Friendship	486	Crockett
Gadsden	540	Crockett
Gibson	365	Gibson
Humboldt	9,672	Gibson
Maury City	816	Crockett
Medina	702	Gibson
Newbern	2,868	Dyer
Trenton*	4,646	Gibson
Yorkville	370	Gibson

Table 2-2. Municipalities in the North Fork Forked Deer River Watershed. Population based on 1996 census (Tennessee Blue Book). Asterisk (*) indicates county seat.

2.3. GENERAL HYDROLOGIC DESCRIPTION.

<u>2.3.A.</u> Hydrology. The North Fork Forked Deer River Watershed, designated the Hydrologic Unit Code 08010204 by the USGS, is approximately 962 square miles, includes the Middle Fork Forked Deer River, and drains to the Forked Deer River.

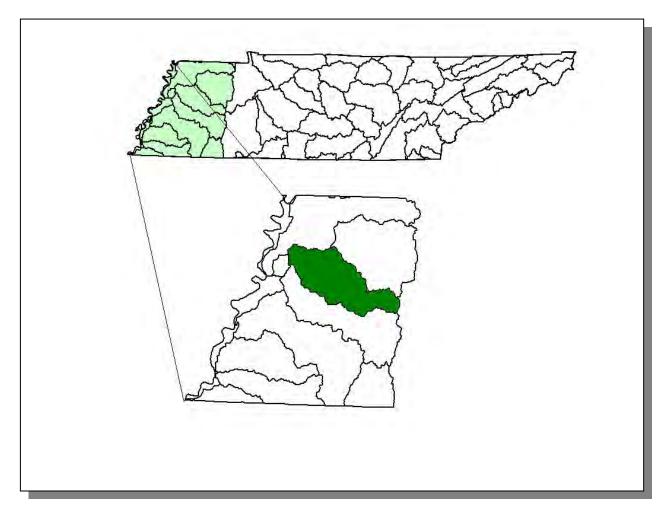
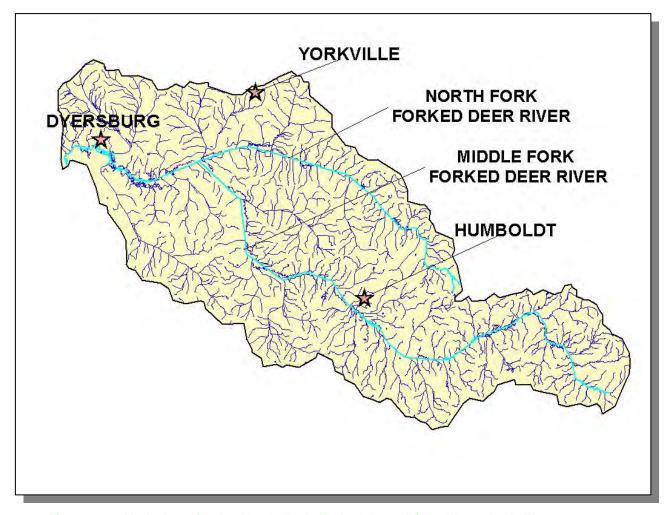



Figure 2-3. The North Fork Forked Deer River Watershed is Part of the Mississippi River Basin.

Figure 2-4. Hydrology in the North Fork Forked Deer River Watershed. There are 1,314 stream miles and 655 lake acres recorded in River Reach File 3 in the North Fork Forked Deer River Watershed. Locations of North Fork Forked Deer River, Middle Fork Forked Deer River, and the cities of Dyersburg, Humboldt, and Yorkville are shown for reference.

<u>2.3.B.</u> Dams. There are 57 dams inventoried by TDEC Division of Water Supply in the North Fork Forked Deer River Watershed. These dams either retain 30 acre-feet of water or have structures at least 20 feet high.

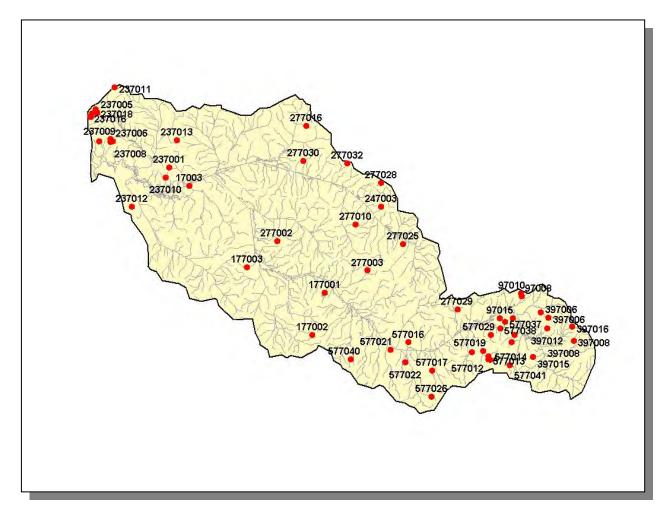


Figure 2-5. Location of Inventoried Dams in the North Fork Forked Deer River Watershed. More information is provided in NFFD-Appendix II and on the TDEC homepage at: http://gwidc.gwi.memphis.edu/website/dams/viewer.htm

2.4. LAND USE. Land Use/Land Cover information was provided by EPA Region 4 and was interpreted from 1992 Multi-Resolution Land Cover (MRLC) satellite imagery.

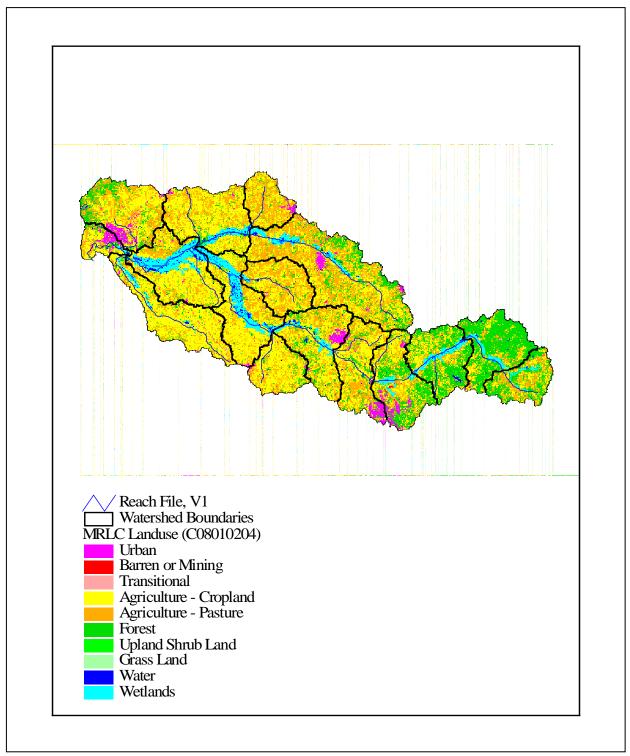


Figure 2-6. Illustration of Select Land Cover/Land Use Data from MRLC Satellite Imagery.

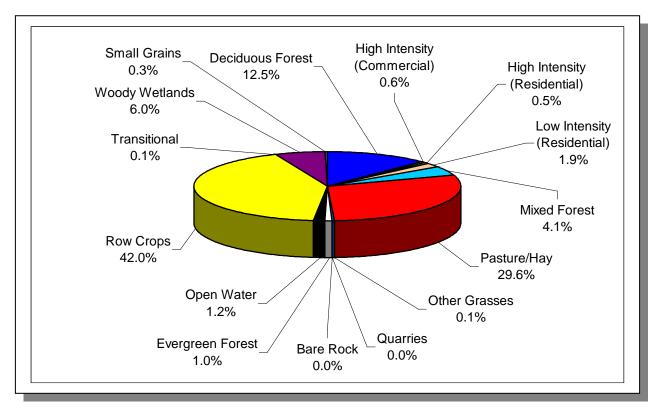


Figure 2-7. Land Use Distribution in the North Fork Forked Deer River Watershed. More information is provided in NFFD-Appendix II.

2.5. ECOREGIONS AND REFERENCE STREAMS. Ecoregions are defined as relatively homogeneous areas of similar geography, topography, climate and soils that support similar plant and animal life. Ecoregions serve as a spatial framework for the assessment, management, and monitoring of ecosystems and ecosystem components. Ecoregion studies include the selection of regional stream reference sites, identifying high quality waters, and developing ecoregion-specific chemical and biological water quality criteria.

There are eight Level III Ecoregions and twenty-five Level IV subecoregions in Tennessee. The North Fork Forked Deer River Watershed lies within 3 Level III ecoregions (Southern Plains, Mississippi Alluvial Plain, Mississippi Valley Loess Plain) and contains 4 Level IV subecoregions (Griffen, Omernik, Azavedo, 1997):

- The Southeastern Plains and Hills (65e) contain several north-south trending bands of sand and clay formations. Tertiary-age sand, clay, and lignite are to the west, and Cretaceous-age fine sand, fossiliferous micaceous sand, and silty clays are to the east. With elevations reaching over 650 feet, and more rolling topography and more relief than the Loess Plains (74b) to the west, streams have increased gradient, generally sandy substrates, and distinctive faunal characteristics for west Tennessee. The natural vegetation type is oakhickory forest, grading into oak-hickory-pine to the south.
- The Northern Mississippi Alluvial Plain (73a) within Tennessee is a relatively flat region of Quaternary alluvial deposits of sand, silt, clay, and gravel. It is bounded distinctly on the east by the Bluff Hills (74a), and on the west by the Mississippi River. Average elevations are 200-300 feet with little relief. Most of the region is in cropland, with some areas of deciduous forest. Soybeans, cotton, corn, sorghum, and vegetables are the main crops. The natural vegetation consists of Southern floodplain forest (oak, tupelo, bald cypress). The two main distinctions in the Tennessee portion of the ecoregion are between areas of loamy, silty, and sandy soils with better drainage, and areas of more clayey soils of poor drainage that may contain wooded swampland and oxbow lakes. Waterfowl, raptors, and migratory songbirds are relatively abundant in the region.
- The Bluff Hills (74a) consist of sand, clay, silt, and lignite, and are capped by looess greater than 60 feet deep. The disjunct region in Tennessee encompasses those thick loess areas that are generally the steepest, most dissected, and forested. The carved loess has a mosaic of microenvironments, including dry slopes and ridges, moist slopes, ravines, bottomland areas, and small cypress swamps. While oak-hickory is the general forest type, some of the undisturbed bluff vegetation is rich in mesophytes, such as beech and sugar maple, with similarities to hardwood forests of eastern Tennessee. Smaller streams of the Bluff Hills have localized reaches of increased gradient and small areas of gravel substrate that create aquatic habitats that are distinct from those of the Loess Plains (74b) to the east. Unique, isolated fish assemblages more typical of upland habitats can be found in these stream reaches. Gravels are also exposed in places at the base of the bluffs.

• The Loess Plains (74b) are gently rolling, irregular plains, 250-500 feet in elevation, with loess up to 50 feet thick. The region is a productive agricultural area of soybeans, cotton, corn, milo, and sorghum crops, along with livestock and poultry. Soil erosion can be a problem on the steeper, upland Alfisol soils; bottom soils are mostly silty Entisols. Oak-hickory and southern floodplain forests are the natural vegetation types, although most of the forest cover has been removed for cropland. Some less-disturbed bottomland forest and cypress-gum swamp habitats still remain. Several large river systems with wide floodplains, the Obion, Forked Deer, Hatchie, Loosahatchie, and Wolf, cross the region. Streams are low-gradient and murky with silt and sand bottoms, and most have been channelized.

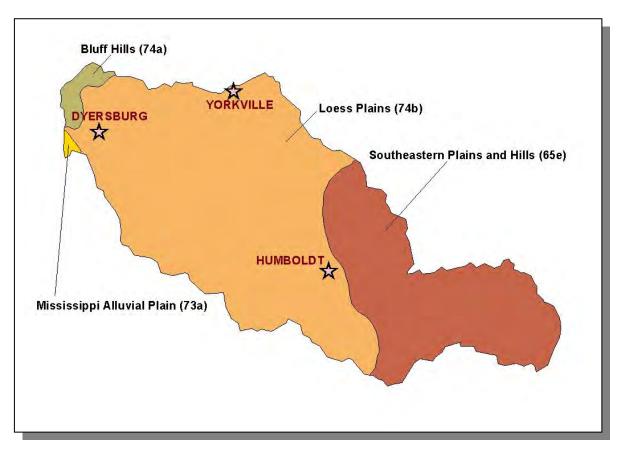


Figure 2-8. Level IV Ecoregions in the North Fork Forked Deer River Watershed. Locations of Dyersburg, Humboldt, and Yorkville are shown for reference.

Each Level IV Ecoregion has at least one reference stream associated with it. A reference stream represents a least impacted condition and may not be representative of a pristine condition.

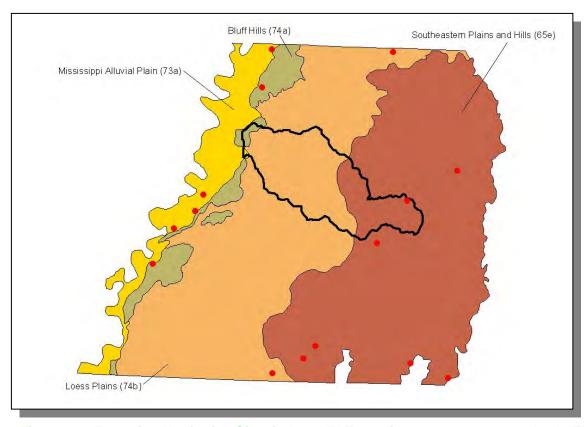


Figure 2-9. Ecoregion Monitoring Sites in Level IV Ecoregions 65e, 73a, 74a, and 74b. The North Fork Forked Deer River Watershed is shown for reference. More information is provided in NFFD-Appendix II.

2.6. NATURAL RESOURCES.

2.6.A. Rare Plants and Animals. The Heritage Program in the TDEC Division of Natural Heritage maintains a database of rare species that is shared by partners at The Nature Conservancy, Tennessee Wildlife Resources Agency, the US Fish and Wildlife Service, and the Tennessee Valley Authority. The information is used to: 1) track the occurrence of rare species in order to accomplish the goals of site conservation planning and protection of biological diversity, 2) identify the need for, and status of, recovery plans, and 3) conduct environmental reviews in compliance with the federal Endangered Species Act.

	NUMBER OF
GROUPING	RARE SPECIES
Crustaceans	0
Insects	0
Mussels	1
Snails	0
Amphibians	0
Birds	5
Fish	1
Mammals	0
Reptiles	0
Plants	4
Total	11

Table 2-3. There are 11 Rare Plant and Animal Species in the North Fork Forked Deer River Watershed.

In the North Fork Forked Deer River Watershed, there is one rare fish species, and one rare mussel species.

SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS
Etheostoma pyrrhogaster	Firebelly darter	MC	D
Pleurobema plenum	Rough pigtoe	LE	E

Table 2-4. Rare Aquatic Species in the North Fork Forked Deer River Watershed. Federal Status: LE, Listed Endangered by the U.S. Fish and Wildlife Service; MC, Management Concern for the U.S. Fish and Wildlife Service. State Status: E, Listed Endangered by the Tennessee Wildlife Resources Agency; D, Deemed in Need of Management by the Tennessee Wildlife Resources Agency. More information may be found at http://www.state.tn.us/environment/nh/tnanimal.html.

<u>2.6.B.</u> Wetlands. The Division of Natural Heritage maintains a database of wetland records in Tennessee. These records are a compilation of field data from wetland sites inventoried by various state and federal agencies. Maintaining this database is part of Tennessee's Wetland Strategy, which is described at:

http://www.state.tn.us/environment/epo/wetlands/strategy.zip.

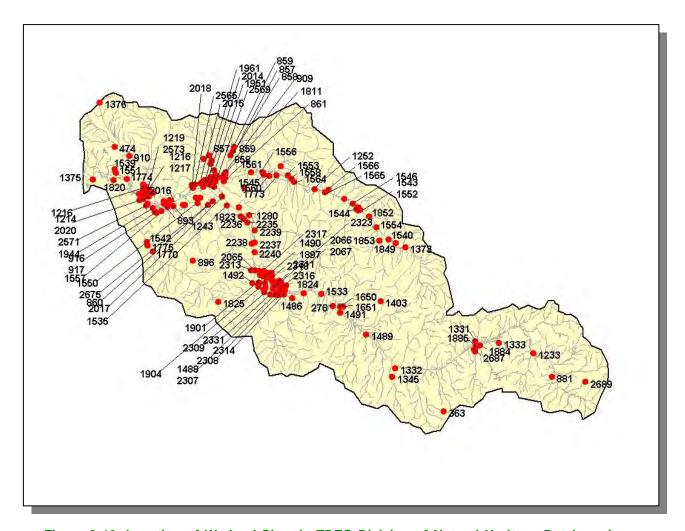


Figure 2-10. Location of Wetland Sites in TDEC Division of Natural Heritage Database in North Fork Forked Deer River Watershed. This map represents an incomplete inventory and should not be considered a dependable indicator of the presence of wetlands in the watershed. More information is provided in NFFD-Appendix II.

DRAFT

2.7. CULTURAL RESOURCES.

<u>2.7.A.</u> Interpretive Areas. Some sites representative of the cultural heritage are under city protection:

- Okeena Park
- Wheler Park
- Evansville Park

In addition, many local interpretive areas are common, most notably, Humboldt Lake.

<u>2.7.B.</u> Wildlife Management Area. The Tennessee Wildlife Resources Agency manages Tigrett Wildlife Management Area and Horns Bluff Refuge.

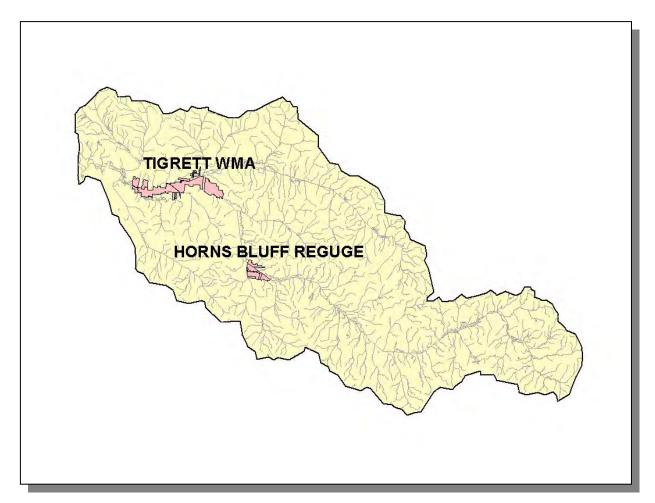


Figure 2-11. TWRA Manages Tigrett Wildlife Management Area and Horns Bluff Refuge in the North Fork Forked Deer River Watershed.

2.8. TENNESSEE RIVERS ASSESSMENT PROJECT.

The Tennessee Rivers Assessment is part of a national program operating under the guidance of the National Park Service's Rivers and Trails Conservation Assistance Program. The Assessment is an inventory of river resources, and should not be confused with "Assessment" as defined by the Environmental Protection Agency. A more complete description can be found in the Tennessee Rivers Assessment Summary Report, which is available from the Department of Environment and Conservation and on the web at:

http://www.state.tn.us/environment/wpc/publications/riv/

STREAM	NSQ	RB	RF	STREAM	NSQ	RB	RF
Barnett Branch Middle							
Middle Fork Forked Deer	4			Light Creek	3		
Beech Creek	4			Mathers Creek	4		
Bethel Branch							
North Fork Forked deer	4			Middle Fork Forked Deer	2	2	3
Buck Creek (North)	3	3		Miller Creek	4		
Buck Creek (South)	4			Moize Creek	3		
Cane Creek	4			Mud Creek	2		
Cypress Creek	4		2,3	North Fork Forked Deer	3,4	2,3	2
Davis Creek	4			Odell Creek	4		
Deloach Creek	4			Oliver Branch North Fork			
Doakville Creek	4			Forked Deer	4		
Duffy Branch							
Middle Fork Forked Deer	4			Pond Creek	4	3	2
Dyer Creek	4			Reagan Creek	4		
Gilmer's Creek	3			Rice Creek	4		
Griffin Creek	4			Spring Creek	3,4		
Harris Creek	4			Stokes Creek	4		
Johnson Creek	4			Sugar Creek	4		
Jones Creek	3			Susan Branch Griffin Creek 4			
Lewis Creek	3,4		3	3 Turkey Creek 4			
Lewis Creek Drainage Ditch	4		3				

Table 2-5. Stream Scoring from the Tennessee Rivers Assessment Project.

Categories: NSQ, Natural and Scenic Qualities

RB, Recreational Boating RF, Recreational Fishing

Scores: 1. Statewide or greater Significance; Excellent Fishery

- 2. Regional Significance; Good Fishery
- 3. Local Significance; Fair Fishery
- 4. Not a significant Resource; Not Assessed

CHAPTER 3

WATER QUALITY ASSESSMENT OF THE NORTH FORK FORKED DEER RIVER WATERSHED.

- 3.1 Background
- 3.2 Data Collection
 - 3.2.A. Ambient Monitoring Sites
 - 3.2.B. Ecoregion Sites
 - 3.2.C. Watershed Screening Sites
 - 3.2.D. Special Surveys
- 3.3 Status of Water Quality
 - 3.3.A. Assessment Summary
 - 3.3.B. Use Impairment Summary
- 3.4 Fluvial Geomorphology

3.1. BACKGROUND. Section 305(b) of The Clean Water Act requires states to report the status of water quality every two years. Historically, Tennessee's methodologies, protocols, frequencies and locations of monitoring varied depending upon whether sites were ambient, ecoregion, or intensive survey. Alternatively, in areas where no direct sampling data existed, water quality may have been assessed by evaluation or by the knowledge and experience of the area by professional staff.

In 1996, Tennessee began the watershed approach to water quality protection. In the Watershed Approach, resources—both human and fiscal—are better used by assessing water quality more intensively on a watershed-by-watershed basis. In this approach, water quality is assessed in year three of the watershed cycle, following one to two years of data collection. More information about the Watershed Approach may be found in Chapter 1 and at http://www.state.tn.us/environment/wpc/watershed/.

The assessment information is used in the 305(b) Report (<u>The Status of Water Quality in Tennessee</u>) and the 303(d) list as required by the Clean Water Act.

The 305(b) Report documents the condition of the State's waters. Its function is to provide information used for water quality based decisions, evaluate progress, and measure success.

Tennessee uses the 305(b) Report to meet four goals (from 2002 305(b) Report):

- 1. Assess the general water quality conditions of rivers, streams, lakes and wetlands
- 2. Identify causes of water pollution and the sources of pollutants
- 3. Specify waters which have been found to pose human health risks due to elevated bacteria levels or contamination of fish
- 4. Highlight areas of improved water quality

EPA aggregates the state use support information into a national assessment of the nation's water quality. This aggregated use support information can be viewed at EPA's "Surf Your Watershed" site at http://www.epa.gov/surf/

The 303(d) list is a compilation of the waters of Tennessee that are water quality limited and fail to support some or all of their classified uses. Water quality limited streams are those that have one or more properties that violate water quality standards. Therefore, the water body is considered to be impacted by pollution and is not fully meeting its designated uses. The 303(d) list does not include streams determined to be fully supporting designated uses as well as streams the Division of Water Pollution Control cannot assess due to lack of water quality information. Also absent are streams where a control strategy is already in the process of being implemented.

Once a stream is placed on the 303(d) list, it is considered a priority for water quality improvement efforts. These efforts not only include traditional regulatory approaches such as permit issuance, but also include efforts to control pollution sources that have historically been exempted from regulations, such as certain agricultural and forestry activities. If a stream is on the 303(d) list, the Division of Water Pollution Control cannot use its regulatory authority to allow additional sources of the same pollutant(s) for which it is listed.

States are required to develop Total Maximum Daily Loads (TMDLs) for 303(d)-listed waterbodies. The TMDL process establishes the maximum amount of a pollutant that a waterbody can assimilate without exceeding water quality standards and allocates this load among all contributing pollutant sources. The purpose of the TMDL is to establish water quality objectives required to reduce pollution from both point and nonpoint sources and to restore and maintain the quality of water resources.

The current 303(d) List is available on the TDEC homepage at: http://www.state.tn.us/environment/wpc/publications/2002303dpropfinal.pdf

and information about Tennessee's TMDL program may be found at: http://www.state.tn.us/environment/wpc/tmdl/.

This chapter provides a summary of water quality in the North Fork Forked Deer River Watershed, summarizes data collection and assessment results, and describes impaired waters.

3.2. DATA COLLECTION. Comprehensive water quality monitoring in the North Fork Forked Deer River Watershed was conducted in 1998. Data were collected from 18 sites and are from one of four types of sites: 1)Ambient sites, 2)Ecoregion sites, 3)Watershed sites or 4)Special Survey sites.

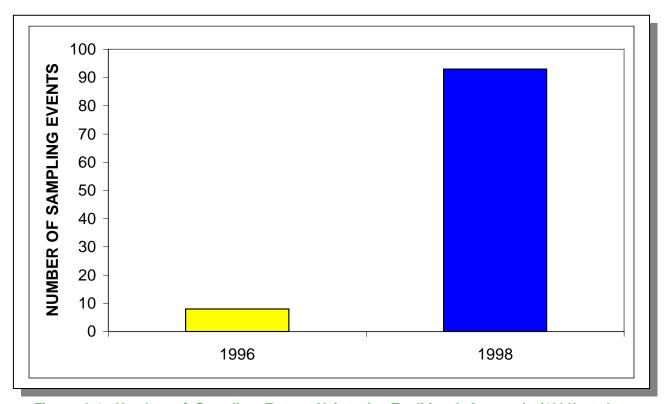


Figure 3-1. Number of Sampling Events Using the Traditional Approach (1996) and Watershed Approach (1998) in the North Fork Forked Deer River Watershed.

DRAFT

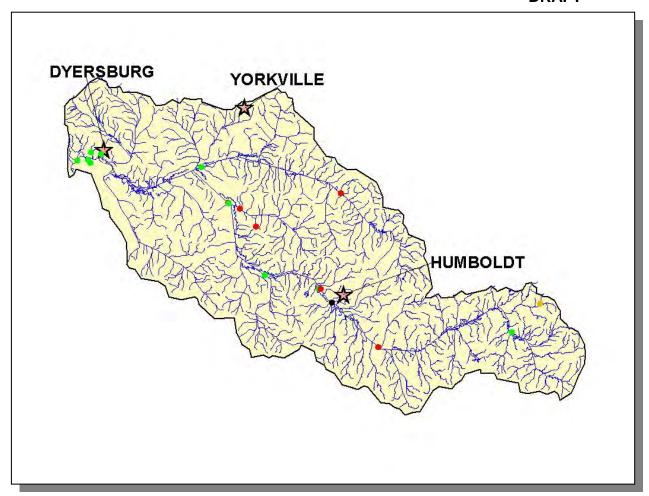


Figure 3-2. Location of Monitoring Sites in the North Fork Forked Deer River Watershed. Red, Watershed Monitoring Sites; Black, Special Survey Sites; Orange, Rapid Bioassessment Sites; Green, Ambient Monitoring Sites. Locations of Dyersburg, Humboldt, and Yorkville are shown for reference.

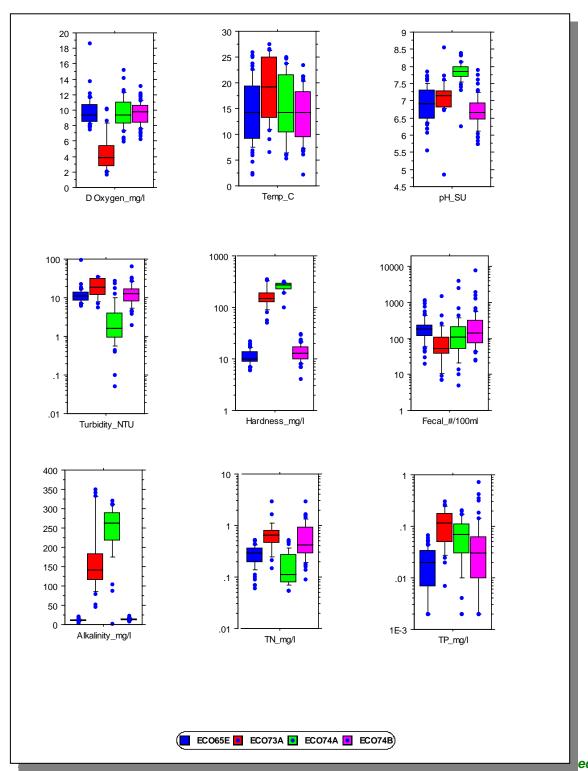
TYPE	NUMBER	TOTAL NUMBER OF SAMPLING EVENTS				
		CHEMICAL	BIOLOGICAL	BIOLOGICAL PLUS CHEMICAL		
		ONLY	ONLY	(FIELD PARAMETERS)		
Ambient	1	8				
Ecoregion	1	8		4		
Watershed	30	66		10		
Totals	32	82		14		

Table 3-1. Monitoring Sites in the North Fork Forked Deer River Watershed During the Data Collection Phase of the Watershed Approach.

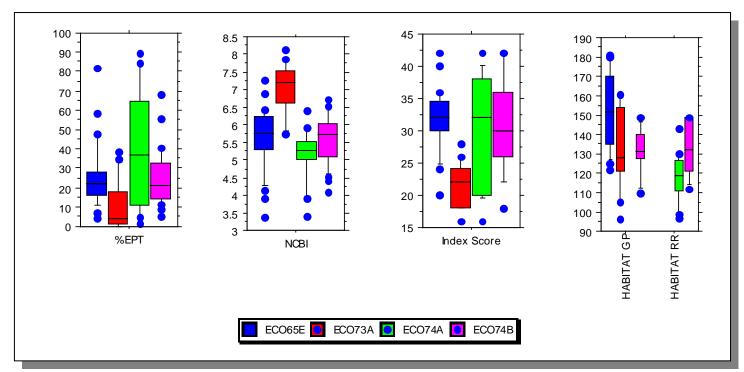
In addition to the sampling events, 12 citizen complaints were investigated in 2002.

DRAFT

3.2.A. Ambient Monitoring Sites. These fixed-station chemical monitoring sites are sampled quarterly or monthly by the Environmental Assistance Center-Jackson staff (this is in addition to samples collected by water and wastewater treatment plant operators). Samples are analyzed by the Tennessee Department of Health, Division of Environmental Laboratory Services. Ambient monitoring data are used to assess water quality in major bodies of water where there are NPDES facilities and to identify trends in water quality. Water quality parameters traditionally measured at ambient sites in the North Fork Forked Deer River Watershed are provided in NFFD-Appendix IV.


Data from ambient monitoring stations are entered into the STORET (Storage and Retrieval) system administered by EPA. Some ambient monitoring stations are scheduled to be monitored as watershed sampling sites.

3.2.B. Ecoregion Sites. Ecoregions are relatively homogeneous areas of similar geography, topography, climate and soils that support similar plants and animals. The delineation phase of the Tennessee Ecoregion Project was completed in 1997 when the ecoregions and subecoregions were mapped and summarized (EPA/600/R-97/022). There are eight Level III Ecoregions and twenty-five Level IV subecoregions in Tennessee (see Chapter 2 for more details). The North Fork Forked Deer River Watershed lies within 3 Level III ecoregions (Southeastern Plains, Mississippi Alluvial Plain, and Mississippi Valley Loess Plains) and contains 4 subecoregions (Level IV):


- Southeastern Plains and Hills (65e)
- Northern Mississippi Alluvial Plain (73a)
- Bluff Hills (74a)
- Loess Plains (74b)

Ecoregion reference sites are chemically monitored using methodology outlined in the Division's Chemical Standard Operating Procedure (Standard Operating Procedure for Modified Clean Technique Sampling Protocol). Macroinvertebrate samples are collected in spring and fall. These biological sample collections follow methodology outlined in the Tennessee Biological Standard Operating Procedures Manual. Volume 1: Macroinvertebrates and EPA's Revision to Rapid Bioassessment Protocols for use in Streams and Rivers.

Ecoregion stations are scheduled to be monitored as Watershed sampling sites.

Ecoregion Sites. Boxes and bars illustrate 10th, 25th, median, 75th, and 90th percentiles. Extreme values are also shown as dots. Fecal, fecal coliform bacteria; TN, Total Nitrogen; TP, Total Phosphorus.

Figure 3-4. Benthic Macroinvertebrate and Habitat Scores for North Fork Forked Deer River Watershed Ecoregion Sites. Boxes and bars illustrate 10th, 25th, median, 75th, and 90th percentiles. Extreme values are also shown as dots. NCBI, North Carolina Biotic Index. Index Score, Habitat Riffle/Run, and Habitat Glide/Pool scoring system are described in TDEC's Quality System Standard Operating Procedure for Macroinvertebrate Surveys (2002).

<u>3.2.C.</u> Watershed Screening Sites. Activities that take place at watershed sites are benthic macroinvertebrate stream surveys, physical habitat determinations and/or chemical monitoring. Following review of existing data, watershed sites are selected in Year 1 of the watershed approach when preliminary monitoring strategies are developed. Additional sites may be added in Year 2 when additional monitoring strategies are implemented.

A Biological Reconnaissance (BioRecon) is used as a screening tool to describe the condition of water quality, in general, by determining the absence or presence of clean water indicator organisms, such as EPT (Ephemeroptera [mayfly], Plecoptera [stonefly], Trichoptera [caddisfly]). Factors and resources used for selecting BioRecon sites are:

- The current 303(d) list,
- HUC-10 maps (every HUC-10 is scheduled for a BioRecon)
- Land Use/Land Cover maps
- Topographic maps
- · Locations of NPDES facilities
- Sites of recent ARAP activities.

An intensive multiple or single habitat assessment involves the regular monitoring of a station over a fixed period of time. Intensive surveys (Rapid Bioassessment Protocols) are performed when BioRecon results warrant it.

3.2.D. Special Surveys. These investigations are performed when needed and include:

- ARAP in-stream investigation
- Time-of-travel dye study
- Sediment oxygen demand study
- Lake eutrophication study

3.3. STATUS OF WATER QUALITY. Overall use support is a general description of water quality conditions in a water body based on determination of individual use supports. Use support determinations, which can be classified as monitored or evaluated, are based on:

- Data less than 5 years old (monitored)
- Data more than 5 years old (evaluated)
- Knowledge and experience of the area by technical staff (evaluated)
- Complaint investigation (monitored, if samples are collected)
- Other readily available Agencies' data (monitored)
- Readily available Volunteer Monitoring data (monitored, if certain quality assurance standards are met)

All readily available data are considered, including data from TDEC Environmental Assistance Centers, Tennessee Department of Health (Aquatic Biology Section of Laboratory Services), Tennessee Wildlife Resources Agency, National Park Service, Tennessee Valley Authority, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Geological Survey, U.S. Forest Service, universities and colleges, the regulated community, and the private sector.

The assessment is based on the degree of support of designated uses as measured by compliance with Tennessee's water quality standards.

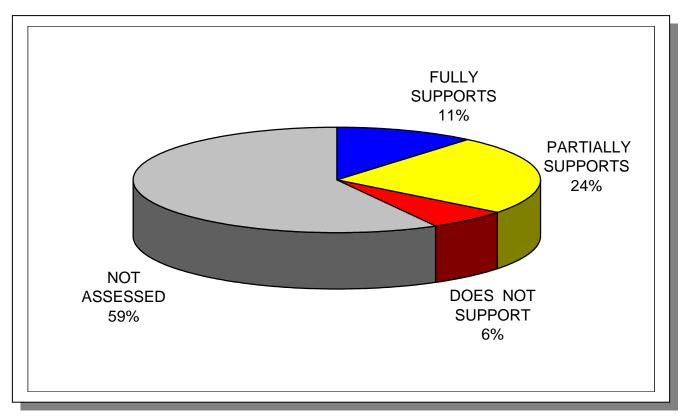


Figure 3-5. Water Quality Assessment for Streams and Rivers in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment.

3.3.A. Assessment Summary.

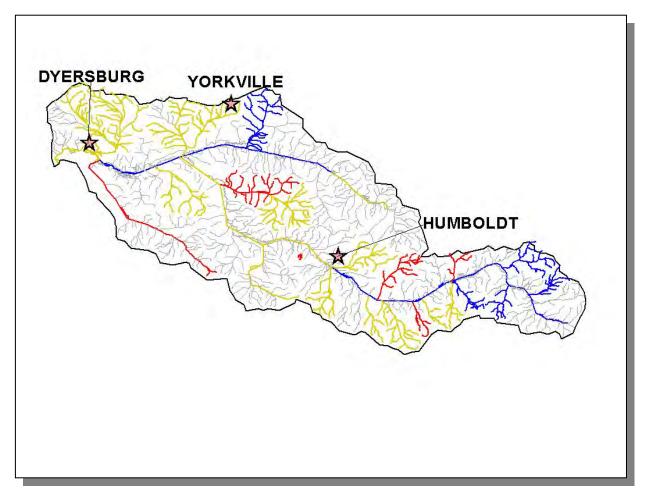


Figure 3-6a. Overall Use Support Attainment in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Blue, Fully Supports Designated Use; Yellow, Partially Supports Designated Use; Red, Does Not Support Designated Use; Gray, Not Assessed. Water Quality Standards are described at http://www.state.tn.us/sos/rules/1200/1200-04/1200-04.htm. Dyersburg, Humboldt, and Yorkville are shown for reference. More information is provided in NFFD-Appendix III.

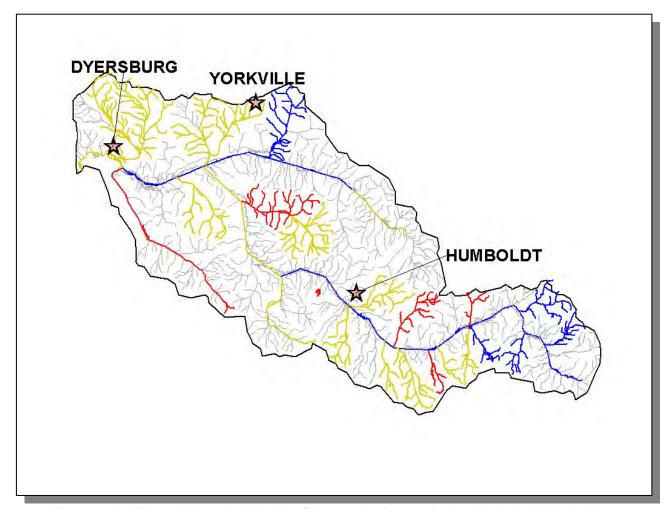


Figure 3-6b. Fish and Aquatic Life Use Support Attainment in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Blue, Fully Supports Designated Use; Yellow, Partially Supports Designated Use; Red, Does Not Support Designated Use; Gray, Not Assessed. Water Quality Standards are described at http://www.state.tn.us/sos/rules/1200/1200-04/1200-04.htm. Dyersburg, Humboldt, and Yorkville are shown for reference.

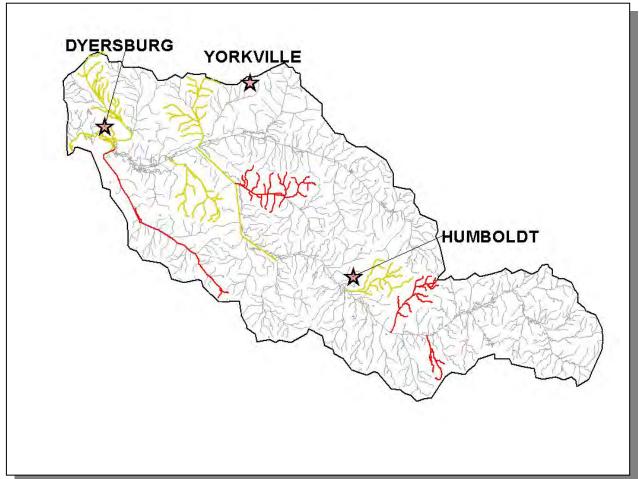


Figure 3-6c. Recreation Use Support Attainment in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Blue, Fully Supports Designated Use; Yellow, Partially Supports Designated Use; Gray, Not Assessed. Water Quality Standards are described at http://www.state.tn.us/sos/rules/1200/1200-04/1200-04.htm. Dyersburg, Humboldt, and Yorkville are shown for reference.

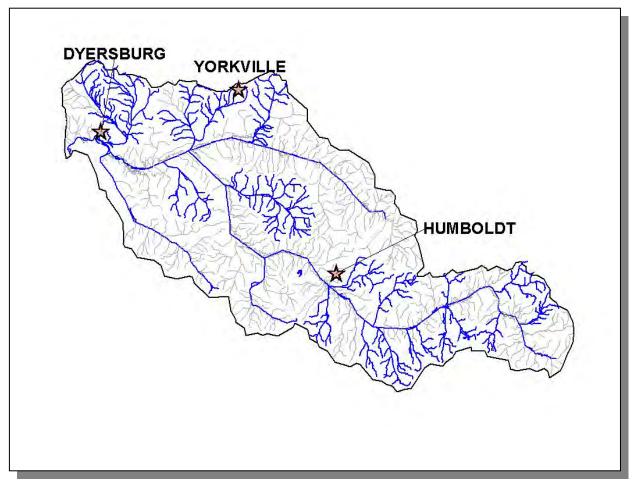


Figure 3-6d. Irrigation Use Support Attainment in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Blue, Fully Supports Designated Use; Gray, Not Assessed. Water Quality Standards are described at http://www.state.tn.us/sos/rules/1200/1200-04/1200-04.htm. Dyersburg, Humboldt, and Yorkville are shown for reference.

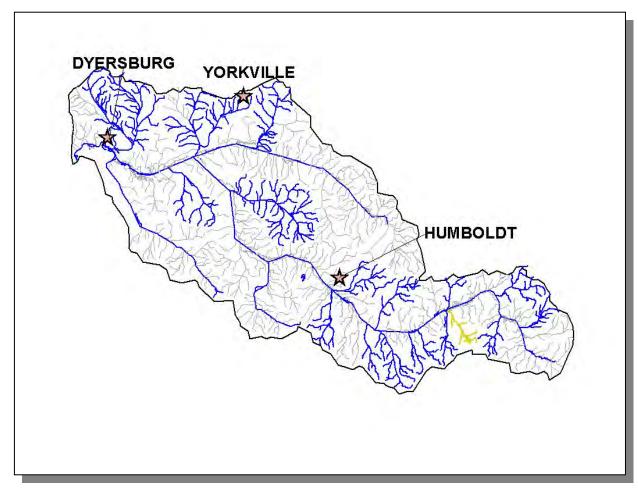


Figure 3-7e. Livestock Watering and Wildlife Use Support Attainment in the North ForkF Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Blue, Fully Supports Designated Use; Gray, Not Assessed. Water Quality Standards are described at http://www.state.tn.us/sos/rules/1200/1200-04/1200-04.htm. Dyersburg, Humboldt, and Yorkville are shown for reference.

3.3.B. Use Impairment Summary.

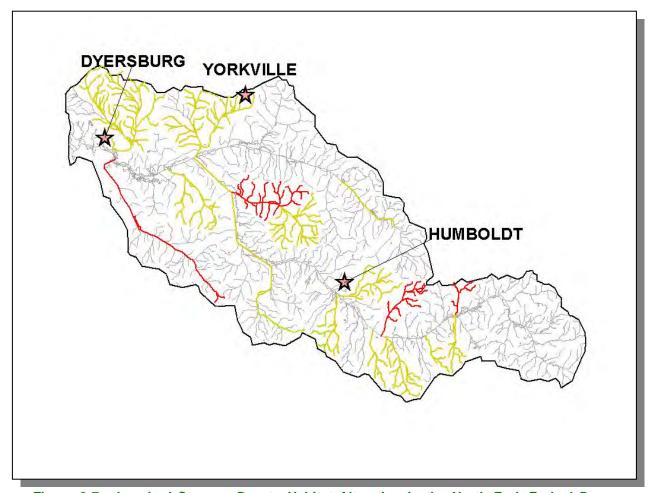


Figure 3-7a. Impaired Streams Due to Habitat Alteration in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment; Yellow, Partially Supports designated Use; Red, Does Not Support Designated Use; Dyersburg, Humboldt, and Yorkville are shown for reference. More information is provided in NFFD-Appendix III.

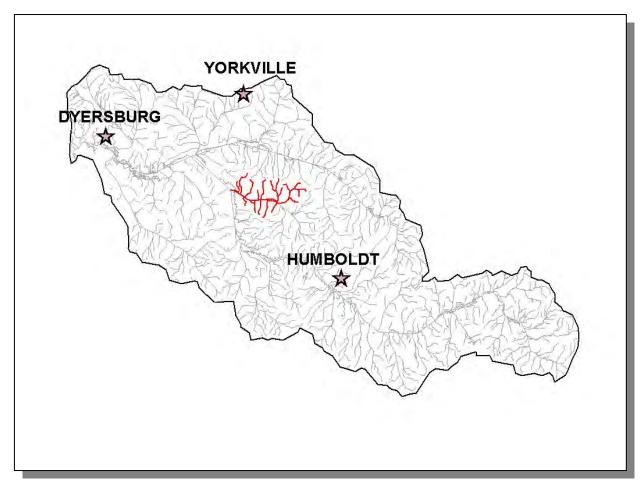


Figure 3-7b. Impaired Streams Due to Organic enrichment/Low Dissolved Oxygen in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Yellow, Partially Supports designated Use; Red, Does Not Support Designated Use; Dyersburg, Humboldt, and Yorkville are shown for reference. More information is provided in NFFD-Appendix III.

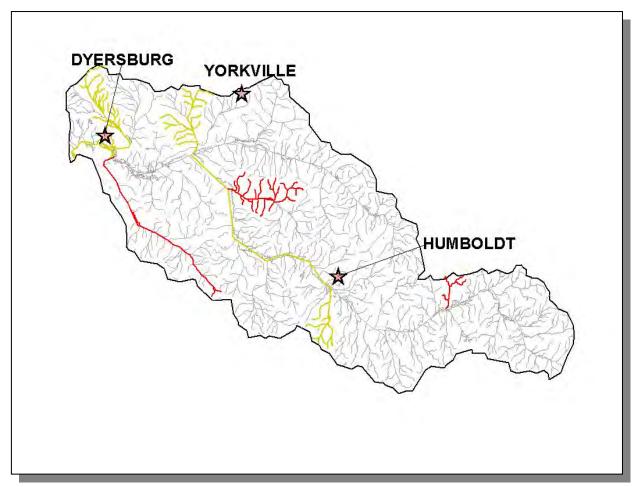


Figure 3-7c. Impaired Streams Due to Pathogens in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Yellow, Partially Supports Designated Use; Red, Does Not Support Designated Use; Dyersburg, Humboldt, and Yorkville are shown for reference. More information is provided in NFFD-Appendix III.

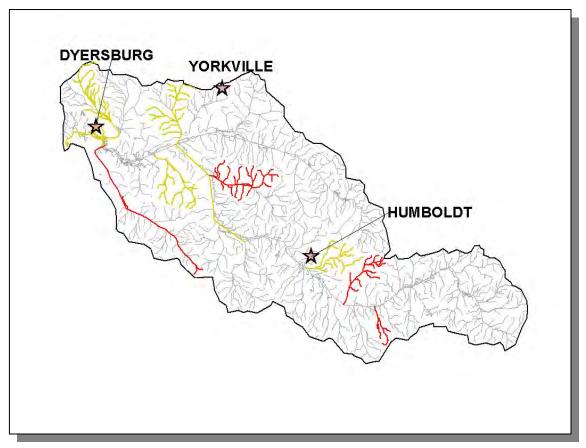


Figure 3-7d. Impaired Streams Due to Siltation in the North Fork Forked Deer River Watershed. Assessment data are based on the 2000 Water Quality Assessment. Yellow, Partially Supports Designated Use; Red, Does Not Support Designated Use; Dyersburg, Humboldt, and Yorkville are shown for reference. More information is provided in NFFD-Appendix III.

The listing of impaired waters that do not support designated uses (the 303(d) list) is traditionally submitted to EPA every two years. A copy of the most recent 303(d) list may be downloaded from: http://www.state.tn.us/environment/water.htm

In the year 2002 and beyond, the 303(d) list will be compiled by using EPA's ADB (Assessment Database) software developed by RTI (Research Triangle Institute). The ADB allows for a more detailed segmentation of waterbodies. While this results in a more accurate description of the status of water quality, it makes it difficult when comparing water quality assessments with and without using this tool. A more meaningful comparison will be between assessments conducted in Year 3 of each succeeding five-year cycle.

The ADB was used to create maps that illustrate water quality. These maps may be viewed on TDEC's homepage at http://www.state.tn.us/environment/water.htm. Summary maps of each watershed may be viewed at http://www.state.tn.us/environment/wpc/watershed/mapsummary.htm.

3.4. FLUVIAL GEOMORPHOLOGY. Stream width, depth, and cross-sectional dimensions at bankful discharge are key parameters used in characterizing the shape and stability of rivers. Characterization of streams using the fluvial geomorphic stream classification system, which allows prediction of stream stability and physical evolution, is a valuable management tool (Rosgen, 1996).

A fluvial geomorphic curve illustrates relationships between drainage area, bankful dimensions of width, depth and cross-sectional area, and bankful discharge of stream systems that are in dynamic equilibrium. It is a tool to evaluate and predict the physical impacts of channel modifications, flow alterations, and other watershed changes, as well as determining appropriate physical parameters for stream and riparian restoration. Regional curves have been developed and applied in various regions of the country since the mid-1970's (Dunne and Leopold, 1978).

There are several benefits to using regional curves:

- Serving as a valuable regional-specific database for watershed management
- Providing an unbiased, scientific evaluation of the environmental impacts of proposed ARAP and other permitted activities
- Providing a scientific foundation for evaluating and documenting long-term geomorphic and hydrologic changes in the region
- Quantifying environmental impacts
- Suggesting the best approach to restore streams that have been modified

Ultimately, a regional curve will be created that illustrates the relationship between bankful width and drainage area.

CHAPTER 4

POINT AND NONPOINT SOURCE CHARACTERIZATION OF THE NORTH FORK FORKED DEER RIVER WATERSHED

- 4.1. Background.
- 4.2. Characterization of HUC-10 Subwatersheds
 - 4.2.A. 0801020401 (Middle Fork Forked Deer River)
 - 4.2.B. 0801020402 (Middle Fork Forked Deer River)
 - 4.2.C. 0801020403 (North Fork Forked Deer River)
 - 4.2.D. 0801020404 (Forked Deer River)
- **4.1. BACKGROUND.** This chapter is organized by HUC-10 subwatershed, and the description of each subwatershed is divided into four parts:
 - i. General description of the subwatershed
 - ii. Description of point source contributions
 - ii.a. Description of facilities discharging to water bodies listed on the 1998 303(d) list
 - iii. Description of nonpoint source contributions

The north Fork Forked Deer River Watershed (HUC 08010204) has been delineated into four HUC 10-digit subwatersheds.

Information for this chapter was obtained from databases maintained by the Division of Water Pollution Control or provided in the WCS (Watershed Characterization System) data set. The WCS used was version 1.1 beta (developed by Tetra Tech, Inc for EPA Region 4) released in 2000.

WCS integrates with ArcView® v3.2 and Spatial Analyst® v1.1 to analyze user-delineated (sub)watersheds based on hydrologically connected water bodies. Reports are generated by integrating WCS with Microsoft® Word. Land Use/Land Cover information from 1992 MRLC (Multi-Resolution Land Cover) data are calculated based on the proportion of county-based land use/land cover in user-delineated (sub)watersheds. Nonpoint source data in WCS are based on agricultural census data collected 1992–1998; nonpoint source data were reviewed by Tennessee NRCS staff.

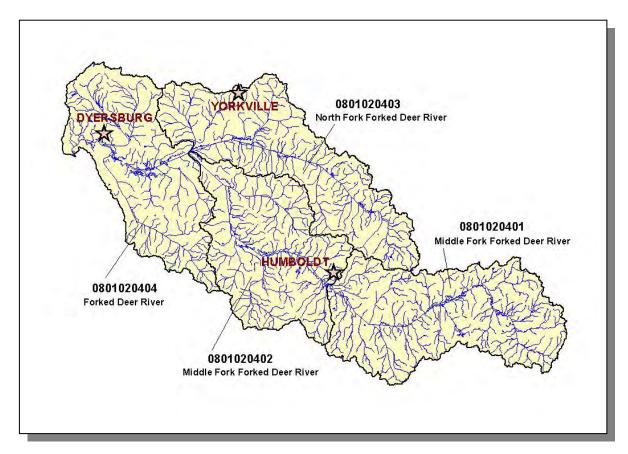


Figure 4-1. The North Fork Forked Deer River Watershed is Composed of Four USGS-Delineated Subwatersheds (10-Digit Subwatersheds). Locations of Dyersburg, Humboldt, and Yorkville are shown for reference.

4.2. CHARACTERIZATION OF HUC-10 SUBWATERSHEDS. The Watershed Characterization System (WCS) software and data sets provided by EPA Region IV were used to characterize each subwatershed in the North Fork Forked Deer River Watershed.

HUC-10	HUC-12
0801020401	080102040101 (Middle Fork Forked Deer River)
	080102040102 (Middle Fork Forked Deer River)
	080102040103 (Middle Fork Forked Deer River)
	080102040104 (Middle Fork Forked Deer River)
	080102040105 (Middle Fork Forked Deer River)
0801020402	080102040201 (Middle Fork Forked Deer River)
	080102040202 (Cypress Creek)
	080102040203 (Middle Fork Forked Deer River)
	080102040204 (Buck Creek)
0801020403	080102040301 (North Fork Forked Deer River)
	080102040302 (North Fork Forked Deer River)
	080102040303 (Cain Creek)
	080102040304 (Mud Creek)
	080102040305 (North Fork Forked Deer River)
	080102040306 (Doakville Creek)
0801020404	080102040401 (Forked Deer River)
	080102040402 (Forked Deer River)
	080102040403 (Pond Creek)
	080102040404 (Lewis Creek)

Table 4-1. HUC-12 Drainage Areas are Nested Within HUC-10 Drainages. NRCS worked with USGS to delineate the HUC-10 and HUC-12 drainage boundaries.

4.2.A. 0801020401.

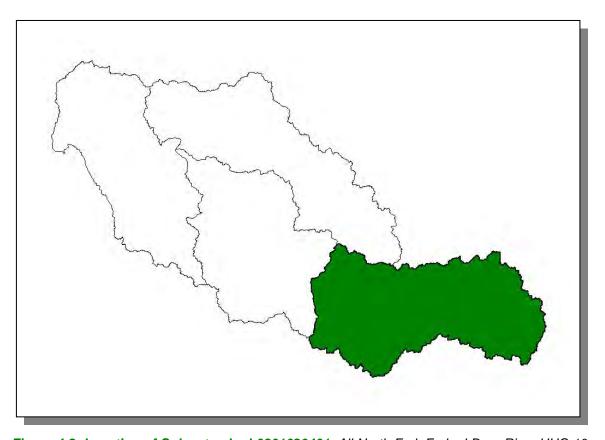


Figure 4-2. Location of Subwatershed 0801020401. All North Fork Forked Deer River HUC-10 subwatershed boundaries are shown for reference.

4.2.A.i. General Description.

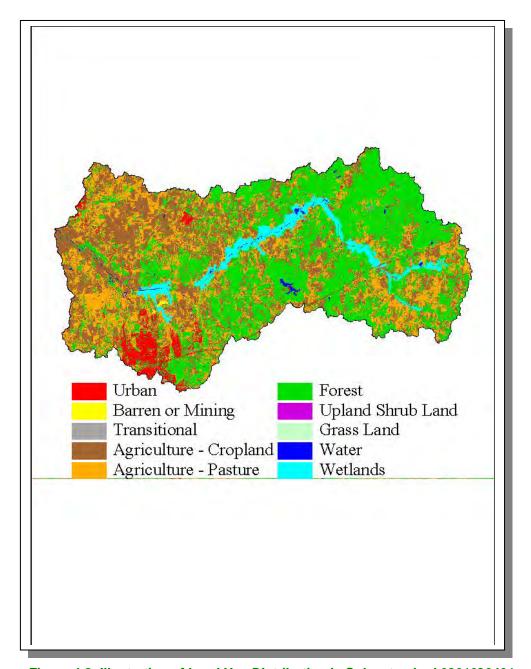


Figure 4-3. Illustration of Land Use Distribution in Subwatershed 0801020401.

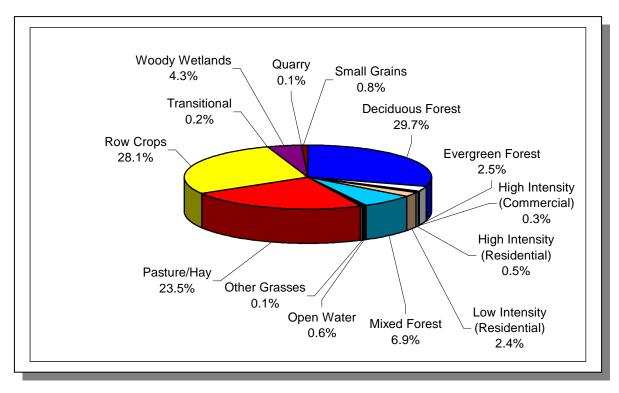


Figure 4-4. Land Use Distribution in Subwatershed 0801020401. More information is provided in NFFD-Appendix IV.

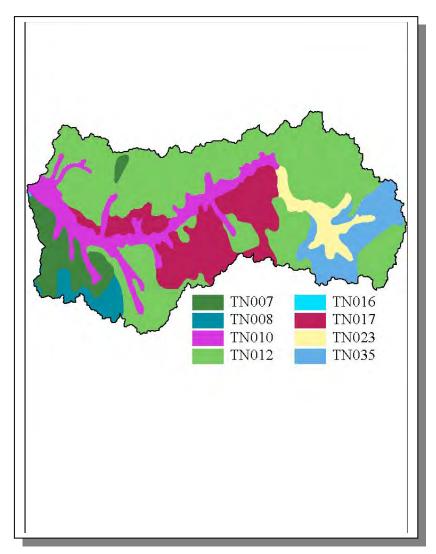


Figure 4-5. STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020401.

STATSGO MAP UNIT ID	PERCENT HYDRIC	HYDROLOGIC GROUP	PERMEABILITY (in/hour)	SOIL pH	ESTIMATED SOIL TEXTURE	SOIL ERODIBILITY
TN007	29.00	С	1.30	5.36	Silty Loam	0.48
TN008	2.00	С	1.38	5.20	Silty Loam	0.48
TN010	81.00	С	1.33	5.11	Silty Loam	0.44
TN012	1.00	С	2.52	5.13	Silty Loam	0.39
TN016	0.00	С	1.30	6.47	Silty Loam	0.44
TN017	0.00	В	1.81	5.26	Silty Loam	0.45
TN023	17.00	С	1.35	5.12	Silty Loam	0.42
TN035	16.00	С	1.46	4.97	Silty Loam	0.40

Table 4-2. Soil Characteristics by STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020401. More details are provided in NFFD-Appendix IV.

	COUNTY POPULATION			ESTIM POPULA WATER	TION IN	% CHANGE
County	1990	1997 Est.	Portion of Watershed (%)	1990	1997	
County	1990	1991 LSt.	Watershed (70)	1990	1991	
Carroll	27,514	28,990	4.06	1,117	1,177	5.4
Crockett	13,378	13,841	0.71	94	89	4.3
Gibson	46,315	48,083	5.05	2,340	2,429	3.8
Henderson	21,844	24,000	13.65	2,981	3,275	9.9
Madison	77,982	84,942	24.54	19,135	20,843	8.9
Totals	187,033	199,856		25,667	27,822	8.4

Table 4-3. Population Estimates in Subwatershed 0801020401.

				NUMBER OF HO	USING UNITS	
Populated Place	County	Population	Total	Public Sewer	Septic Tank	Other
Humboldt	Madison	9,634	3,992	3,878	110	4
Jackson	Madison	48,949	20,739	20,197	512	30
Medina	Gibson	658	335	330	5	0
Total		59,241	25,066	24,405	627	34

Table 4-4. Housing and Sewage Disposal Practices of Select Communities in Subwatershed 0801020401.

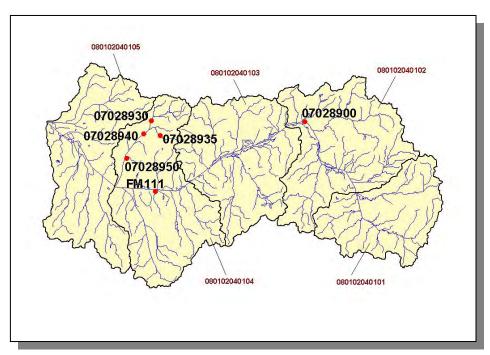


Figure 4-6. Location of Historical Streamflow Data Collection Sites in Subwatershed 08010204010. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

Figure 4-7. Location of STORET Monitoring Sites in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

4.2.A.ii. Point Source Contributions.

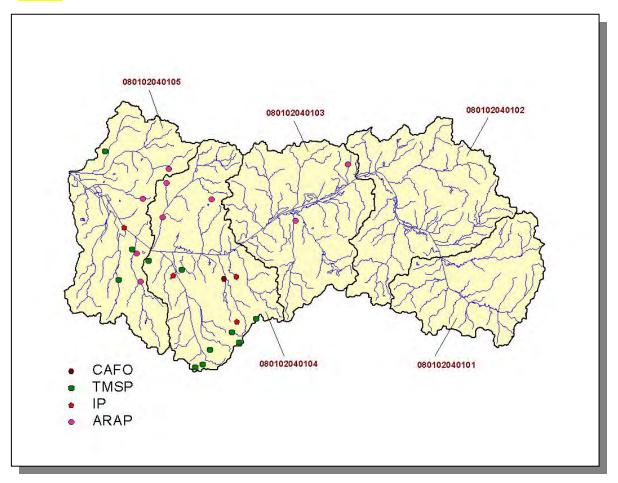


Figure 4-8. Location of Active Point Source Facilities in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information is provided in the following figures.

Figure 4-9. Location of Active Point Source Facilities (Individual Permits) in Subwatershed 08010204010. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

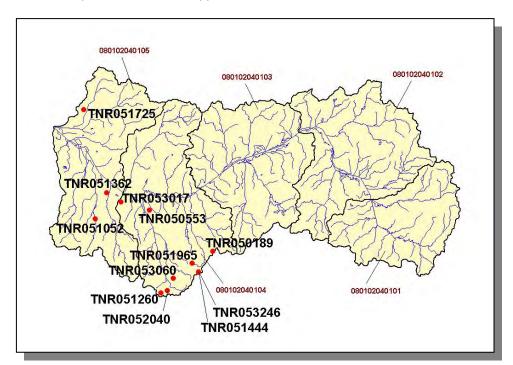


Figure 4-10. Location of TMSP Facilities in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

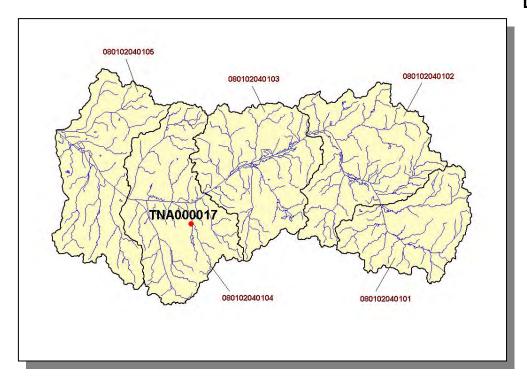


Figure 4-11. Location of CAFO Facilities in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. CAFO rules may be found at http://cfpub.epa.gov/npdes/afo/cafofinalrule.cfm. More information, including the names of facilities, is provided in NFFD-Appendix IV.

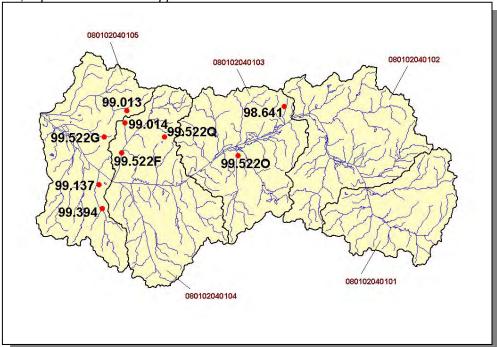


Figure 4-12. Location of ARAP Sites (Individual Permits) in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

4.2.A.ii.a. Dischargers to Water Bodies Listed on the 1998 303(d) List

There are three NPDES facilities discharging to water bodies listed on the 1998 303(d) list in Subwatershed 0801020401:

- TN0023264 (Nova School) discharges to an unnamed trib to Johnson Creek
 RM 4.4
- TN0074811 (Ameristeel) discharges to Dyer Creek @ RM 1.5, and to unnamed trib to Middle Fork Forked Deer River @ RM 32.5
- TN0075876 (Middle Fork STP) discharges to Middle Fork Forked Deer River
 @ RM 29.1

Figure 4-13. Location of NPDES Dischargers to Water Bodies Listed on the 1998 303(d) List in Subwatershed 0801020401. Subwatershed 080102040101, 080102040102, 080102040103, 080102040104, and 080102040105 boundaries are shown for reference. The names of facilities are provided in NFFD-Appendix IV.

PERMIT #	1Q10	3Q10	7Q10	3Q20	QDESIGN
TN0023264			0.00		0.01200
TN0074811					0.47000
TN0075876	21.91	22.43	23.01	20.81	4.00000

Table 4-5. Receiving Stream Flow Information for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020401. Data are in million gallons per day (MGD). Data were obtained from the USGS publication Flow Duration and Low Flows of Tennessee Streams Through 1992 or from permit files.

								SETTLEABLE	OIL and		
PERMIT #	CBOD ₅	рН	WET	NH ₃	FECAL	Fe	TRC	SOLIDS	GREASE	TSS	DO
TN0023264	Х	Χ		Х	Х		Χ	Χ		Х	Χ
TN0074811		Χ	Χ			Χ	Χ		Х	Χ	
TN0075876	Х	Χ	Х	Х	Х		Χ	X		Х	Χ

Table 4-6. Parameters Monitored for Daily Maximum (mg/L) Limits for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020401. CBOD₅, Carbonaceous Biochemical Oxygen Demand (5-Day); WET, Whole Effluent Toxicity; TRC, Total Residual Chlorine; TSS, Total Suspended Solids; DO, Dissolved Oxygen.

4.2.A.iii. Nonpoint Source Contributions.

LIVESTOCK (COUNTS)										
Beef Cow Cattle Milk Cow Chickens Chickens Sold Hogs Sheep										
3,880	13,829	33	12	0	7,306	49				

Table 4-7. Summary of Livestock Count Estimates in Subwatershed 0801020401. According to the 1997 Census of Agriculture (http://www.nass.usda.gov/census/), "Cattle" includes heifers, heifer calves, steers, bulls and bull calves; "Chickens" are layers 20 weeks and older; "Chickens Sold" are all chickens used to produce meat.

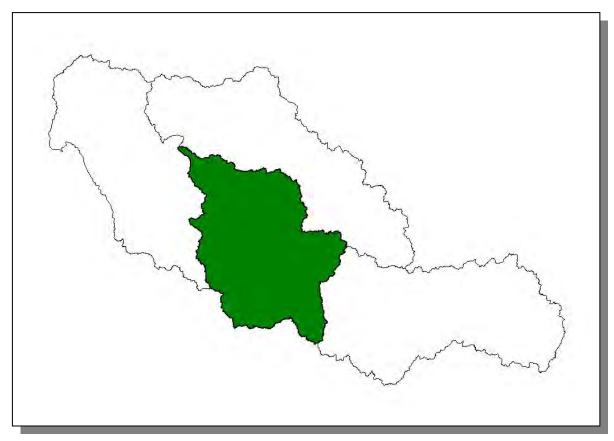

	INVEN	NTORY	REMOVAL RATE		
	Forest Land	Timber Land	Growing Stock	Sawtimber	
County	(thousand acres)	(thousand acres)	(million cubic feet)	(million board feet)	
Carroll	169.1	169.1	0.6	2.0	
Crockett	15.1	15.1	0.3	1.6	
Gibson	36.4	36.4	2.0	8.6	
Henderson	158.5	158.5	3.6	12.8	
Totals	379.1	379.1	6.5	25.0	

Table 4-8. Forest Acreage and Annual Removal Rates (1987-1994) in Subwatershed 0801020401.

CROPS	TONS/ACRE/YEAR
Corn (Row Crops)	11.47
Soybeans (Row Crops)	8.18
Sorghum (Row Crops)	6.38
Cotton (Row Crops)	10.90
Grass (Hayland)	0.56
Legume (Hayland)	0.07
Grass (Pastureland)	0.52
Grass, Forbs, Legumes (Mixed Pasture)	2.29
Forest Land (Not Grazed)	0.00
All Other Close Grown Cropland	0.47
Other Vegetable and Truck Crops	7.81
Conservation Reserve Program Land	0.51
Other Land in Farms	0.35
Other Cropland (Not Planted)	3.93
Nonagricultural Land Use	0.00
Farmsteads and Ranch Headquarters	0.51

Table 4-9. Annual Estimated Total Soil Loss in Subwatershed 0801020401.

4.2.B. 0801020402.

Figure 4-14. Location of Subwatershed 0801020402. All North Fork Forked Deer HUC-10 subwatershed boundaries are shown for reference.

4.2.B.i. General Description.

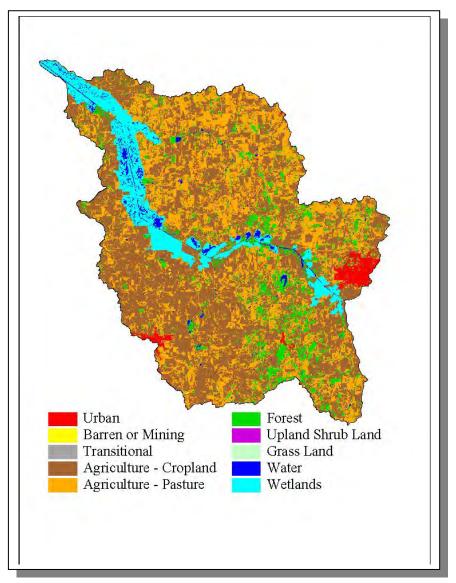


Figure 4-15. Illustration of Land Use Distribution in Subwatershed 0801020402.

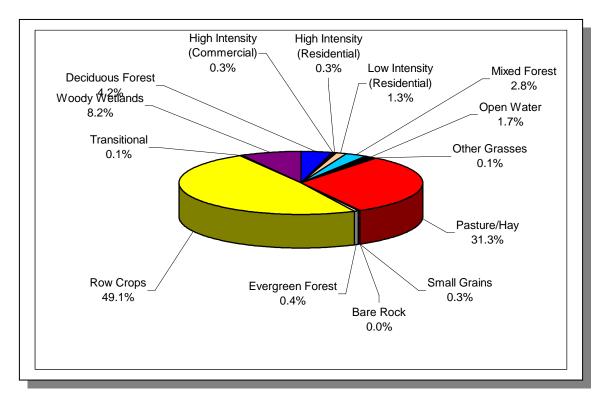


Figure 4-16. Land Use Distribution in Subwatershed 0801020402. More information is provided in NFFD-Appendix IV.

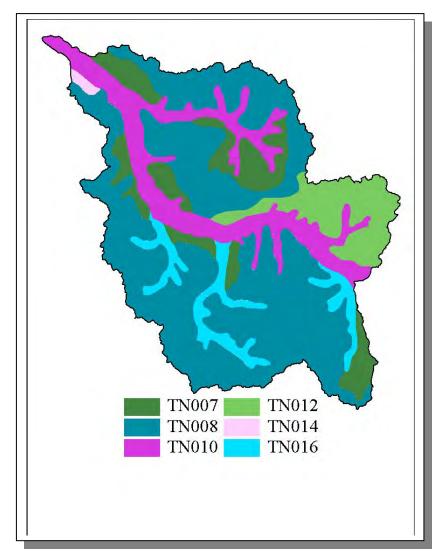


Figure 4-17. STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020402.

STATSGO MAP UNIT ID	PERCENT HYDRIC	HYDROLOGIC GROUP	PERMEABILITY (in/hour)	AIOS Hq	ESTIMATED SOIL TEXTURE	SOIL ERODIBILITY
TN007	29.00	C	1.30	5.36	Silty Loam	0.48
TN008	2.00	C	1.38	5.20	Silty Loam	0.48
TN010	81.00	С	1.33	5.11	Silty Loam	0.44
TN012	1.00	С	2.52	5.13	Silty Loam	0.39
TN014	30.00	С	1.30	5.12	Silty Loam	0.47
TN016	0.00	C	1.30	6,47	Silty Loam	0.44

Table 4-10. Soil Characteristics by STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020402. More information is provided in NFFD-Appendix IV.

	COUNTY POPULATION			POPUL	MATED ATION IN RSHED	PERCENT CHANGE
			Portion of			
County	1990	1997 Est.	Watershed (%)	1990	1997	
Crockett	13,378	13,841	42.34	5,664	5,860	3.5
Dyer	34,854	36,465	0.13	46	48	4.3
Gibson	46,315	48,083	16.85	7,804	8,102	3.8
Madison	77,982	84,942	1.21	941	1,025	8.9
Total	172,529	183,331		15.455	15,035	4.0

Table 4-11. Population Estimates in Subwatershed 0801020402.

			NUMBER OF HOUSING UNITS					
Populated Place	County	Population	Total	Public Sewer	Septic Tank	Other		
Alamo	Crockett	2,400	1,044	1,001	43	0		
Bells	Crockett	1,643	676	651	21	4		
Gadsden	Crockett	587	219	9	207	3		
Humboldt	Gibson	9,634	3,992	3,878	110	4		
Total		14,264	5,931	5,539	381	11		

Table 4-12. Housing and Sewage Disposal Practices of Select Communities in Subwatershed 0801020402.

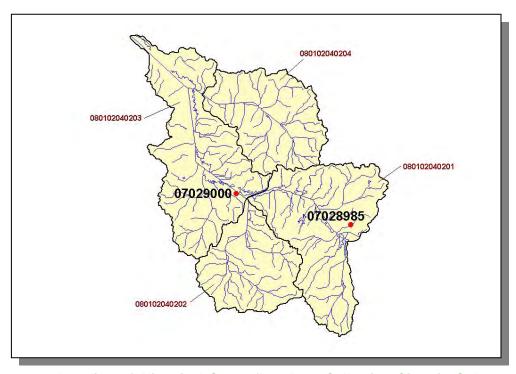


Figure 4-18. Location of Historical Streamflow Data Collection Sites in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

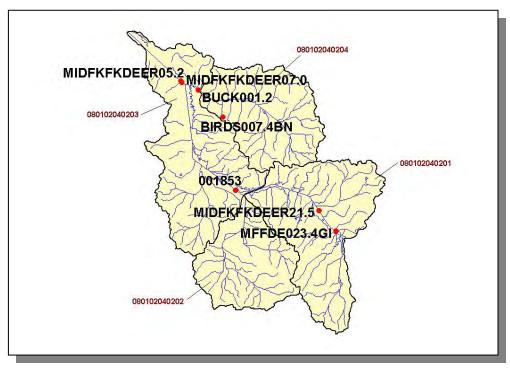


Figure 4-19. Location of STORET Monitoring Sites in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

4.2.B.ii. Point Source Contributions.

Figure 4-20. Location of Active Point Source Facilities in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information is provided in the following figures.

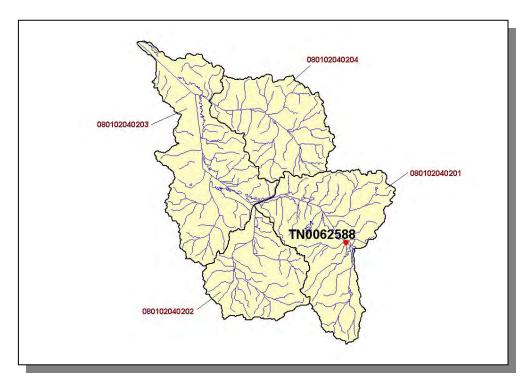
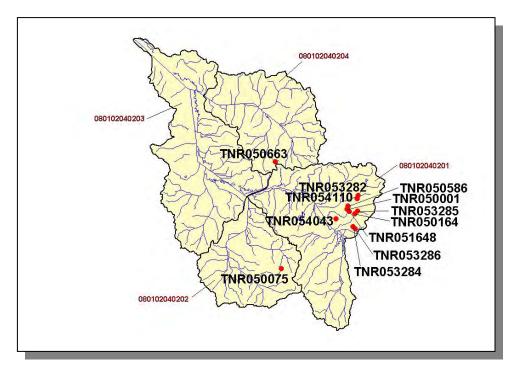



Figure 4-21. Location of Active Point Source Facilities (Individual Permits) in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

Figure 4-22. Location of TMSP Facilities in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

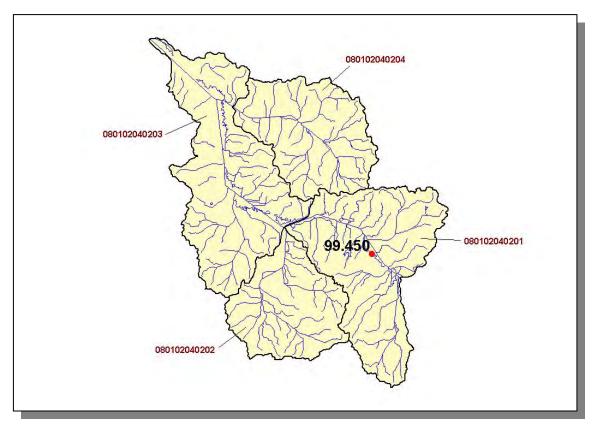


Figure 4-23. Location of ARAP Sites (Individual Permits) in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

4.2.A.ii.a. Dischargers to Water Bodies Listed on the 1998 303(d) List

There is one NPDES facility discharging to water bodies listed on the 1998 303(d) list in Subwatershed 0801020402:

TN0062588 (Humboldt STP) discharges to Middle Fork Forked Deer River
 @ RM 23.4

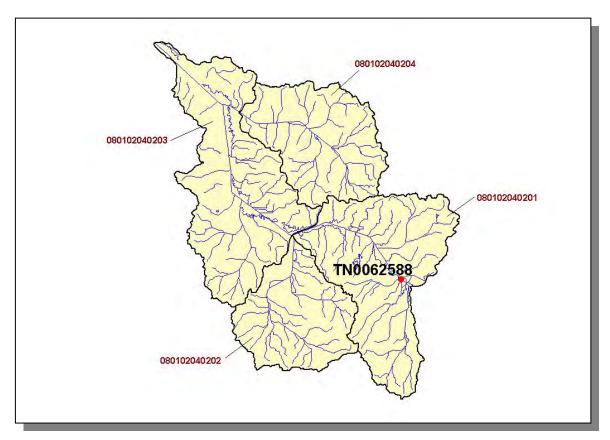


Figure 4-24. Location of NPDES Dischargers to Water Bodies Listed on the 1998 303(d) List in Subwatershed 0801020402. Subwatershed 080102040201, 080102040202, 080102040203, and 080102040204 boundaries are shown for reference. The names of facilities are provided in NFFD-Appendix IV.

PERMIT #	1Q10	3Q10	7Q10	3Q20	QDESIGN
TN0062588	48.60	48.93	49.77	47.05	2.60000

Table 4-13. Receiving Stream Flow Information for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020402. Data are in million gallons per day (MGD). Data were obtained from the USGS publication <u>Flow Duration and Low Flows of</u> **Tennessee Streams Through 1992 or from permit files.**

PERMIT #	CBOD ₅	рН	WET	NH 3	CN	FECAL	TRC	SETTLEABLE SOLIDS	TSS	DO
TN0062588	X	Х	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ

Table 4-14. Parameters Monitored for Daily Maximum (mg/L) Limits for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020402. CBOD₅, Carbonaceous Biochemical Oxygen Demand (5-Day); WET, Whole Effluent Toxicity; TRC, Total Residual Chlorine; TSS, Total Suspended Solids; DO, Dissolved Oxygen.

4.2.B.iii. Nonpoint Source Contributions.

LIVESTOCK (COUNTS)								
Beef Cow Cattle Milk Cow Chickens Chickens Sold Hogs Sheer								
3,237 6,816 42 7 0 1,576 30								

Table 4-15. Summary of Livestock Count Estimates in Subwatershed 0801020402. According to the 1997 Census of Agriculture (http://www.nass.usda.gov/census/), "Cattle" includes heifers, heifer calves, steers, bulls and bull calves; "Chickens" are layers 20 weeks and older; "Chickens Sold" are all chickens used to produce meat.

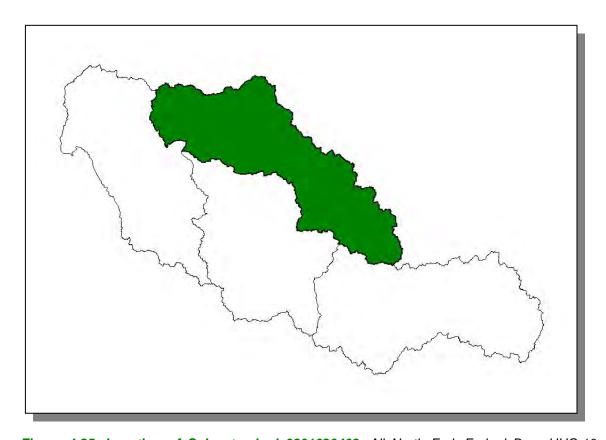

	INVENT	ORY	REMOV	Sawtimber (million board feet)		
	Forest Land (thousand	orest Land (thousand Timber Land		Sawtimber		
County	acres)	acres) (thousand acres)		(million board feet)		
Crockett	15.1	15.1	0.3	1.6		
Dyer	40.4	40.4	0.8	2.8		
Gibson	36.4	36.4	2.0	8.6		
Total	91.9	91.9	3.1	13.0		

Table 4-16. Forest Acreage and Average Annual Removal Rates (1987-1994) in Subwatershed 0801020402.

CROPS	TONS/ACRE/YEAR
Grass (Hayland)	0.35
Forest Land (Grazed)	0.00
Forest Land (Not Grazed)	0.00
Corn (Row Crops)	7.66
Soybeans (Row Crops)	11.45
Cotton (Row Crops)	15.10
Sorghum (Row Crops)	6.37
Wheat (Close Grown Cropland)	3.56
Oats (Close Grown Cropland)	3.34
All Other Close Grown Cropland	0.47
Grass (Pastureland)	0.50
Grass, Forbs, Legumes (Mixed Pasture)	0.62
Other Land in Farms (Other Farmland)	0.70
Conservation Reserve Program Lands	0.54
Other Vegetable and Truck Crops	7.81
All Other Crops not Planted	0.68
Non Agricultural Land Use	0.00
Farmsteads and Ranch Headquarters	0.31

Table 4-17. Annual Estimated Total Soil Loss in Subwatershed 0801020402.

4.2.C. 0801020403.

Figure 4-25. Location of Subwatershed 0801020403. All North Fork Forked Deer HUC-10 subwatershed boundaries are shown for reference.

4.2.C.i. General Description.

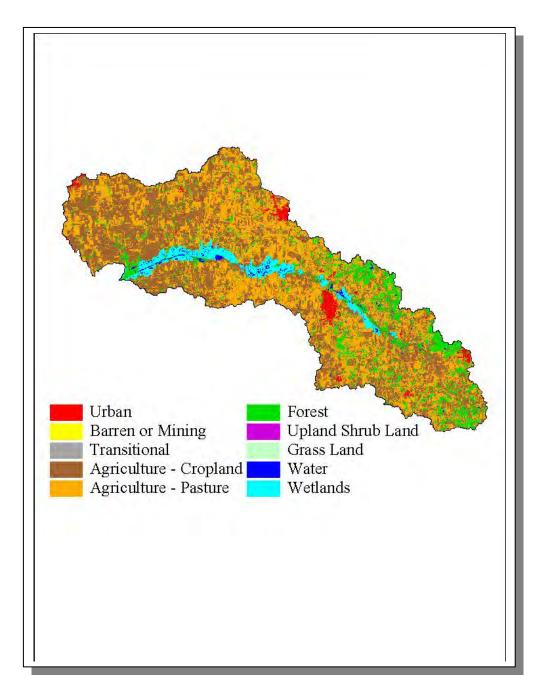


Figure 4-26. Illustration of Land Use Distribution in Subwatershed 0801020403.

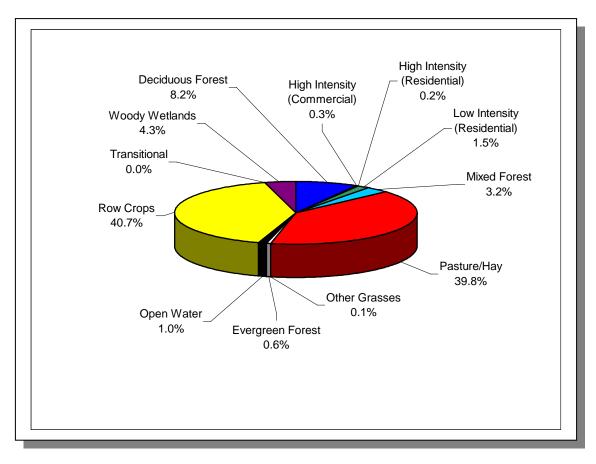


Figure 4-27. Land Use Distribution in Subwatershed 0801020403. More information is provided in NFFD-Appendix IV.

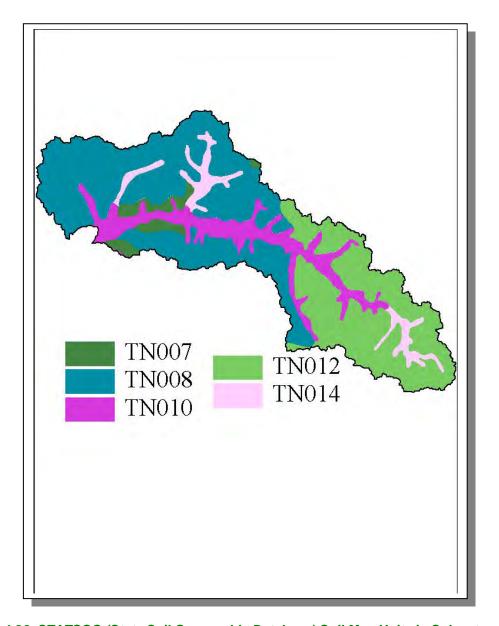


Figure 4-28. STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020403.

STATSGO MAP UNIT ID	PERCENT HYDRIC	HYDROLOGIC GROUP	PERMEABILITY (in/hour)	SOIL pH	ESTIMATED SOIL TEXTURE	SOIL ERODIBILITY
TN007	29.00	С	1.30	5.36	Silty Loam	0.48
TN008	2.00	С	1.38	5.20	Silty Loam	0.48
TN010	81.00	С	1.33	5.11	Silty Loam	0.44
TN012	1.00	С	2.52	5.13	Silty Loam	0.39
TN014	30.00	С	1.30	5.12	Silty Loam	0.47

Table 4-18. Soil Characteristics by STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020403. More information is provided in NFFD-Appendix IV.

		UNTY LATION		ESTIMATED POPULATION IN WATERSHED		PERCENT CHANGE
County	1990	1997 Est.	Portion of Watershed (%)	1990	1997	
Dyer	34,854	36,465	7.39	2,576	2,695	4.6
Gibson	46,315	48,083	33.74	15,625	16,221	3.8
Total	81,169	84,548		18,201	18,916	3.9

Table 4-19. Population Estimates in Subwatershed 0801020403.

			NUMB	ER OF HO	DUSING U	INITS
				Public	Septic	
Populated Place	County	Population	Total	Sewer	Tank	Other
Dyer	Gibson	2,190	972	932	40	0
Gibson	Gibson	287	118	110	4	4
Milan	Gibson	7,512	3,300	3,183	110	7
Newbern	Dyer	2,514	1,052	994	58	0
Trenton	Gibson	4,836	2,150	2,073	77	0
Yorkville	Gibson	355	142	7	133	2
Total		17,694	7,734	7,299	422	13

Table 4-20. Housing and Sewage Disposal Practices of Select Communities in Subwatershed 0801020403.

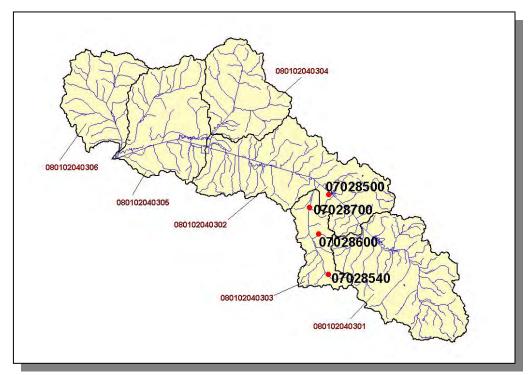


Figure 4-29. Location of Historical Streamflow Data Collection Sites in Subwatershed 08010204030. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

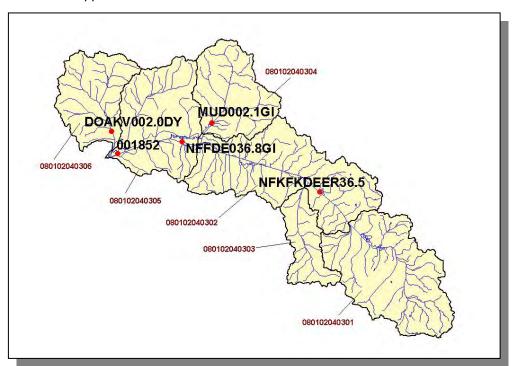


Figure 4-30. Location of STORET Monitoring Sites in Subwatershed 0801020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

4.2.C.ii. Point Source Contributions.

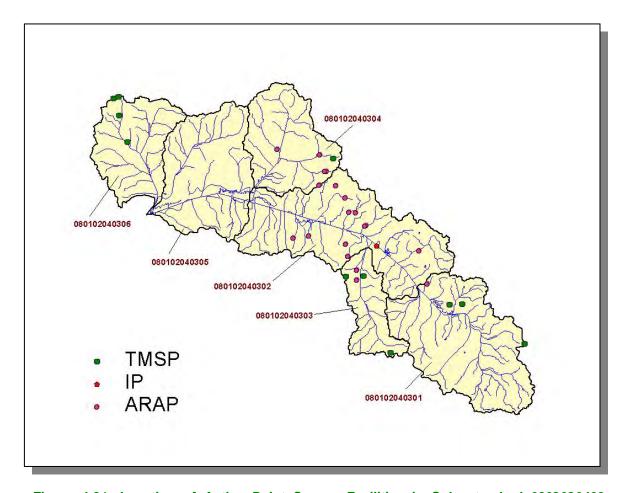


Figure 4-31. Location of Active Point Source Facilities in Subwatershed 0802020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. Tennessee Multi-Sector Permits (TMSP), green squares; Individual Permits, red pentagons; ARAP, magenta circles; Concentrated Animal Feeding Operations (CAFO), brown hexagons; Ready-Mix Concrete Permits (RMCP), turquoise stars; Mining Permits, gray triangles; Water Treatment Permits, Purple crosses. More information is provided in the following figures.

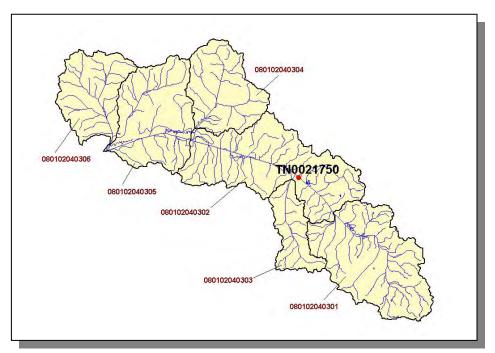
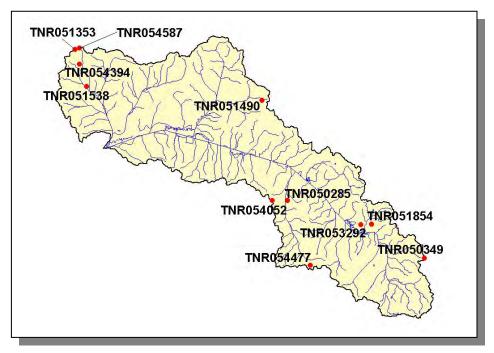



Figure 4-32. Location of Active Point Source Facilities (Individual Permits) in Subwatershed 0801020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

Figure 4-33. Location of TMSP Facilities in Subwatershed 0801020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

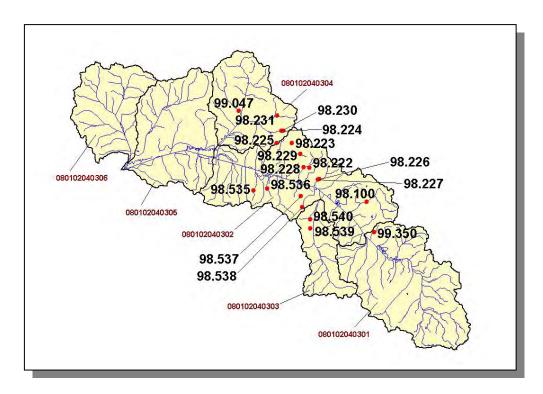


Figure 4-34. Location of ARAP Sites (Individual Permits) in Subwatershed 0801020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. More information, including the names of facilities, is provided in NFFD-Appendix IV.

4.2.A.ii.a. Dischargers to Water Bodies Listed on the 1998 303(d) List

There is one NPDES facility discharging to water bodies listed on the 1998 303(d) list in Subwatershed 0801020403:

TN0021750 (Trenton Lagoon) discharges to North Fork Forked Deer River
 @ RM 35.9

Figure 4-35. Location of NPDES Dischargers to Water Bodies Listed on the 1998 303(d) List in Subwatershed 0801020403. Subwatershed 080102040301, 080102040302, 080102040303, 080102040304, 080102040305, and 080102040306 boundaries are shown for reference. The names of facilities are provided in NFFD-Appendix IV.

PERMIT #	1Q10	3Q10	7Q10	3Q20	QDESIGN
TN0021750	4.60	4.69	4.82	4.04	0.75000

Table 4-21. Receiving Stream Flow Information for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020403. Data are in million gallons per day (MGD). Data were obtained from the USGS publication Flow Duration and Low Flows of Tennessee Streams Through 1992 or from permit files.

PERMIT#	CBOD ₅	рН	WET	NH 3	FECAL	TRC	SETTLEABLE SOLIDS	TSS	DO
TN0021750	Χ	Х	Х	Χ	Χ	Χ	X	Χ	Χ

Table 4-22. Parameters Monitored for Daily Maximum (mg/L) Limits for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020403. CBOD₅, Carbonaceous Biochemical Oxygen Demand (5-Day); WET, Whole Effluent Toxicity; TRC, Total Residual Chlorine; TSS, Total Suspended Solids; DO, Dissolved Oxygen.

4.2.C.iii. Nonpoint Source Contributions.

LIVESTOCK (COUNTS)								
Beef Cow	Cattle	Milk Cow	Chickens	Chickens Sold	Hogs	Sheep		
3,577	9,568	81	9	0	2,939	27		

Table 4-23. Summary of Livestock Count Estimates in Subwatershed 0801020403. According to the 1997 Census of Agriculture (http://www.nass.usda.gov/census/), "Cattle" includes heifers, heifer calves, steers, bulls and bull calves; "Chickens" are layers 20 weeks and older; "Chickens Sold" are all chickens used to produce meat.

	INVEN	ΓORY	REMOV	REMOVAL RATE		
County	Forest Land (thousand acres)	Timber Land (thousand acres)	Growing Stock (million cubic feet)	Sawtimber (million board feet)		
Dyer	40.4	40.4	0.8	2.8		
Gibson	36.4	36.4	2.0	8.6		
Totals	76.8	76.8	2.8	11.4		

Table 4-24. Forest Acreage and Average Annual Removal Rates (1987-1994) in Subwatershed 0801020403.

CROPS	TONS/ACRE/YEAR
Grass (Hayland)	0.31
Grass (Pastureland)	0.50
Grass, Forbs, Legumes (Mixed Pasture)	0.80
Forest Land (Grazed)	0.00
Forest Land (Not Grazed)	0.00
Corn (Row Crops)	11.01
Soybeans (Row Crops)	8.10
Sorghum (Row Crops)	6.30
Cotton (Row Crops)	15.28
Wheat (Close Grown Cropland)	3.88
Oats (Close Grown Cropland)	3.34
Conservation Reserve Program Land	0.46
Other Land in Farms	1.34
Farmsteads and Ranch Headquarters	0.50
Other Cropland not Planted	0.70
Nonagricultural Land Use	0.00

Table 4-25. Annual Estimated Total Soil Loss in Subwatershed 0801020403.

4.2.D. 0801020404.

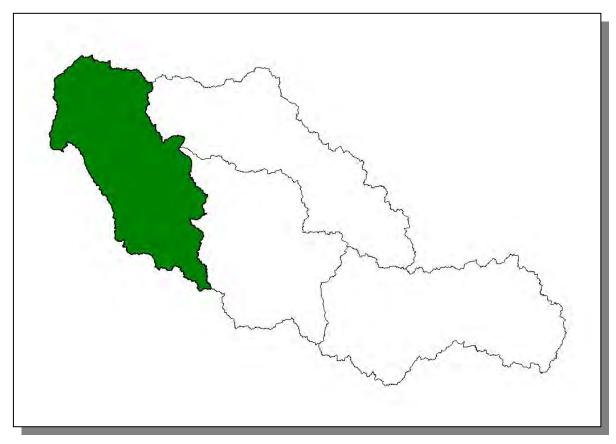


Figure 4-36. Location of Subwatershed 0801020404. All North Fork Forked Deer subwatershed boundaries are shown for reference.

4.2.D.i. General Description.

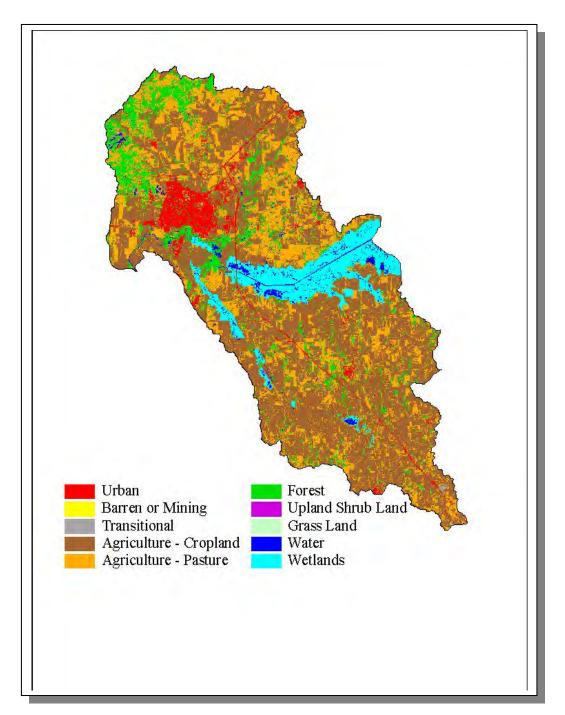


Figure 4-37. Illustration of Land Use Distribution in Subwatershed 0801020404.

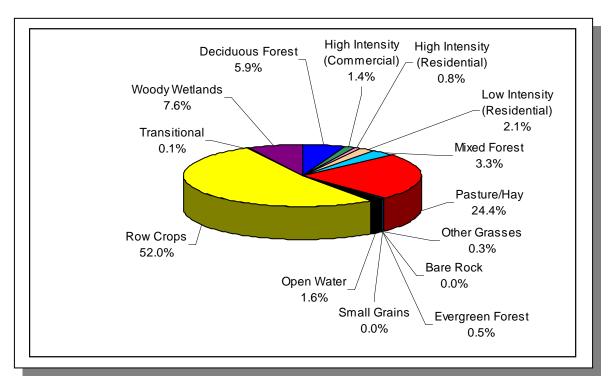


Figure 4-38. Land Use Distribution in Subwatershed 0801020404. More information is provided in NFFD-Appendix IV.

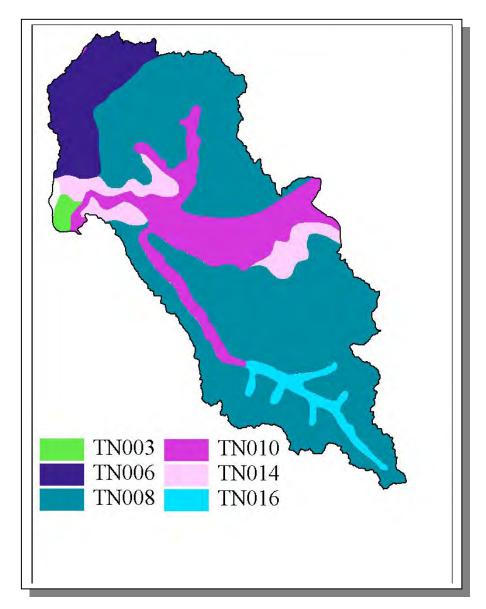


Figure 4-39. STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020404.

STATSGO MAP UNIT ID	PERCENT HYDRIC	HYDROLOGIC GROUP	PERMEABILITY (in/hour)	SOIL pH	ESTIMATED SOIL TEXTURE	SOIL ERODIBILITY
TN003	62.00	С	0.50	6.65	Silty Clay	0.33
TN005	10.00	С	1.79	6.68	Silty Loam	0.41
TN006	0.00	С	1.30	5.42	Silty Loam	0.48
TN008	2.00	С	1.38	5.20	Silty Loam	0.48
TN010	81.00	С	1.33	5.11	Silty Loam	0.44
TN014	30.00	С	1.30	5.12	Silty Loam	0.47
TN016	0.00	С	1.30	6.47	Silty Loam	0.44

Table 4-26. Soil Characteristics by STATSGO (State Soil Geographic Database) Soil Map Units in Subwatershed 0801020404. More information is provided in NFFD-Appendix IV.

	COU POPUL			ESTIMATED POPULATION IN WATERSHED		PERCENT CHANGE
County	1990	1997 Est.	Portion of Watershed (%)	1990	1997	
Crockett	13,378	13,841	24.84	3,324	3,439	3.5
Dyer	34,854	36,465	30.28	10,555	11,043	4.6
Total	48,232	50, 306		13,879	14,482	4.3

Table 4-27. Population Estimates in Subwatershed 0801020404.

		NUMB	ER OF HO	DUSING U	INITS	
				Public	Septic	
Populated Place	County	Population	Total	Sewer	Tank	Other
Alamo	Crockett	2,400	1,044	1,001	43	0
Dyersberg	Dyer	16,317	7,041	6,993	48	0
Friendship	Crockett	468	203	196	7	0
Maury City	Crockett	781	318	22	288	8
Newbern	Dyer	2,514	1,052	994	58	0
Total		22,480	9,658	9,206	444	8

Table 4-28. Housing and Sewage Disposal Practices of Select Communities in Subwatershed 0801020404.

Figure 4-40. Location of Historical Streamflow Data Collection Sites in Subwatershed 0801020404. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

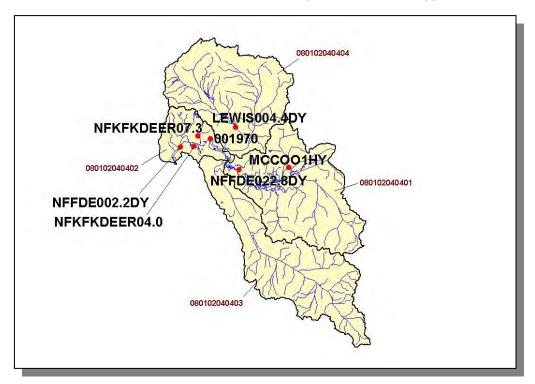


Figure 4-41. Location of STORET Monitoring Sites in Subwatershed 08010204044. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

4.2.D.ii. Point Source Contributions.

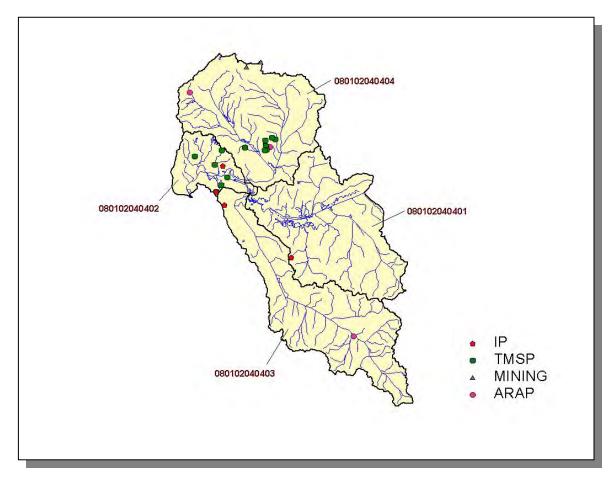


Figure 4-42. Location of Active Point Source Facilities in Subwatershed 08010204040. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in the following figures.

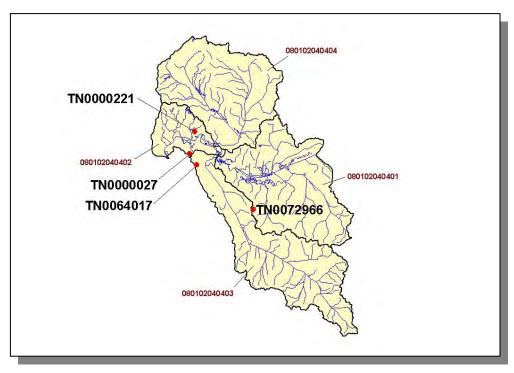
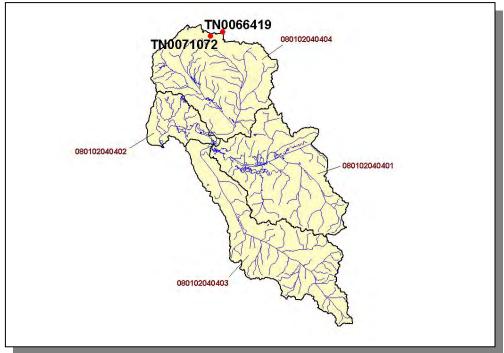
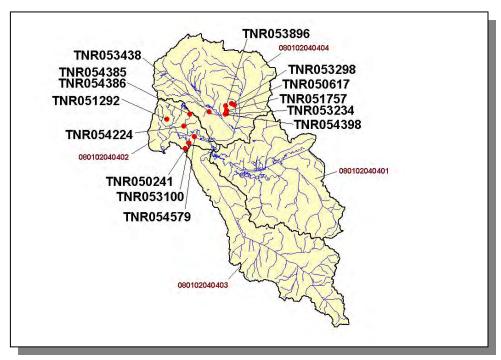




Figure 4-43. Location of Active Point Source Facilities (Individual Permits) in Subwatershed 0801020404. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

Figure 4-44. Location of Active Mining Sites in Subwatershed 0801020404. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

Figure 4-45. Location of TMSP Facilities in Subwatershed 08010204044. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

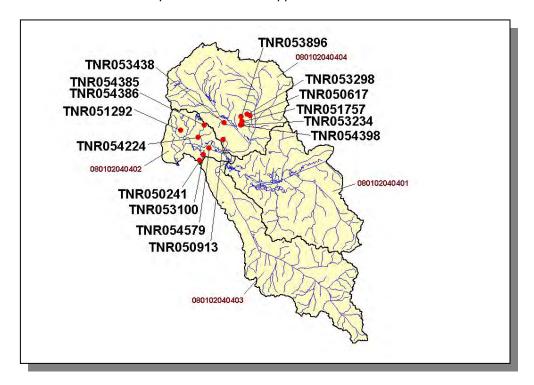


Figure 4-46. Location of ARAP Sites (Individual Permits) in Subwatershed 08010204040. Subwatershed 080102040401, 080102040402, 080102040403, and 080102040404 boundaries are shown for reference. More information is provided in NFFD-Appendix IV.

4.2.A.ii.a. Dischargers to Water Bodies Listed on the 1998 303(d) List

There are four NPDES facilities discharging to water bodies listed on the 1998 303(d) list in Subwatershed 0801020404:

- TN0000027 (Heckethorn Maufacturing) discharges to North Fork Forked Deer River @ RM 1.3
- TN0000221(PolyOne Elastomers) discharges to an unnamed trib to North Fork Forked Deer River @ RM 6.2
- TN0064017 (Dr. Pepper/Pepsi-Cola Bottling Co.) discharges to an unnamed trib to Pond Creek @ RM 1.2
- TN0072966 (Trunkline Gas Co.) discharges to an unnamed trib to Nash Creek @ RM 3.0

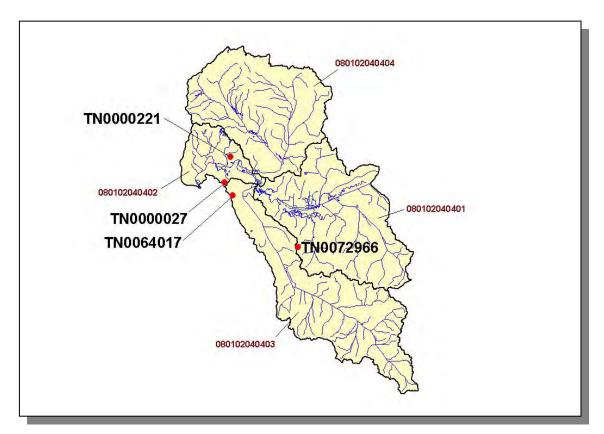


Figure 4-47. Location of NPDES Dischargers to Water Bodies Listed on the 1998 303(d) List in Subwatershed 08010204044. Subwatershed 080102040401, 080102040402,

080102040403, and 080102040404 boundaries are shown for reference. The names of facilities are provided in NFFD-Appendix IV.

PERMIT #	1Q10	3Q10	7Q10	3Q20	QDESIGN
TN0000027	0.00	0.00	0.00	0.00	0.14000
TN0000221				0.00	0.04300
TN0064017					0.03600
TN0072966			0.00		0.02500

Table 4-29. Receiving Stream Flow Information for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020404. Data are in million gallons per day (MGD). Data were obtained from the USGS publication Flow Duration and Low Flows of Tennessee Streams Through 1992 or from permit files.

PERMIT #	TSS	BOD ₅	COD	рН	Zn	OIL and GREASE	NH ₃
TN0000221	Х	Χ	Χ	X	Χ	Χ	Χ

Table 4-30. Monitoring Requirements for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020404. TSS, Total Suspended Solids; BOD₅,
Biochemical Oxygen Demand (5-Day); COD, Chemical Oxygen Demand.

PERMIT #	рН	PCB	TRC	OIL and GREASE	TSS
TN0000027	Х		Х	X	
TN0064017	Х		Х		Х
TN0072966	Х	Χ		X	Χ

Table 4-31. Parameters Monitored for Daily Maximum (mg/L) Limits for NPDES Dischargers to Waterbodies Listed on the 1998 303(d) List in Subwatershed 0801020404.

4.2.D.iii. Nonpoint Source Contributions.

LIVESTOCK (COUNTS)						
Beef Cow	Milk Cow	Cattle	Chickens	Chickens Sold	Hogs	Sheep
807	2	6,679	7	0	630	9

Table 4-32. Summary of Livestock Count Estimates in Subwatershed 0801020404. According to the 1997 Census of Agriculture (http://www.nass.usda.gov/census/), "Cattle" includes heifers, heifer calves, steers, bulls and bull calves; "Chickens" are layers 20 weeks and older; "Chickens Sold" are all chickens used to produce meat.

	INVEN	ITORY	REMOVAL RATE		
0	Forest Land	Timber Land	Growing Stock	Sawtimber	
County	(thousand acres)	(thousand acres)	(million cubic feet)	(million board feet)	
Crockett	15.1	15.1	0.3	1.6	
Dyer	40.4	40.4	0.8	2.8	
Total	55.5	55.5	1.1	4.4	

Table 4-33. Forest Acreage and Average Annual Removal Rates (1987-1994) in Subwatershed 0801020404.

CROPS	TONS/ACRE/YEAR
Forest Land (Grazed)	0.00
Forest Land (Not Grazed)	0.00
Corn (Row Crops)	6.30
Soybeans (Row Crops)	8.09
Cotton (Row Crops)	7.59
Sorghum (Row Crops)	5.90
Wheat (Close Grown Cropland)	3.88
Oats (Close Grown Cropland)	3.34
Grass (Hayland)	0.19
Grass (Pastureland)	1.39
Grass, Forbs, Legumes (Mixed Pasture)	0.32
Conservation Reserve Program Land	0.45
Other Land in Farms	0.15
Other Cropland not Planted	1.36
Farmsteads and Ranch Headquarters	0.95

Table 4-34. Annual Soil Loss in Subwatershed 0801020404.

CHAPTER 5

WATER QUALITY PARTNERSHIPS IN THE NORTH FORK FORKED DEER RIVER WATERSHED

- 5.1 Background
- 5.2 Federal Partnerships
 - 5.2.A. Natural Resources Conservation Service
 - 5.2.B. United States Geological Survey
 - 5.2.C. United States Fish and Wildlife Service
 - 5.2.D. U.S. Army Corps of Engineers-Memphis District
- 5.3 State Partnerships
 - 5.3.A. TDEC Division of Water Supply
 - 5.3.B. State Revolving Fund
 - 5.3.C. West Tennessee River Basin Authority
 - 5.3.D. Tennessee Department of Agriculture

5.1. BACKGROUND. The Watershed Approach relies on participation at the federal, state, local and nongovernmental levels to be successful. Two types of partnerships are critical to ensure success:

- Partnerships between agencies
- Partnerships between agencies and landowners

This chapter describes both types of partnerships in the North Fork Forked Deer River Watershed. The information presented is provided by the agencies and organizations described.

5.2. FEDERAL PARTNERSHIPS.

5.2.A. Natural Resources Conservation Service. The Natural Resources Conservation Service (NRCS), an agency of the U.S. Department of Agriculture, provides technical assistance, information, and advice to citizens in their efforts to conserve soil, water, plant, animal, and air resources on private lands.

Performance & Results Measurement System (PRMS) is a Web-based database application providing USDA Natural Resources Conservation Service, conservation partners, and the public fast and easy access to accomplishments and progress toward strategies and performance. The PRMS may be viewed at http://prms.nrcs.usda.gov/prms. From the opening menu, select "Reports," then select the Conservation Treatment of interest on the page that comes up. Select the desired location and time period from the drop down menus and choose "Refresh." Choose "by HUC" in the "Location" option and choose "Refresh" again.

The data can be used to determine broad distribution trends in service provided to customers by NRCS conservation partnerships. These data do not show sufficient detail to enable evaluation of site-specific conditions (e.g., privately-owned farms and ranches) and are intended to reflect general trends.

CONSERVATION PRACTICE	TOTAL
Comprehensive Nutrient Management Plans (Number)	0
Conservation Buffers (Acres)	99
Erosion Reduction (Tons/Year)	185,255
Inventory and Evaluations (Number)	41
Irrigation Management (Acres)	0
Nutrient Management (Acres)	9,135
Pest Management (Acres)	9,792
Prescribed Grazing (Acres)	182
Residue Management (Acres)	6,845
Tree and Shrub Practices (Acres)	110
Waste Management (Number)	0
Wetlands Created, Restored, or Enhanced (Acres)	221
Wildlife Habitat (Acres)	3.048

Table 5-1. Landowner Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period. More information is provided in NFFD-Appendix V.

<u>5.2.B.</u> United States Geological Survey Water Resources Programs – Tennessee <u>District.</u> The U.S. Geological Survey (USGS) provides relevant and objective scientific studies and information for public use to evaluate the quantity, quality, and use of the Nation's water resources. In addition to providing National assessments, the USGS also conducts hydrologic studies in cooperation with numerous Federal, State, and local agencies to address issues of National, regional, and local concern. Please visit http://water.usgs.gov/ for an overview of the USGS, Water Resources Discipline.

The USGS collects hydrologic data to document current conditions and provide a basis for understanding hydrologic systems and solving hydrologic problems. In Tennessee,

the USGS records streamflow continuously at more than 89 gaging stations equipped with recorders and makes instantaneous measurements of streamflow at many other locations. Ground-water levels are monitored Statewide, and the physical, chemical, and biologic characteristics of surface and ground waters are analyzed. USGS activities also include the annual compilation of water-use records and collection of data for National baseline and water-quality networks. National programs conducted by the USGS include the National Atmospheric Deposition Program Stream (http://bas.usas.gov/acidrain/). National Quality Accounting Network (http://water.usgs.gov/nasgan/), and the National Water-Quality Assessment Program (http://water.usgs.gov/nawga/).

<u>USGS Water Resources Information on the Internet.</u> Real-time and historical streamflow, water levels, and water-quality data at sites operated by the Tennessee District can be accessed at http://waterdata.usgs.gov/tn/nwis/nwis. Data can be retrieved by county, hydrologic unit code, or major river basin using drop-down menus. Contact Donna Flohr at (615) 837-4730 or dfflohr@usgs.gov for specific information about streamflow data.

Recent publications by the USGS staff in Tennessee can be accessed by visiting http://tn.water.usgs.gov/pubpg.html. This web page provides searchable bibliographic information to locate reports and other products about specific areas.

5.2.C. U.S. Fish and Wildlife Service. The mission of the U.S. Fish and Wildlife Service is working with others to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continuing benefit of the American people. Sustaining our nation's fish and wildlife resources is a task that can be accomplished only through the combined efforts of governments, businesses, and private citizens. The U.S. Fish and Wildlife Service (Service) works with State and Federal agencies and Tribal governments, helps corporate and private landowners conserve habitat, and cooperates with other nations to halt illegal wildlife trade. The Service also administers a Federal Aid program that distributes funds annually to States for fish and wildlife restoration, boating access, hunter education, and related projects across America. The funds come from Federal excise taxes on fishing, hunting, and boating equipment.

Endangered Species Program. Through the Endangered Species Program, the Service consults with other federal agencies concerning their program activities and their effects on endangered and threatened species. Other Service activities under the Endangered Species Program include the listing of rare species under the Endangered Species Act (ESA) of 1973 (87 Stat. 884, as amended: 16 U.S.C. 1531 et seq.) and the recovery of listed species. Once listed, a species is afforded the full range of protections available under the ESA, including prohibitions on killing, harming or otherwise taking a species. In some instances, species listing can be avoided by the development of Candidate Conservation Agreements, which may remove threats facing the candidate species, and funding efforts such as the Private Stewardship Grant Program. For a complete listing of endangered and threatened species in the North Fork Forked Deer River watershed, please visit the Service's website at http://www.cookeville.fws.gov.

Recovery is the process by which the decline of an endangered or threatened species is stopped and reversed, and threats to the species' survival are eliminated, so that longterm survival in nature can be ensured. The goal of the recovery process is to restore listed species to a point where they are secure and self-sustaining in the wild and can be removed from the endangered species list. Under the ESA, the Service and National Marine Fisheries Service were delegated the responsibility of carrying out the recovery program for all listed species.

In an effort to preclude the listing of a rare species, the Service engages in proactive conservation efforts for unlisted species. The program covers not only formal candidates but other rare species that are under threat. Early intervention preserves management options and minimizes the cost of recovery.

Partners for Fish and Wildlife Program. The U.S. Fish and Wildlife Service established the Partners for Fish and Wildlife Program to restore historic habitat types that benefit native fishes and wildlife. The program adheres to the concept that restoring or enhancing habitats such as wetlands or other unique habitat types will substantially benefit federal trust species on private lands by providing food and cover or other essential needs. Federal trust species include threatened and endangered species, as well as migratory birds (e.g. waterfowl, wading birds, Participation is voluntary and various types of projects are available. Projects include livestock exclusion fencing, alternate water supply construction, streambank stabilization, restoration of native vegetation, wetland restoration/enhancement, riparian zone reforestation, and restoration of in-stream aquatic habitats.

How To Participate:

- Interested landowners contact a "Partners for Fish and Wildlife" Biologist to discuss the proposed project and establish a site visit.
- A visit to the site is then used to determine which activities the landowner desires and how those activities will enhance habitat for trust resources.
 Technical advice on proposed activities is provided by the Service, as appropriate.
- Proposed cost estimates are discussed by the Service and landowner.
- A detailed proposal which describes the proposed activities is developed by the Service biologist and the landowner. Funds are competitive, therefore the proposal is submitted to the Service's Ecosystem team for ranking and then to the Regional Office for funding.
- After funding is approved, the landowner and the Service co-sign a Wildlife Extension Agreement (minimum 10-year duration).
- Project installation begins.
- When the project is completed, the Service reimburses the landowner after receipts and other documentation are submitted according to the Wildlife Extension Agreement.

For more information regarding the Endangered Species and Partners for Fish and Wildlife programs, please contact the Cookeville Ecological Services Field Office at 931/528-6481 or visit their website at http://www.cookeville.fws.gov.

5.2.D. United States Army Corps of Engineers-Memphis District. Memphis is one of six districts in the Mississippi Valley Division of the Corps of Engineers. The District's area of responsibility encompasses 25,000 square miles, portions of six states, 15 major drainage basins, and approximately 3 million citizens. Responsibilities also include maintaining a 355-mile, 9-feet deep, and 300-feet wide Mississippi River channel from Cairo, Illinois to the mouth of the White River in Arkansas.

The Memphis District serves the Nation by planning, designing, constructing and operating high quality and reasonably priced Civil Works water resource projects, primarily in the major mission areas of flood damage reduction, navigation, and environmental restoration and stewardship. The Corps' ongoing Civil Works responsibilities date back to the early 1800's when Congress authorized the removal of navigation hazards and obstacles in the early years of the nation's development. Over the years, succeeding Administrations and Congresses have expanded the Corps' missions to include most all water-related planning, development, and construction areas where a Federal interest is involved. Funds for Civil Works are provided through annual Energy and Water Appropriations Acts and through contributions from non-Federal entities for planning and /or construction of specific projects. All Civil Works projects involve a non-Federal, cost sharing sponsor.

Civil Works projects may also be funded under the Continuing Authorities Program (CAP). Congress has provided the Corps with standing authorities to study and build specific water resource projects for specific purposes and with specified spending limits. The CAP projects are implemented in a faster time frame, are limited in complexity, have Federal cost limits determined by the specific authority, are approved by the Division Commander, and do not need Congressional authorization.

The West Tennessee Tributaries flood control project is located along the Obion, Forked Deer Rivers, and their tributaries. The project sponsor is the State of Tennessee acting through the West Tennessee Basin Authority. The project involves 225 miles of flood control improvements on the Obion and Forked Deer Rivers and construction of 7.6 miles of levees, 174 water control structures, 216 erosion control structures, 37 miles of water management connector channels to restore bottomland hardwoods and fisheries, and the acquisition of 32,000 acres of mitigation.

Ninety-three miles of flood control improvements were completed before the project was halted by a lawsuit in 1973. Approximately 13,500 acres of mitigation have been acquired. The project is currently on hold pending the resolution of issues.

To obtain additional information about the District, please refer to the home page at: http://www.mvm.usace.army.mil, or contact the following offices:

Public Affairs Office (General Information): (901) 544-3348 Regulatory Branch: (901) 544-3473 Planning, Programs, and (901) 544- 0658

Project Management Branch:

Continuing Authorities Program: (901) 544-0798 Environmental Analysis Branch: (901) 544-3857

5.3. STATE PARTNERSHIPS.

5.3.A. TDEC Division of Water Supply. The Source Water Protection Program, authorized by the 1996 Amendments to the Safe Drinking Water Act, outline a comprehensive plan to achieve maximum public health protection. According to the plan, it is essential that every community take these six steps:

- 1) Delineate the drinking water source protection area
- 2) Inventory known and potential sources of contamination within these areas
- 3) Determine the susceptibility of the water supply system to these contaminants
- 4) Notify and involve the public about threats identified in the contaminant source inventory and what they mean to their public water system
- 5) Implement management measures to prevent, reduce or eliminate threats
- 6) Develop contingency planning strategies to deal with water supply contamination or service interruption emergencies (including natural disaster or terrorist activities).

Source water protection has a simple objective: to prevent the pollution of the lakes, rivers, streams, and ground water (wells and springs) that serve as sources of drinking water before they become contaminated. This objective requires locating and addressing potential sources of contamination to these water supplies. There is a growing recognition that effective drinking water system management includes addressing the quality and protection of the water sources.

Source Water Protection has a significant link with the Watershed Management Program goals, objectives and management strategies. Watershed Management looks at the health of the watershed as a whole in areas of discharge permitting, monitoring and protection. That same protection is important to protecting drinking water as well. Communication and coordination with a multitude of agencies is the most critical factor in the success of both Watershed Management and Source Water Protection.

Watershed management plays a role in the protection of both ground water and surface water systems. Watershed Management is particularly important in areas with karst {limestone characterized by solution features such as caves and sinkholes as well as disappearing streams and spring} since the differentiation between ground water and surface water is sometimes nearly impossible. What is surface water can become ground water in the distance of a few feet and vice versa.

Source water protection is not a new concept, but an expansion of existing wellhead protection measures for public water systems relying on ground water to now include surface water. This approach became a national priority, backed by federal funding, when the Safe Drinking Water Act amendments (SDWA) of 1996 were enacted. Under this Act, every public drinking water system in the country is scheduled to receive an assessment of both the sources of potential contamination to its water source of the threat these sources may pose by the year 2003 (extensions are available until 2004). The assessments are intended to enhance the protection of drinking water supplies within existing programs at the federal, state and local levels. Source water

assessments were mandated and funded by Congress. Source water protection will be left up to the individual states and local governments without additional authority from Congress for that progression.

As a part of the Source Water Assessment Program, public water systems are evaluated for their susceptibility to contamination. These individual source water assessments with susceptibility analyses are available to the public at http://www.state.tn.us/environment/dws as well as other information regarding the Source Water Assessment Program and public water systems.

For further discussion on ground water issues in Tennessee, the reader is referred to the Ground Water Section of the 305(b) Water Quality Report at http://www.tdec.net/water.shtml.

5.3.B. State Revolving Fund. TDEC administers the state's Clean Water State Revolving Fund Program. Amendment of the Federal Clean Water Act in 1987 created the Clean Water State Revolving Fund (SRF) Program to provide low-interest loans to cities, counties, and utility districts for the planning, design, and construction of wastewater facilities. The U.S. Environmental Protection Agency awards annual capitalization grants to fund the program and the State of Tennessee provides a twenty-percent funding match. TDEC has awarded loans totaling approximately \$550 million since the creation of the SRF Program. SRF loan repayments are returned to the program and used to fund future SRF loans.

SRF loans are available for planning, design, and construction of wastewater facilities, or any combination thereof. Eligible projects include new construction or upgrading/expansion of existing facilities, including wastewater treatment plants, pump stations, force mains, collector sewers, interceptors, elimination of combined sewer overflows, and nonpoint source pollution remedies.

SRF loan applicants must pledge security for loan repayment, agree to adjust user rates as needed to cover debt service and fund depreciation, and maintain financial records that follow governmental accounting standards. SRF loan interest rates range from zero percent to market rate, depending on the community's per-capita income, taxable sales, and taxable property values. Most SRF loan recipients qualify for interest rates between 2 and 4 percent. Interest rates are fixed for the life of the term of the loan. The maximum loan term is 20 years or the design life of the proposed wastewater facility, whichever is shorter.

TDEC maintains a Priority Ranking System and Priority List for funding the planning, design, and construction of wastewater facilities. The Priority Ranking List forms the basis for funding eligibility determinations and allocation of Clean Water SRF loans. Each project's priority rank is generated from specific priority ranking criteria and the proposed project is then placed on the Project Priority List. Only projects identified on the Project Priority List may be eligible for SRF loans. The process of being placed on the Project Priority List must be initiated by a written request from the potential SRF loan recipient or their engineering consultant. SRF loans are awarded to the highest priority

projects that have met SRF technical, financial, and administrative requirements and are ready to proceed.

Since SRF loans include federal funds, each project requires development of a Facilities Plan, an environmental review, opportunities for minority and women business participation, a State-approved sewer use ordinance and Plan of Operation, and interim construction inspections.

For further information about Tennessee's Clean Water SRF Loan Program, call (615) 532-0445 or visit their Web site at http://www.tdec.net/srf.

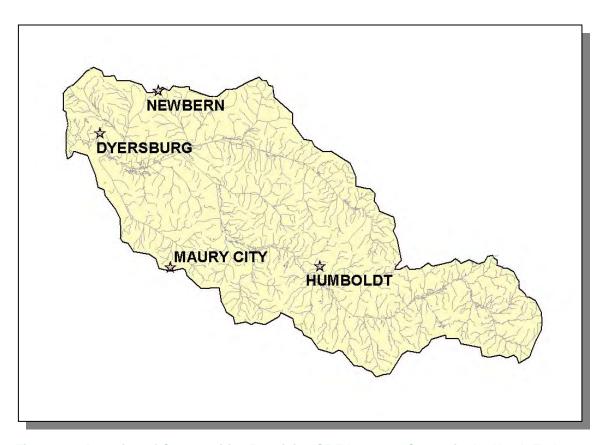


Figure 5-1. Location of Communities Receiving SRF Loans or Grants in the North Fork Forked Deer River Watershed. More information is provided in NFFD-Appendix V.

5.3.C. West Tennessee River Basin Authority. The West Tennessee River Basin Authority, an agency of the Department of Environment and Conservation, is responsible for the preservation of the natural flow and function of rivers and streams in the Forked Deer, Obion and Hatchie River Basins. As a Water Quality Partner, the Basin Authority conducts a variety of activities directly related to the conservation of resources in these river basins. In carrying out its mission the Basin Authority:

- Pursues and implements meandering stream and river restoration projects, with the goal of restoring natural floodplain dynamics and the associated riverine ecosystems.
- Implements watershed level projects designed to reduce the volume of sediment entering streams, and rivers. Excessive sedimentation can severely impair water quality as well as aquatic and floodplain habitats.
- Performs environmentally sensitive removal of logiams and obstructions to flow in streams and rivers, resulting in the preservation of environmental and economic resources.
- Maintains 110 Flood Control and Sediment Retention Structures, designed to increase flood storage capacity and to improve water quality through removal of suspended sediments.
- In support of its work, receives donations of Conservation Easements on Bottomland Hardwood Timber and other Wetlands. To date, over 23 square miles have been donated to the Basin Authority by private landowners.
- Maintains several large Bank Stabilization Projects in the Obion and Forked Deer River Systems, designed to prevent severe bank erosion. Where feasible, the Basin Authority utilizes bioengineering techniques to stabilize river banks, while, at the same time, reestablishing the riparian corridor.
- Maintains several Grade Control Structures designed to prevent further vertical degradation of altered streams and rivers. These structures, not only protect vital infrastructure, but help prevent the release of large volumes of sediment.

Through its efforts, the West Tennessee River Basin Authority will remain a strong advocate for the conservation and sustainable utilization of the resources within the Hatchie, Obion and Forked Deer River Basins.

The West Tennessee River Basin Authority office is located at 3628 East End Drive in Humboldt, Tennessee. For additional information or assistance, call 731/784-8173.

5.3.D. Tennessee Department of Agriculture. The Tennessee Department of Agriculture's Water Resources Section consists of the federal Section 319 Nonpoint Source Program and the Agricultural Resources Conservation Fund Program. Both of these are grant programs which award funds to various agencies, non-profit organizations, and universities that undertake projects to improve the quality of Tennessee's waters and/or educate citizens about the many problems and solutions to water pollution. Both programs fund projects associated with what is commonly known as "nonpoint source pollution."

The Tennessee Department of Agriculture's Nonpoint Source Program (TDA-NPS) has the responsibility for management of the federal Nonpoint Source Program, funded by

the US Environmental Protection Agency through the authority of Section 319 of the Clean Water Act. This program was created in 1987 as part of the reauthorization of the Clean Water Act, and it established funding for states, territories and Indian tribes to address NPS pollution. Nonpoint source funding is used for installing Best Management Practices (BMPs) to stop known sources of NPS pollution, training, education, demonstrations and water quality monitoring. The TDA-NPS Program is a non-regulatory program, promoting voluntary, incentive-based solutions to NPS problems. The TDA-NPS Program basically funds three types of programs:

- BMP Implementation Projects. These projects aid in the improvement of an impaired waterbody, or prevent a non-impaired water from becoming listed on the 303(d) List.
- Monitoring Projects. Up to 20% of the available grant funds are used to assist the water quality monitoring efforts in Tennessee streams, both in the state's 5-year watershed monitoring program, and also in performing before-and-after BMP installation, so that water quality improvements can be verified. Some monitoring in the North Fork Forked Deer River Watershed was funded under an agreement with the Tennessee Department of Agriculture, Nonpoint Source Program, and the U.S. Environmental Protection Agency Assistance Agreements C9994674-99-0, C9994674-00-0, and C9994674-01-0.
- Educational Projects. The intent of educational projects funded through TDA-NPS is to raise the awareness of landowners and other citizens about practical actions that can be taken to eliminate nonpoint sources of pollution to the waters of Tennessee.

The Tennessee Department of Agriculture Agricultural Resources Conservation Fund Program (TDA-ARCF) provides cost-share assistance to landowners across Tennessee to install BMPs that eliminate agricultural nonpoint source pollution. This assistance is provided through Soil Conservation Districts, Resource Conservation and Development Districts, Watershed Districts, universities, and other groups. Additionally, a portion of the TDA-ARCF is used to implement information and education projects statewide, with the focus on landowners, producers, and managers of Tennessee farms and forests.

Participating contractors in the program are encouraged to develop a watershed emphasis for their individual areas of responsibility, focusing on waters listed on the Tennessee 303(d) List as being impaired by agriculture. Current guidelines for the TDA-ARCF are available. Landowners can receive up to 75% of the cost of the BMP as a reimbursement.

Since January of 1999, the Department of Agriculture and the Department of Environment and Conservation have had a Memorandum of Agreement whereby complaints received by TDEC concerning agriculture or silviculture projects would be forwarded to TDA for investigation and possible correction. Should TDA be unable to obtain correction, they would assist TDEC in the enforcement against the violator. More information about the joint policy to address Bad Actors in forestry operations is available at http://www.state.tn.us/environment/news/release/jan99/badact.htm

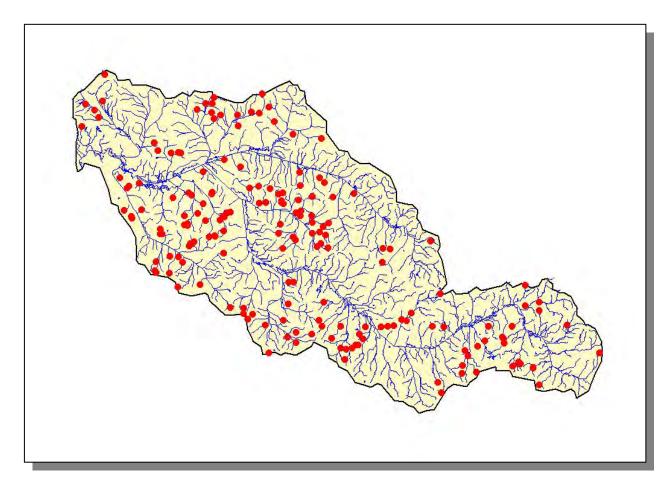


Figure 5-2. Location of BMPs installed from 1999 through 2002 in the North Fork Forked Deer River Watershed with Financial Assistance from the Tennessee Department of Agriculture's Nonpoint Source and Agricultural Resources Conservation Fund Grant Programs.

CHAPTER 6

FUTURE DIRECTIONS IN THE NORTH FORK FORKED DEER RIVER WATERSHED

- 6.1. Background
- 6.2. Comments from Public Meetings 6.2.A. Year 1 Public Meeting

6.2.B. Year 5 Public Meeting

6.3. Approaches Used 6.3.A. Point Sources

6.3.B. Nonpoint Sources

- 6.4. Permit Reissuance Planning
 - 6.4.A. Municipal Permits
 - 6.4.B. Industrial Permits
 - 6.4.C. Water Treatment Plant Permits

6.1. BACKGROUND.

The Watershed Water Quality Management Plan serves as a comprehensive inventory of resources and stressors in the watershed, a recommendation for control measures, and a guide for planning activities in the next five-year watershed cycle and beyond. Water quality improvement will be a result of implementing both regulatory and nonregulatory programs.

In addition to the NPDES program, some state and federal regulations, such as the TMDL and ARAP programs, address point and nonpoint issues. Construction and MS4 stormwater rules (implemented under the NPDES program) are transitioning from Phase 1 to Phase 2. More information on stormwater rules may be found at: http://www.state.tn.us/environment/wpc/stormh2o/MS4.htm.

This Chapter addresses point and nonpoint source approaches to water quality problems in the North Fork Forked Deer River Watershed as well as specific NPDES permittee information.

6.2. COMMENTS FROM PUBLIC MEETINGS. Watershed meetings are open to the public, and most meetings were represented by citizens who live in the watershed, NPDES permitees, business people, farmers, and local river conservation interests. Locations for meetings were frequently chosen after consulting with people who live and work in the watershed. Everyone with an interest in clean water is encouraged to be a part of the public meeting process. The times and locations of watershed meetings are posted at: http://www.state.tn.us/environment/wpc/public.htm.

<u>6.2.A.</u> Year 1 Public Meeting. The first North Fork Forked Deer River Watershed public meeting was held April 15, 1997 in Humboldt. The goals of the meeting were to 1) present, and review the objectives of, the Watershed Approach, 2) introduce local, state, and federal agency and nongovernment organization partners, 3) review water quality monitoring strategies, and 4) solicit input from the public.

Major Concerns/Comments

- Lack of watershed associations in West Tennessee
- Need better coordination between all agencies doing sampling
- Need increased limits if wasteload allocations support it

<u>6.2.B. Year 5 Public Meeting.</u> The third scheduled North Fork Forked Deer River Watershed public meeting was held October 6, 2003 at the Humboldt Municipal Center (the meeting was for the Forked Deer and North Fork Forked Deer River Watersheds). The meeting featured five educational components:

- Overview of draft Watershed Water Quality Management Plan slide show
- Benthic macroinvertebrate samples and interpretation
- SmartBoardTM with interactive GIS maps
- "How We Monitor Streams" self-guided slide show
- "Why We Do Biological Sampling" self-guided slide show

In addition, citizens had the opportunity to make formal comments on the draft Watershed Water Quality Management Plan and to rate the effectiveness of the meeting.

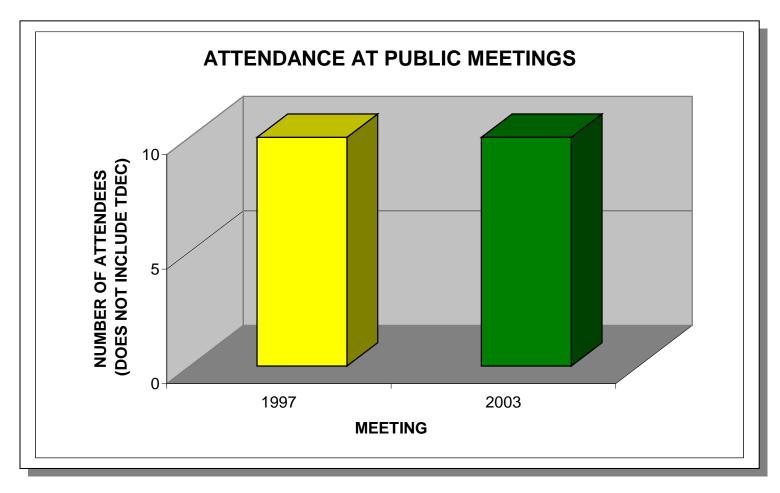


Figure 6-1. Attendance at Public Meetings in the North Fork Forked Deer River Watershed. Watershed meeting numbers represent North Fork Forked Deer River and Forked Deer River Watersheds joint meetings.

Figure 6-2. The SmartBoardTM is an effective interactive tool to teach citizens about the power of GIS.

6.3. APPROACHES USED.

6.3.A. Point Sources. Point source contributions to stream impairment are primarily addressed by NPDES and ARAP permit requirements and compliance with the terms of the permits. Notices of NPDES and ARAP draft permits available for public comment can be viewed at http://www.state.tn.us/environment/wpc/wpcppo/. Discharge monitoring data submitted by NPDES-permitted facilities may be viewed at http://www.epa.gov/enviro/html/pcs/pcs query java.html.

The purpose of the TMDL program is to identify remaining sources of pollution and allocate pollution control needs in places where water quality goals are still not being achieved. TMDL studies are tools that allow for a better understanding of load reductions necessary for impaired streams to return to compliance with water quality standards. More information about Tennessee's TMDL program may be found at: http://www.state.tn.us/environment/wpc/tmdl.php

Approved TMDL:

North Fork Forked Deer River and Turkey Creek TMDL. TMDL for fecal coliform in the North Fork Forked Deer River Watershed approved May 10, 2002: http://www.state.tn.us/environment/wpc/nffdrfecal02.pdf

TMDLs are prioritized for development based on many factors.

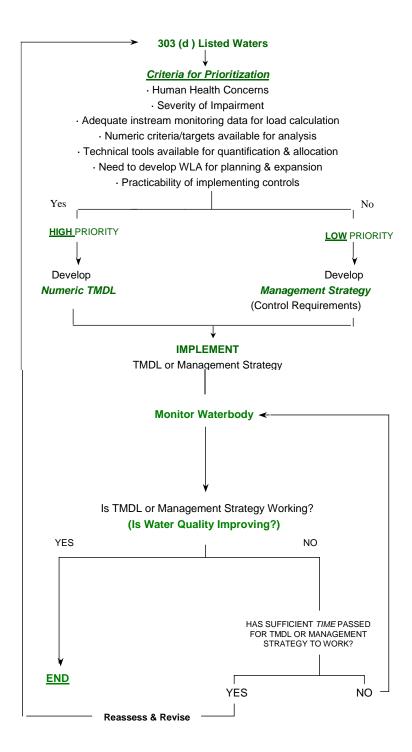


Figure 6-3. Prioritization scheme for TMDL Development.

6.3.B. Nonpoint Sources

Common nonpoint sources of pollution include urban runoff, riparian vegetation removal, and inappropriate land development, agricultural, and road construction practices. Since nonpoint pollution exists essentially everywhere rain falls and drains to a stream, existing point source regulations can have only a limited effect, so other measures are necessary.

There are several state and federal regulations that address some of the contaminants impacting waters in the North Fork Forked Deer River Watershed. Most of these are limited to only point sources: a pipe or ditch. Often, controls of point sources are not sufficient to protect waters, so other measures are necessary. Some measures include voluntary efforts by landowners and volunteer groups, while others may involve new regulations. Many agencies, including the Tennessee Department of Agriculture and NRCS, offer financial assistance to landowners for corrective actions (like Best Management Practices) that may be sufficient for recovery of impacted streams. Many nonpoint problems will require an active civic involvement at the local level geared towards establishment of improved zoning guidelines, building codes, streamside buffer zones and greenways, and general landowner education.

The following text describes certain types of impairments, causes, suggested improvement measures, and control strategies. The suggested measures and streams are only examples and efforts should not be limited to only those streams and measures mentioned.

6.3.B.i. Sedimentation.

6.3.B.i.a. From Construction Sites. Construction activities have historically been considered "nonpoint sources." In the late 1980's, EPA designated them as being subject to NPDES regulation if more than 5 acres are disturbed. In the spring of 2003, that threshold became 1 acre. The general permit issued for such construction sites sets out conditions for maintenance of the sites to minimize pollution from stormwater runoff, including requirements for installation and inspection of erosion controls. Also, the general permit imposes more stringent inspection and self-monitoring requirements on sites in the watershed of streams that are already impaired due to sedimentation. Regardless of the size, no construction site is allowed to cause a condition of pollution.

Construction sites within a sediment-impaired watershed may also have higher priority for inspections by WPC personnel, and are likely to have enforcement actions for failure to control erosion. Examples of these streams are Lewis Creek and Dyer Creek in Madison County.

The same requirements apply to sites in the drainage of high quality waters. Griffin Creek is an example of a high quality stream in the Middle Fork of the Forked Deer River subwatershed.

<u>6.3.B.i.b.</u> From Channel and/or Bank Erosion. Due to the past channelization of the North and Middle Forks of the Forked Deer River and many of its tributaries, the channels are unstable. Several agencies are working to stabilize portions of stream banks. These

include NRCS, TDOT, the U.S. Army Corps of Engineers, and the West Tennessee River Basin Authority. Other methods or controls that might be necessary to address common problems are:

Voluntary activities

- Re-establishment of bank vegetation and riparian zones (examples: the upper reach of Pond Creek).
- Establish off-channel watering areas for cattle by moving watering troughs and feeders back from stream banks.
- Limit cattle access to streams and bank vegetation.
- Allow streams to reestablish a natural channel within its floodplain.

Additional strategies

- Increase efforts in the Master Logger program to recognize impaired streams and require more effective management practices.
- Better community planning for the impacts of development on small streams (examples: Lewis Creek, Moize Creek, and Dyer Creek).
- Restrictions requiring post-construction run-off rates to be no greater than preconstruction rates in order to avoid in-channel erosion (examples: Moize Creek and Lewis Creek).
- Additional restrictions on logging in streamside management zones.
- Prohibition on clearing of stream and ditch banks (examples: Pond Creek and Lewis Creek). *Note: Permits may be required for any work along streams*.
- Additional restriction to road and utilities crossings of streams.
- Requirement that levees have a set-back that leaves an adequate floodway along streams (examples: Pond Creek, Bethel Branch, Doakville Branch).
- Cease the maintenance efforts on channelized segments of streams where a natural, stable channel can be established.

<u>6.3.B.i.c.</u> From Agriculture and Silviculture. Even though there is an exemption in the Water Quality Control Act stating that normal agricultural and silvicultural practices which do not result in a point source discharge do not have to obtain a permit, efforts are being made to address impacts due to these practices.

The Master Logger Program has been in place for several years to train loggers how to plan their logging activities and to install Best Management Practices (BMPs) that lessen the impact of logging activities. Recently, laws and regulations were enacted which established the expected BMPs to be used and allows the Commissioners of the Departments of Environment and Conservation and of Agriculture to stop a logging operation that has failed to install these BMPs and so are impacting streams. Any timber harvest in the North and Middle Forks of the Forked Deer Rivers are small and isolated.

Since the Dust Bowl era, the agriculture community has strived to protect the soil from wind and soil erosion. Agencies such as the Natural resources Conservation Service (NRCS), the University of Tennessee Agricultural Extension Service, and the Tennessee Department of Agriculture have worked to identify better ways of farming, to educate farmers, and to install the methods that address the sources of some of the impacts due to agriculture. Cost sharing is available for many of these measures. Buck Creek has already

had several BMPs installed to address the sediment lost from fields in this watershed. Pond Creek, Bethel Branch, and Doakville Creek could all benefit from agricultural BMPs.

6.3.B.ii. Pathogen Contamination.

Possible sources of pathogens are inadequate or failing septic tank systems, overflows or breaks in public sewer collection systems, poorly disinfected discharges from sewage treatment plants, and fecal matter in streams and storm drains due to pets, livestock and wildlife. Permits issued by the Division of Water Pollution Control regulate discharges from point sources and require adequate control for these sources. Individual homes are required to have subsurface, on-site treatment (i.e., septic tank and field lines) if public sewers are not available. Septic tank and field lines are regulated by the Division of Ground Water Protection within TDEC and delegated county health departments. In Madison County, subsurface systems are regulated by the Jackson-Madison County Health Department. In addition to discharges to surface waters, businesses may employ either subsurface or surface disposal of wastewater (spray irrigation). The Division of Water Pollution Control regulates surface disposal.

Other measures that may be necessary to control pathogens are:

Voluntary activities

- Off-channel watering of livestock.
- Limiting livestock access to streams.
- Proper management of animal waste from feeding operations or stables.

Enforcement strategies

- Greater enforcement of regulations governing onsite wastewater treatment.
- Timely and appropriate enforcement of noncomplying sewage treatment plants and collection systems.
- Identification of Concentrated Animal Feeding Operations not currently permitted, and enforcement of current regulations.

Additional strategies

- Restrict development in areas where sewer is not available and treatment by subsurface disposal is not an option due to poor soils, floodplains, or high water tables.
- Discourage the creation of "duck holes" that attract waterfowl.
- Develop and enforce leash laws and controls on pet fecal material (example: Moize Creek).
- Greater efforts by sewer utilities to identify leaking lines or overflowing manholes (example: Lewis Creek).

6.3.B.iii. Excessive Nutrients and/or Dissolved Oxygen Depletion.

These two impacts are usually listed together because high nutrients often contribute to low dissolved oxygen within a stream. Since nutrients often have the same source as

pathogens, the measures previously listed can also address many of these problems. Elevated nutrient loadings are also often associated with urban runoff from impervious surfaces and from fertilized lawns and croplands.

Other sources of nutrients can be addressed by:

Voluntary activities

- Encourage no-till farming (example: Pond Creek).
- Encourage farmers to use the proper rate of fertilizer for the soil and crop.
- Educate homeowners and lawn care companies in the proper application of fertilizers.
- Encourage landowners, developers, and builders to leave stream buffer zones.
 Streamside vegetation can filter out many nutrients and other pollutants before they reach the stream. These riparian buffers are also vital along livestock pastures.
- Use grassed drainage ways that can remove fertilizer before it enters streams.
- Use native plants for landscaping since they don't require as much fertilizer and water.

Physical changes to streams can prevent them from providing enough oxygen to biodegrade the materials that are naturally present. A few additional actions can address this problem:

- Maintain shade over a stream. Cooler water can hold more oxygen and retard the growth of algae (Pond Creek suffers from canopy removal).
- Discourage impoundments. Ponds and lakes do not aerate water. *Note: Permits may be required for any work on a stream, including impoundments.*

6.3.B.iv. Toxins and Other Materials.

Many materials enter our streams due to apathy, or lack of civility or knowledge by the public. Litter in roadside ditches, garbage bags tossed over bridge railings, paint brushes washed off over storm drains, and oil drained into ditches are all examples of pollution in streams. Some can be addressed by:

Voluntary activities

- Providing public education.
- Painting warnings on storm drains that connect to a stream (examples: Moize and Dyer Creeks).
- Sponsoring community clean-up days (examples: Light Creek, Lewis Creek, and Bethel Creek).
- Landscaping of public areas.
- Encouraging public surveillance of their streams and reporting of dumping activities to their local authorities.

Needing regulation

- Prohibition of illicit discharges to storm drains.
- Litter laws and strong enforcement at the local level.

6.3.B.v. Habitat Alteration.

The alteration of the habitat within a stream can have severe consequences. Whether it is the removal of the vegetation providing a root system network for holding soil particles together, the release of sediment, which increases the bed load and covers benthic life and fish eggs, the removal of gravel bars, "cleaning out" creeks with heavy equipment, or the impounding of the water in ponds and lakes, many alterations impair the use of the stream for designated uses. Habitat alteration also includes the draining or filling of wetlands.

Measures that can help address this problem are:

Voluntary activities

- Sponsoring litter pickup days to remove litter that might enter streams.
- Organizing stream cleanups removing trash, limbs and debris before they cause blockage (example: Jones Creek).
- Avoiding use of heavy equipment to "clean out" streams (example: Pond Creek).
- Planting vegetation along streams to stabilize banks and provide habitat.
- Encouraging developers to avoid extensive culverts in streams.

Current regulations

- Restrict modification of streams by such means as culverting, lining, or impounding.
- Require mitigation for impacts to streams and wetlands when modifications are allowed.

Additional regulations

- Increased enforcement may be needed when violations of current regulations
- Pass laws prohibiting the construction of levees within a set distance from a stream.

6.4. PERMIT REISSUANCE PLANNING

Under the *Tennessee Water Quality Control Act*, municipal, industrial and other dischargers of wastewater must obtain a permit from the Division. Approximately 1,700 permits have been issued in Tennessee under the federally delegated National Pollutant Discharge Elimination System (NPDES). These permits establish pollution control and monitoring requirements based on protection of designated uses through implementation of water quality standards and other applicable state and federal rules.

The following three sections provide specific information on municipal, industrial, and water treatment plant active permit holders in the North Fork Forked Deer River Watershed. Compliance information was obtained from EPA's Permit Compliance System (PCS). All data was queried for a five-year period between January 1, 2001 and December 31, 2006. PCS can be accessed publicly through EPA's Envirofacts website. This website provides access to several EPA databases to provide the public with information about environmental activities that may affect air, water, and land anywhere in the United States:

http://www.epa.gov/enviro/html/ef overview.html

Stream Segment information, including designated uses and impairments, are described in detail in Chapter 3, Water Quality Assessment of the North Fork Forked Deer River Watershed.

6.4.A. Municipal Permits

TN0075876 Jackson Energy Authority - Middle Fork Sewage Treatment Plant

Discharger rating: Major
City: Jackson
County: Madison
EFO Name: Jackson
Issuance Date: 8/9/04
Expiration Date: 7/31/07

Receiving Stream(s): Middle Fork Forked Deer River Mile 29.1

HUC-12: 080102040105

Effluent Summary: Treated municipal wastewater from Outfall 001

Treatment system: Treatment consists of mechanically cleaned bar screens,

mechanically cleaned filter screens, grit removal, cyclical aeration, chlorination, and post aeration. WAS to aerobic

digester to liquid injection to land application sites.

Segment	TN08010204010_2000
Name	Middle Fork Forked Deer River
Size	8.5
Unit	Miles
First Year on 303(d) List	-
Designated Uses	Fish and Aquatic Life (Supporting), Recreation (Supporting), Livestock Watering and Wildlife (Supporting), Irrigation (Supporting)
Causes	N/A
Sources	N/A

Table 6-1. Stream Segment Information for Jackson Energy Authority - Middle Fork Sewage Treatment Plant

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	Summer	8	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	4	mg/L	MAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	6	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	200	lb/day	WAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	133	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	16	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	266	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	400	lb/day	WAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	12	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	8	mg/L	MAvg Conc	3/Week	Composite	Effluent
CBOD % Removal	All Year	40	Percent	DMin % Removal	Monthly	Calculated	% Removal
CBOD % Removal	All Year	85	Percent	MAvg % Removal	Monthly	Calculated	% Removal
CBOD5	All Year		mg/L	DMax Conc	3/Week	Composite	Intake
CBOD5	All Year		mg/L	MAvg Conc	3/Week	Composite	Intake
CBOD5	Summer	30	mg/L	DMax Conc	3/Week	Composite	Effluent

Tables 6-2a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
CBOD5	Summer	15	mg/L	MAvg Conc	3/Week	Composite	Effluent
CBOD5	Summer	500	lb/day	MAvg Load	3/Week	Composite	Effluent
CBOD5	Summer	667	lb/day	WAvg Load	3/Week	Composite	Effluent
CBOD5	Summer	20	mg/L	WAvg Conc	3/Week	Composite	Effluent
CBOD5	Winter	45	mg/L	DMax Conc	3/Week	Composite	Effluent
CBOD5	Winter	22.5	mg/L	MAvg Conc	3/Week	Composite	Effluent
CBOD5	Winter	1134	lb/day	WAvg Load	3/Week	Composite	Effluent
CBOD5	Winter	34	mg/L	WAvg Conc	3/Week	Composite	Effluent
CBOD5	Winter	751	lb/day	MAvg Load	3/Week	Composite	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	3/Week	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	3/Week	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	3/Week	Grab	Effluent
Flow	All Year		MGD	DMax Load	Daily	Composite	Influent (Raw Sewage)
Flow	All Year		MGD	MAvg Load	Daily	Composite	Effluent
Flow	All Year		MGD	MAvg Load	Daily	Composite	Influent (Raw Sewage)
Flow	All Year		MGD	DMax Load	Daily	Composite	Effluent
IC25 7day Ceriodaphnia Dubia	All Year	12	Percent	DMin Conc	Quarterly	Composite	Effluent
IC25 7day Fathead Minnows	All Year	12	Percent	DMin Conc	Quarterly	Composite	Effluent
Nitrogen Total (as N)	All Year		mg/L	DMax Conc	Quarterly	Composite	Effluent
Phosphorus, Total	All Year		mg/L	DMax Conc	Quarterly	Composite	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	3/Week	Grab	Effluent
TRC	All Year	0.16	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year		mg/L	DMax Conc	3/Week	Composite	Intake
TSS	All Year	45	mg/L	DMax Conc	3/Week	Composite	Effluent
TSS	All Year		mg/L	MAvg Conc	3/Week	Composite	Intake
TSS	All Year	1001	lb/day	MAvg Load	3/Week	Composite	Effluent
TSS	All Year	1334	lb/day	WAvg Load	3/Week	Composite	Effluent
TSS	All Year	40	mg/L	WAvg Conc	3/Week	Composite	Effluent
TSS	All Year	30	mg/L	MAvg Conc	3/Week	Composite	Effluent
TSS % Removal	All Year	85	Percent	MAvg % Removal	Monthly	Calculated	% Removal
TSS % Removal	All Year	40	Percent	DMin % Removal	3/Week	Calculated	% Removal
рН	All Year	9	SU	DMax Conc	Weekdays	Grab	Effluent
pH	All Year	6.5	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-2b.

Tables 6-2a-b. Permit Limits for Jackson Energy Authority - Middle Fork STP

Compliance History:

The following numbers of exceedences were noted in PCS:

- 3 Settleable Solids
- 1 Ammonia
- 1CBOD
- 2 Suspended Solids % Removal
- 3 TSS
- 47 Overflows
- 4 Bypasses

EFO Comments:

No Issues.

TN0024988 Alamo STP

Discharger rating: Minor
City: Alamo
County: Crockett
EFO Name: Jackson
Issuance Date: 5/31/02
Expiration Date: 5/31/07

Receiving Stream(s): Unnamed tributary to Buck Creek at mile 4.5 then to the

Forked Deer at mile 118

HUC-12: 080102040203

Effluent Summary: Treated municipal wastewater from Outfall 001

Treatment system: WAS to aerobic digester to dry beds to land application

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	_	MONITORING LOCATION
Ammonia as N (Total)	Summer	2.5	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	6.7	lb/day	DMax Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	2	mg/L	MAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	1.1	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	3.7	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	4	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	3	mg/L	MAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	6.7	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	2	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	10.1	lb/day	DMax Load	3/Week	Composite	Effluent
Bypass of Treatment (occurrences)	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather
CBOD % Removal	All Year	40	Percent	DMin % Removal	3/Week	Calculated	% Removal
CBOD % Removal	All Year	85	Percent	MAvg % Removal	3/Week	Calculated	% Removal
CBOD5	All Year	20	mg/L	DMax Conc	3/Week	Composite	Effluent
CBOD5	All Year	10	mg/L	DMin Conc	3/Week	Composite	Effluent
CBOD5	All Year	51	lb/day	DMax Load	3/Week	Composite	Effluent
CBOD5	All Year		mg/L	DMax Conc	3/Week	Composite	Influent (Raw Sewage)
CBOD5	All Year	15	mg/L	MAvg Conc	3/Week	Composite	Effluent
CBOD5	All Year	34	lb/day	MAvg Load	3/Week	Composite	Effluent
CBOD5	All Year		mg/L	MAvg Conc	3/Week	Composite	Influent (Raw Sewage)
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	3/Week	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	3/Week	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	3/Week	Grab	Effluent
Flow	All Year		MGD	DMax Load	Daily	Continuous	Effluent
Flow	All Year		MGD	DMax Load	Daily	Continuous	Influent (Raw Sewage)
Flow	All Year		MGD	MAvg Load	Daily	Continuous	Effluent
Flow	All Year		MGD	MAvg Load	Daily	Continuous	Influent (Raw Sewage)
IC25 7day Ceriodaphnia Dubia	All Year	100	Percent	DMin Conc	Quarterly	Composite	Influent (Raw Sewage)

Table 6-3a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
IC25 7day Ceriodaphnia Dubia	All Year	100	Percent	DMin Conc	Monthly	Composite	Effluent
IC25 7day Fathead Minnows	All Year	100	Percent	DMin Conc	Quarterly	Composite	Influent (Raw Sewage)
IC25 7day Fathead Minnows	All Year	100	Percent	DMin Conc	Monthly	Composite	Effluent
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Non Wet Weather
Settleable Solids	All Year	1	mL/L	DMax Conc	3/Week	Composite	Effluent
TRC	All Year	0.02	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	45	mg/L	DMax Conc	3/Week	Composite	Effluent
TSS	All Year		mg/L	DMax Conc	3/Week	Composite	Influent (Raw Sewage)
TSS	All Year	135	lb/day	DMax Load	3/Week	Composite	Effluent
TSS	All Year	40	mg/L	MAvg Conc	3/Week	Composite	Effluent
TSS	All Year	101	lb/day	MAvg Load	3/Week	Composite	Effluent
TSS	All Year		mg/L	MAvg Conc	3/Week	Composite	Influent (Raw Sewage)
TSS	All Year	30	mg/L	WAvg Conc	3/Week	Composite	Effluent
TSS % Removal	All Year	40	Percent	DMin % Removal	3/Week	Calculated	% Removal
TSS % Removal	All Year	85	Percent	MAvg % Removal	3/Week	Calculated	% Removal
рН	All Year	9	SU	DMax Conc	Weekdays	Grab	Effluent
pH	All Year	6	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-3b.

Tables 6-3a-b. Permit Limits for Alamo Sewage Treatment Plant.

Compliance History:

The following numbers of exceedences were noted in PCS:

- 3 Ammonia
- 3 CBOD
- 2 Chlorine
- 6 Overflows
- 5 Bypasses

EFO Comments:

No Issues.

TN0021563 Dyer STP

Discharger rating:MinorCity:DyerCounty:GibsonEFO Name:JacksonIssuance Date:12/29/06Expiration Date:7/31/07

Receiving Stream(s): Sand Creek at mile 1.6

HUC-12: 080102040304

Effluent Summary: Treated municipal wastewater from Outfall 001

Treatment system: WAS to dry bed to landfill

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	Summer	2	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	8.4	lb/day	DMax Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	1.5	mg/L	MAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	0.9	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Summer	5.1	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	4	mg/L	DMax Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	3	mg/L	MAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	9.6	lb/day	MAvg Load	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	1.7	mg/L	WAvg Conc	3/Week	Composite	Effluent
Ammonia as N (Total)	Winter	16.9	lb/day	DMax Load	3/Week	Composite	Effluent
Bypass of Treatment (occurrences)	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather
CBOD % Removal	All Year	40	Percent	DMin % Removal	3/Week	Calculated	% Removal
CBOD % Removal	All Year	65	Percent	MAvg % Removal	3/Week	Calculated	% Removal
CBOD5	All Year		mg/L	DMax Conc	3/Week	Composite	Influent (Raw Sewage)
CBOD5	All Year		mg/L	MAvg Conc	3/Week	Composite	Influent (Raw Sewage)
CBOD5	Summer	10	mg/L	DMax Conc	3/Week	Composite	Effluent
CBOD5	Summer	7.5	mg/L	MAvg Conc	3/Week	Composite	Effluent
CBOD5	Summer	28	lb/day	MAvg Load	3/Week	Composite	Effluent
CBOD5	Summer	5	mg/L	DMin Conc	3/Week	Composite	Effluent
CBOD5	Summer	42	lb/day	DMax Load	3/Week	Composite	Effluent
CBOD5	Winter	15	mg/L	DMax Conc	3/Week	Composite	Effluent
CBOD5	Winter	56	lb/day	DMax Load	3/Week	Composite	Effluent
CBOD5	Winter	7.5	mg/L	DMin Conc	3/Week	Composite	Effluent
CBOD5	Winter	42	lb/day	MAvg Load	3/Week	Composite	Effluent
CBOD5	Winter	10	mg/L	MAvg Conc	3/Week	Composite	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	941	#/100mL	DMax Conc	3/Week	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	3/Week	Grab	Effluent
Flow	All Year		MGD	DMax Load	Daily	Continuous	Effluent
Flow	All Year		MGD	MAvg Load	Daily	Continuous	Effluent
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Non Wet Weather
Settleable Solids	All Year	1	mL/L	DMax Conc	Weekdays	Composite	Effluent
TRC	All Year	0.02	mg/L	DMax Conc	Weekdays	Grab	Effluent

Table 6-4a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
TSS	All Year	45	mg/L	DMax Conc	3/Week	Composite	Effluent
TSS	All Year		mg/L	DMax Conc	3/Week	Composite	Influent (Raw Sewage)
TSS	All Year	225	lb/day	DMax Load	3/Week	Composite	Effluent
TSS	All Year	40	mg/L	MAvg Conc	3/Week	Composite	Effluent
TSS	All Year	169	lb/day	MAvg Load	3/Week	Composite	Effluent
TSS	All Year		mg/L	MAvg Conc	3/Week	Composite	Influent (Raw Sewage)
TSS	All Year	30	mg/L	WAvg Conc	3/Week	Composite	Effluent
TSS % Removal	All Year	40	Percent	DMin % Removal	3/Week	Calculated	% Removal
TSS % Removal	All Year	65	Percent	MAvg % Removal	3/Week	Calculated	% Removal
рН	All Year	8.5	SU	DMax Conc	Weekdays	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-4b.

Tables 6-4a-b. Permit Limits for Dyer STP.

Compliance History:

The following numbers of exceedences were noted in PCS:

- 27 Ammonia
- 30 CBOD
- 6 E. coli
- 4 Suspended Solids % Removal
- 6 Chlorine
- 2 TSS
- 5 Dissolved Oxygen
- 7 pH
- 2 COD
- 21 overflows
- 3 bypasses.

EFO Comments:

No Issues.

TN0023477 Dyersburg STP

Discharger rating:MajorCity:DyersburgCounty:DyerEFO Name:JacksonIssuance Date:12/30/02Expiration Date:12/30/07

Receiving Stream(s): North Fork Forked Deer River at mile 2.8

HUC-12: 080102040402

Effluent Summary: Treated municipal wastewater from Outfall 001
Treatment system: WAS to aerobic digester to land application sites

				SAMPLE	MONITORING	SAMPLE	MONITORING
PARAMETER	SEASON		UNITS	DESIGNATOR	FREQUENCY	TYPE	LOCATION
Ag (T)	All Year	0.001	mg/L	DMax Conc	Semi-annually	Composite	Effluent
Ammonia as N (Total)	Summer	3	mg/L	DMax Conc	2/Week	Composite	Effluent
Ammonia as N (Total)	Summer	181	lb/day	DMax Load	2/Week	Composite	Effluent
Ammonia as N (Total)	Summer	2.3	mg/L	MAvg Conc	2/Week	Composite	Effluent
Ammonia as N (Total)	Summer	1.5	mg/L	WAvg Conc	2/Week	Composite	Effluent
Ammonia as N (Total)	Summer	118	lb/day	MAvg Load	2/Week	Composite	Effluent
Ammonia as N (Total)	Winter	20	mg/L	DMax Conc	2/Week	Composite	Effluent
Ammonia as N (Total)	Winter	969	lb/day	MAvg Load	2/Week	Composite	Effluent
Ammonia as N (Total)	Winter	1261	lb/day	DMax Load	2/Week	Composite	Effluent
Ammonia as N (Total)	Winter	12.3	mg/L	WAvg Conc	2/Week	Composite	Effluent
Ammonia as N (Total)	Winter	16	mg/L	MAvg Conc	2/Week	Composite	Effluent
CBOD % Removal	All Year	40	Percent	DMin % Removal	Weekly	Calculated	% Removal
CBOD % Removal	All Year	85	Percent	MAvg % Removal	Weekly	Calculated	% Removal
CBOD5	Summer	20	mg/L	DMax Conc	2/Week	Composite	Effluent
CBOD5	Summer	15	mg/L	MAvg Conc	2/Week	Composite	Effluent
CBOD5	Summer	1182	lb/day	DMax Load	2/Week	Composite	Effluent
CBOD5	Summer	10	mg/L	DMin Conc	2/Week	Composite	Effluent
CBOD5	Summer	788	lb/day	MAvg Load	2/Week	Composite	Effluent
CBOD5	Winter	40	mg/L	DMax Conc	2/Week	Composite	Effluent
CBOD5	Winter	1970	lb/day	MAvg Load	2/Week	Composite	Effluent
CBOD5	Winter	35	mg/L	MAvg Conc	2/Week	Composite	Effluent
CBOD5	Winter	25	mg/L	DMin Conc	2/Week	Composite	Effluent
CBOD5	Winter	2758	lb/day	DMax Load	2/Week	Composite	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	Weekdays	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Weekdays	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Weekdays	Grab	Effluent
IC25 7day Ceriodaphnia Dubia	All Year	15	Percent	DMin Conc	Quarterly	Composite	Effluent
IC25 7day Fathead Minnows	All Year	15	Percent	DMin Conc	Quarterly	Composite	Effluent
Nitrite + Nitrate Total (as N)	All Year		mg/L	MAvg Conc	2/Month	Composite	Effluent
Phosphorus, Total	All Year		mg/L	MAvg Conc	2/Month	Composite	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	Weekly	Grab	Effluent
TKN - Total Kjeldahl Nitrogen	All Year		mg/L	MAvg Conc	2/Month	Composite	Effluent
TKN - Total Kjeldahl Nitrogen	All Year		lb/day	MAvg Load	2/Month	Composite	Effluent
TRC	All Year	0.14	mg/L	DMax Conc	Weekdays	Grab	Effluent

Table 6-5a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
TSS	All Year	45	mg/L	DMax Conc	2/Week	Composite	Effluent
TSS	All Year	3153	lb/day	DMax Load	2/Week	Composite	Effluent
TSS	All Year	30	mg/L	WAvg Conc	2/Week	Composite	Effluent
TSS	All Year	2364	lb/day	MAvg Load	2/Week	Composite	Effluent
TSS	All Year	40	mg/L	MAvg Conc	2/Week	Composite	Effluent
TSS % Removal	All Year	40	Percent	DMin % Removal	2/Week	Calculated	% Removal
TSS % Removal	All Year	85	Percent	MAvg % Removal	2/Week	Calculated	% Removal
рН	All Year	9	SU	DMax Conc	Weekdays	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-5b.

Tables 6-5a-b. Permit Limits for Dyersburg STP.

Compliance History: None Noted

EFO Comments:

No Issues.

TN0056481 East Elementary School

Discharger rating: Minor
City: Jackson
County: Madison
EFO Name: Jackson
Issuance Date: 4/30/02
Expiration Date: 4/30/07

Receiving Stream(s): Unnamed tributary at mile 1.7 to Middle Fork Forked Deer

River at mile 35.1

HUC-12: 080102040104

Effluent Summary: Treated domestic wastewater from Outfall 001

Treatment system: Extended aeration; sludge to hauler as needed to Jackson

WWTP

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	All Year	10	mg/L	DMax Conc	Monthly	Grab	Effluent
Ammonia as N (Total)	All Year	5	mg/L	MAvg Conc	Monthly	Grab	Effluent
CBOD5	All Year	30	mg/L	DMax Conc	Monthly	Grab	Effluent
CBOD5	All Year	20	mg/L	MAvg Conc	Monthly	Grab	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Monthly	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Monthly	Grab	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	2/Week	Grab	Effluent
TRC	All Year	0.5	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	45	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	30	mg/L	MAvg Conc	Monthly	Grab	Effluent
рН	All Year	8.5	SU	DMax Conc	2/Week	Grab	Effluent
pН	All Year	6.5	SU	DMin Conc	2/Week	Grab	Effluent

Table 6-6. Permit Limits for East Elementary School.

EFO Comments:

New Superintendent may help resolve some of the school's wastewater issues.

TN0058955 Friendship Sewage Treatment Plant

Discharger rating:MajorCity:FriendshipCounty:CrockettEFO Name:JacksonIssuance Date:8/30/02Expiration Date:8/30/07

Receiving Stream(s): Unnamed tributary at mile 0.3 to Miller Creek at mile 3.9

HUC-12: 080102040401

Effluent Summary: Treated domestic wastewater from Outfall 001
Treatment system: WAS to aerobic digester to dry beds to landfill

				SAMPLE	MONITORING		MONITORING
PARAMETER	SEASON		UNITS	DESIGNATOR		SAMPLE TYPE	
Ammonia as N (Total)	Summer	1.8	mg/L	DMax Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Summer	1	lb/day	DMax Load	Weekly	Composite	Effluent
Ammonia as N (Total)	Summer	1.35	mg/L	MAvg Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Summer	0.9	mg/L	WAvg Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Summer	0.68	lb/day	MAvg Load	Weekly	Composite	Effluent
Ammonia as N (Total)	Winter	3.4	mg/L	DMax Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Winter	2.55	mg/L	MAvg Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Winter	1.28	lb/day	MAvg Load	Weekly	Composite	Effluent
Ammonia as N (Total)	Winter	1.7	mg/L	WAvg Conc	Weekly	Composite	Effluent
Ammonia as N (Total)	Winter	1.9	lb/day	DMax Load	Weekly	Composite	Effluent
Bypass of Treatment (occurrences)	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather
CBOD % Removal	All Year	40	Percent	DMin % Removal	Weekly	Calculated	% Removal
CBOD % Removal	All Year	85	Percent	MAvg % Removal	Weekly	Calculated	% Removal
CBOD5	All Year	10	mg/L	DMax Conc	Weekly	Composite	Effluent
CBOD5	All Year	5	mg/L	DMin Conc	Weekly	Composite	Effluent
CBOD5	All Year	5.6	lb/day	DMax Load	Weekly	Composite	Effluent
CBOD5	All Year		mg/L	DMax Conc	Weekly	Composite	Influent (Raw Sewage)
CBOD5	All Year	7.5	mg/L	MAvg Conc	Weekly	Composite	Effluent
CBOD5	All Year	3.75	lb/day	MAvg Load	Weekly	Composite	Effluent
CBOD5	All Year		mg/L	MAvg Conc	Weekly	Composite	Influent (Raw Sewage)
D.O.	All Year	5	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Weekly	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Daily	Continuous	Effluent
Flow	All Year		MGD	DMax Load	Daily	Continuous	Influent (Raw Sewage)
Flow	All Year		MGD	MAvg Load	Daily	Continuous	Effluent
Flow	All Year		MGD	MAvg Load	Daily	Continuous	Influent (Raw Sewage)
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Wet Weather

Table 6-7a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Overflow Use Occurences	All Year		Occurences/Month	MAvg Load	Continuous	Visual	Non Wet Weather
Settleable Solids	All Year	1	mL/L	DMax Conc	Weekly	Composite	Effluent
TRC	All Year	0.02	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	45	mg/L	DMax Conc	Weekly	Composite	Effluent
TSS	All Year		mg/L	DMax Conc	Weekly	Composite	Influent (Raw Sewage)
TSS	All Year	30	lb/day	DMax Load	Weekly	Composite	Effluent
TSS	All Year	40	mg/L	MAvg Conc	Weekly	Composite	Effluent
TSS	All Year	22.5	lb/day	MAvg Load	Weekly	Composite	Effluent
TSS	All Year		mg/L	MAvg Conc	Weekly	Composite	Influent (Raw Sewage)
TSS	All Year	30	mg/L	WAvg Conc	Weekly	Composite	Effluent
TSS % Removal	All Year	40	Percent	DMin % Removal	Weekly	Calculated	% Removal
TSS % Removal	All Year	85	Percent	MAvg % Removal	Weekly	Calculated	% Removal
рН	All Year	9	SU	DMax Conc	Weekdays	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-7b.

Table 6-7a-b. Permit Limits for Friendship Sewage Treatment Plant.

Compliance History:

The following numbers of exceedences were noted in PCS:

- 10 Ammonia
- 2 CBOD
- 3 Chlorine
- 3 Settleable Solids.

EFO Comments:

No Issues.

TN0026191 JEA- Medina Hydraulic Lagoon

Discharger rating: Minor
City: Medina
County: Gibson
EFO Name: Jackson
Issuance Date: 10/31/04
Expiration Date: 10/31/07

Receiving Stream(s): Turkey Creek at mile 5.3

HUC-12: 080102040105

Effluent Summary: Treated municipal wastewater from Outfall 001

Treatment system: Lagoon system

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
BOD5	All Year	45	mg/L	DMax Conc	Weekly	Grab	Effluent
BOD5	All Year	45	mg/L	MAvg Conc	Weekly	Grab	Effluent
CBOD % Removal	All Year	65	Percent	MAvg % Removal	Weekly	Calculated	Percent Removal
D.O.	All Year	1	mg/L	DMin Conc	Weekdays	Grab	Effluent
E. coli	All Year	126	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Weekly	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	Weekdays	Grab	Effluent
TRC	All Year	2	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	100	mg/L	DMax Conc	Weekly	Grab	Effluent
TSS	All Year	100	mg/L	MAvg Conc	Weekly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Weekdays	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Weekdays	Grab	Effluent

Table 6-8. Permit Limits for JEA- Medina Hydraulic Lagoon.

Compliance History:

None noted.

EFO Comments:

Jackson Energy Authority purchased this facility.

TN0021750 Trenton Lagoon

Discharger rating:MinorCity:TrentonCounty:GibsonEFO Name:JacksonIssuance Date:2/28/02Expiration Date:2/28/07

Receiving Stream(s): North Fork Forked Deer River Mile 35.9

HUC-12: 080102040302

Effluent Summary: Treated domestic wastewater from Outfall 001

Treatment system: Lagoon system

Segment	TN08010204020_1000
Name	North Fork Forked Deer
Size	10.9
Unit	Miles
First Year on 303(d) List	2004
Designated Uses	Recreation (Supporting), Irrigation (Supporting), Fish and Aquatic Life (Non-Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Physical substrate habitat alterations, Sedimentation/Siltation
Sources	Channelization, Non-irrigated Crop Production

Table 6-9. Stream Segment Information for Trenton Lagoon.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	Summer	10	mg/L	DMax Conc	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Summer	63	lb/day	DMax Load	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Summer	5	mg/L	WAvg Conc	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Summer	47	lb/day	DMax Load	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Summer	31	lb/day	MAvg Load	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Summer	7.5	mg/L	MAvg Conc	Bi-monthly	Grab	Effluent
Ammonia as N (Total)	Winter	20	mg/L	DMax Conc	2/Month	Grab	Effluent
Ammonia as N (Total)	Winter	63	lb/day	MAvg Load	2/Month	Grab	Effluent
Ammonia as N (Total)	Winter	15	mg/L	MAvg Conc	2/Month	Grab	Effluent
Ammonia as N (Total)	Winter	125	lb/day	DMax Load	2/Month	Grab	Effluent
Ammonia as N (Total)	Winter	94	lb/day	DMax Load	2/Month	Grab	Effluent
Ammonia as N (Total)	Winter	10	mg/L	WAvg Conc	2/Month	Grab	Effluent
CBOD % Removal	All Year	65	Percent	MAvg % Removal	Weekly	Calculated	% Removal
CBOD5	All Year	40	mg/L	DMax Conc	Weekly	Grab	Effluent
CBOD5	All Year	250	lb/day	DMax Load	Weekly	Grab	Effluent
CBOD5	All Year	219	lb/day	DMax Load	Weekly	Grab	Effluent
CBOD5	All Year	25	mg/L	DMin Conc	Weekly	Grab	Effluent
CBOD5	All Year	156	lb/day	MAvg Load	Weekly	Grab	Effluent
CBOD5	All Year	35	mg/L	MAvg Conc	Weekly	Grab	Effluent
D.O.	All Year	5	mg/L	DMin Conc	Weekdays	Grab	Effluent

Table 6-10a.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
E. coli	All Year	126	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Weekly	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Weekly	Grab	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.14	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	120	mg/L	DMax Conc	Weekly	Grab	Effluent
TSS	All Year	751	lb/day	DMax Load	Weekly	Grab	Effluent
TSS	All Year	688	lb/day	DMax Load	Weekly	Grab	Effluent
TSS	All Year	110	mg/L	MAvg Conc	Weekly	Grab	Effluent
TSS	All Year	626	lb/day	MAvg Load	Weekly	Grab	Effluent
TSS	All Year	100	mg/L	WAvg Conc	Weekly	Grab	Effluent
рН	All Year	10	SU	DMax Conc	2/Week	Grab	Effluent
рН	All Year	6	SU	DMin Conc	2/Week	Grab	Effluent

Table 6-10b.

Tables 6-10a-b. Permit Limits for Trenton Lagoon.

Compliance History:

• 24 overflows

EFO Comments:

No Issues.

TN0078271 Trenton Waste Water Lagoon

Discharger rating: Minor
City: Trenton
County: Gibson
EFO Name: Jackson
Issuance Date: None Yet
Expiration Date: None Yet

Receiving Stream(s): North Fork Forked Deer River (at confluence of Cain Creek

to the North Fork Forked Deer River)

HUC-12: 080102040302

Effluent Summary: Treated domestic wastewater from Outfall 001

Treatment system: Two cell, aerated lagoon

Segment	TN08010204020_1000
Name	North Fork Forked Deer
Size	10.9
Unit	Miles
First Year on 303(d) List	2004
Designated Uses	Recreation (Supporting), Irrigation (Supporting), Fish and Aquatic Life (Non-Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Physical substrate habitat alterations, Sedimentation/Siltation
Sources	Channelization, Non-irrigated Crop Production

^{6-11.} Stream Segment Information for Trenton Waste Water Lagoon.

Permit Limits:

None Yet

EFO Comments:

New facility to replace TN0021750.

TN0055247 Westover Elementary School

Discharger rating: Minor
City: Trenton
County: Gibson
EFO Name: Jackson
Issuance Date: 6/28/02
Expiration Date: 6/30/07

Receiving Stream(s): Unnamed ditch at mile 1.1 to Middle Fork Forked Deer River

at mile 54.6

HUC-12: 080102040102

Effluent Summary: Treated domestic wastewater from Outfall 001

Treatment system: Lagoon system

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	All Year	10	mg/L	DMax Conc	Monthly	Grab	Effluent
Ammonia as N (Total)	All Year	5	mg/L	MAvg Conc	Monthly	Grab	Effluent
CBOD5	All Year	20	mg/L	DMax Conc	Monthly	Grab	Effluent
CBOD5	All Year	10	mg/L	MAvg Conc	Monthly	Grab	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Weekdays	Grab	Effluent
Fecal Coliform	All Year	1000	#/100mL	DMax Conc	Monthly	Grab	Effluent
Fecal Coliform	All Year	200	#/100mL	MAvg Geo Mean	Monthly	Grab	Effluent
Settleable Solids	All Year	1	mL/L	DMax Conc	2/Week	Grab	Effluent
TRC	All Year	1	mg/L	DMax Conc	Weekdays	Grab	Effluent
TSS	All Year	45	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	30	mg/L	MAvg Conc	Monthly	Grab	Effluent
рН	All Year	8.5	SU	DMax Conc	2/Week	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	2/Week	Grab	Effluent

Tables 6-11. Permit Limits for Westover Elementary School.

EFO Comments:

New Superintendent may help resolve some of the school's wastewater issues.

6.4.B. Industrial Permits

TN0074811 Ameristeel - West Tennessee Steel Mill Division

Discharger rating: Minor
City: Jackson
County: Madison
EFO Name: Jackson
Issuance Date: 5/30/03
Expiration Date: 12/31/07

Receiving Stream(s): Mile 1.5 of Dyer Creek to Middle Fork Forked Deer River at

mile 31.5 (001), and mile 1.0 of an unnamed tributary to

Middle Fork Forked Deer River at mile 32.5 (002)

HUC-12: 080102040104

Effluent Summary: Cooling water (Outfalls 001 and 002)

Treatment system: -

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Fe (T)	All Year	2	mg/L	DMax Conc	Monthly	Grab	Effluent
Fe (T)	All Year	1	mg/L	MAvg Conc	Monthly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Monthly	Instantaneous	Effluent
Flow	All Year		MGD	MAvg Load	Monthly	Instantaneous	Effluent
IC25 7day Ceriodaphnia Dubia	All Year	100	Percent	DMin Conc	Semi-annually	Composite	Effluent
IC25 7day Fathead Minnows	All Year	100	Percent	DMin Conc	Semi-annually	Composite	Effluent
Oil and Grease (Freon EM)	All Year	15	mg/L	DMax Conc	Monthly	Grab	Effluent
Oil and Grease (Freon EM)	All Year	10	mg/L	MAvg Conc	Monthly	Grab	Effluent
TRC	All Year	0.019	mg/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.011	mg/L	MAvg Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Monthly	Grab	Effluent
Temperature (°C)	All Year		Deg. C	DMax Conc	Monthly	Grab	Effluent
Temperature (°C)	All Year		Deg. C	MAvg Conc	Monthly	Grab	Effluent
pH	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Monthly	Grab	Effluent

Tables 6-12. Permit Limits for Ameristeel - West Tennessee Steel Mill Division.

Compliance History:

The following numbers of exceedences were noted in PCS:

- 12 Iron
- 5 TSS
- 19 pH

EFO Comments:

Steel Works, Blast Furnaces (Including Coke Ovens), and Rolling Mills. Expanded operations for scrap recovery. It is the largest railcar dismantling facility east of the Mississippi.

TN0064017 Dr. Pepper Pepsi-Cola Bottling Co

Discharger rating: Minor
City: Dyersburg
County: Dyer
EFO Name: Jackson
Issuance Date: 8/31/04
Expiration Date: 9/29/07

Receiving Stream(s): Unnamed tributary at mile 0.6 to another unnamed tributary

at mile 0.4 to Pond Creek at mile 1.2

HUC-12: 080102040403

Effluent Summary: Bottle rinse water through Outfall 001

Treatment system: No treatment of process wastewater. The facility uses city

water to rinse new, unused beverage containers.

Segment	TN08010204003_1000
Name	Pond Creek
Size	24.7
Unit	Miles
First Year on 303(d) List	2004
Designated Uses	Recreation (Non-Supporting), Irrigation (Supporting), Fish and Aquatic Life (Non-Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Escherichia coli, Sedimentation/Siltation, Physical substrate habitat alterations, Oxygen, Dissolved, Phosphate
Sources	Non-irrigated Crop Production, Channelization, Source Unknown

Table 6-13. Stream Segment Information for Dr. Pepper Pepsi-Cola Bottling Co.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Flow	All Year		MGD	DMax Load	Weekly	Instantaneous	Effluent
Flow	All Year		MGD	MAvg Load	Weekly	Instantaneous	Effluent
TRC	All Year	0.019	mg/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.011	mg/L	MAvg Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Quarterly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Weekly	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Weekly	Grab	Effluent

Table 6-14. Permit Limits for Dr. Pepper Pepsi-Cola Bottling Co.

Compliance History:

No numbers of exceedences noted in PCS.

EFO Comments:

Bottled and Canned Soft Drinks and Carbonated Waters. No Issues.

TN0077739 Excalibar Minerals, Inc.

Discharger rating:MinorCity:DyersburgCounty:DyerEFO Name:JacksonIssuance Date:5/10/04Expiration Date:4/30/07

Receiving Stream(s): Unnamed tributary of Lewis Creek

HUC-12: 080102040404

Effluent Summary: Industrial storm water runoff from Outfalls SW1, SW2 and

SW3

Treatment system: Vegetative buffer zones, settling.

Segment	TN08010204023_1000
Name	Lewis Creek
Size	46.3
Unit	Miles
First Year on 303(d) List	1990
Designated Uses	Fish and Aquatic Life (Non-Supporting), Recreation (Non-Supporting), Irrigation (Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Physical substrate habitat alterations, Sedimentation/Siltation, Escherichia coli
Sources	Channelization, Discharges from Municipal Separate Storm Sewer Systems (MS4), Non-irrigated Crop Production

Table 6-15. Stream Segment Information for Excalibar Minerals, Inc.

PARAMETER	SEASON	LIMIT	UNITS		MONITORING FREQUENCY		MONITORING LOCATION
Floating Solids Or Visible Foam-Visual	All Year		YES=1 NO=0	DMax Conc	Monthly	Visual	Effluent
Flow	All Year		MGD	DMax Load	Monthly	Estimate	Effluent
Flow	All Year		MGD	MAvg Load	Monthly	Estimate	Effluent
Oil and Grease (Freon EM)	All Year	15	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Monthly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-16. Permit Limits for Excalibar Minerals, Inc.

Compliance History:

No numbers of exceedences noted in PCS.

EFO Comments:

Crushing, grinding and processing Barite (BaSO4) and Limestone (CaCO3). No process wastewater. Storm water only. Manager is interested in some relief from monthly testing. I said that if he had a good history of meeting his permit limits, it may be worthwhile to ask for quarterly analytical limits and monthly visual observations

TN0000221 Excel Polymers

Discharger rating:MinorCity:DyersburgCounty:DyerEFO Name:JacksonIssuance Date:5/31/02Expiration Date:4/30/07

Receiving Stream(s): Unnamed tributary to the North Fork Forked Deer River at

mile 6.2

HUC-12: 080102040402

Effluent Summary: Industrial storm water runoff through Outfall SW3 **Treatment system:** Storm water pollution prevention plan measures

Segment	TN08010204004_1000
Name	North Fork Forked Deer River
Size	20.6
Unit	Miles
First Year on 303(d) List	-
Designated Uses	Fish and Aquatic Life (Supporting), Recreation (Supporting), Irrigation (Supporting), Livestock Watering and Wildlife (Supporting)
Causes	N/A
Sources	N/A

Table 6-17. Stream Segment Information for Excel Polymers.

PARAMETER	SEASON	LIMIT	UNITS	_	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Ammonia as N (Total)	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
BOD5	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
COD	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Quarterly	Instantaneous	Effluent
Oil and Grease (Freon EM)	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
TSS	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
Zn (T)	All Year		mg/L	DMax Conc	Quarterly	Grab	Effluent
рН	All Year		SU	DMax Conc	Quarterly	Grab	Effluent

Table 6-18. Permit Limits for Excel Polymers.

Compliance History:

No numbers of exceedences noted in PCS.

Comments:

Fabricated Rubber Products, NEC. No Issues.

TN0000027 Heckethorn Manufacturing Company, Inc.

Discharger rating: Minor
City: Dyersburg
County: Dyer
EFO Name: Jackson
Issuance Date: 3/28/02
Expiration Date: 3/28/07

Receiving Stream(s): Mile 0.3 of an unnamed tributary to mile 1.3 of the Old

Channel North Fork Forked Deer to mile 2.1 of the North

Fork Forked Deer River

HUC-12: 080102040402

Effluent Summary: Non-contact cooling water from Outfall 001

Treatment system: Non-contact cooling water purchased from the City of

Dyersburg

PARAMETER	SEASON	LIMIT	UNITS		MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Oil and Grease (Freon EM)	All Year	15	mg/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.019	mg/L	DMax Conc	Monthly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-19. Permit Limits for Heckethorn Manufacturing Company, Inc.

Compliance History:

No numbers of exceedences noted in PCS.

Comments:

Metal forming business producing muffler clamps and hanger rods for the auto industry.

TN0068497 Maytag, Jackson Dishwashing Products

Discharger rating: Minor
City: Jackson
County: Madison
EFO Name: Jackson
Issuance Date: 3/31/06
Expiration Date: 3/30/07

Receiving Stream(s): Unnamed tributary at mile 4.2 to Dyer Creek at mile 3.0 to

the Middle Fork Forked Deer River at mile 31.2

HUC-12: 080102040104

Effluent Summary: Non-contact cooling water from Outfall 001

Treatment system: -

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY		MONITORING LOCATION
Ammonia as N (Total)	All Year	2	mg/L	DMax Conc	Monthly	Grab	Effluent
BOD5	All Year	12	mg/L	DMax Conc	Monthly	Grab	Effluent
D.O.	All Year	6	mg/L	DMin Conc	Monthly	Grab	Effluent
Flow	All Year		MGD	MAvg Conc	Monthly	Instantaneous	Effluent
Flow	All Year		MGD	DMax Conc	Monthly	Instantaneous	Effluent
Oil and Grease (Hexane Extraction)	All Year	15	mg/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	1	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year		mg/L	DMax Conc			Effluent
Temperature (°C)	All Year		°C	MAvg Geo Mean	See Permit	Grab	Effluent
Zn (T)	All Year	0.221	mg/L	DMax Conc	Quarterly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-20. Permit Limits for Maytag, Jackson Dishwashing Products

Compliance History:

No numbers of exceedences noted in PCS.

EFO Comments:

Manufacturing household appliances. Industry was recently sold but no changes in production have occurred.

TN0072966 Trunkline Gas Company- Dyersburg Compressor Station

Discharger rating:MinorCity:DyersburgCounty:DyerEFO Name:JacksonIssuance Date:12/31/02Expiration Date:12/31/07

Receiving Stream(s): Unnamed tributary at mile 1.4 to Nash Creek at mile 3.0

HUC-12: 080102040401

Effluent Summary: Non-contact cooling water from Outfall 001

Treatment system: -

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Oil and Grease (Freon EM)	All Year	15	mg/L	DMax Conc	Quarterly	Grab	Effluent
Polychlorinated Biphenyls (PCBs)	All Year	2E-04	mg/L	DMax Conc	Quarterly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Quarterly	Grab	Effluent
pН	All Year	9	SU	DMax Conc	Quarterly	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Quarterly	Grab	Effluent

Table 6-21. Permit Limits for Trunkline Gas Company- Dyersburg Compressor Station.

Compliance History:

No numbers of exceedences noted in PCS.

EFO Comments:

Natural Gas Transmission, No Issues.

TN0000272 Wisconsin Box Company

Discharger rating: Minor
City: Dyersburg
County: Gibson
EFO Name: Jackson
Issuance Date: 9/30/02
Expiration Date: 9/30/07

Receiving Stream(s): Wet weather conveyance to Sand Creek at mile 1.8

HUC-12: 080102040304

Effluent Summary: Note! Only boiler blow down and well water overflow are still

discharged from Outfall 001. Their cooling water and seasonal log sprinkler water have been eliminated.

Treatment system: None

Segment	TN08010204021_0100
Name	Dry Creek
Size	5.73
Unit	Miles
First Year on 303(d) List	2004
Designated Uses	Fish and Aquatic Life (Non-Supporting), Recreation (Not Assessed), Irrigation (Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Physical substrate habitat alterations
Sources	Channelization

Table 6-22. Stream Segment Information for Wisconsin Box Company.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	_	MONITORING LOCATION
BOD5	All Year	25	mg/L	DMax Conc	Monthly	Grab	Effluent
Debris Floating (Severity)	All Year		PASS=0 FAIL=1	DMax Conc	Monthly	Grab	Effluent
Fe (T)	All Year	1.9	mg/L	DMax Conc	Monthly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Monthly	Instantaneous	Effluent
Flow	All Year		MGD	MAvg Load	Monthly	Instantaneous	Effluent
IC25 7day Ceriodaphnia Dubia	All Year	100	Percent	DMin Conc	Annually	Composite	Effluent
Oil and Grease (Freon EM)	All Year	30	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Monthly	Grab	Effluent
Temperature (°C)	All Year	30.5	Deg. C	DMax Conc	Monthly	Grab	Effluent
Temperature Diff. Downstrm & Upstrm (°C)	All Year		Deg. C	DMax Conc	Monthly	Grab	Effluent
Temperature Rate of Change (°C/Hr)	All Year		Deg. C/Hour	DMax Load	Monthly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-23. Permit Limits for Wisconsin Box Company.

Compliance History:

No numbers of exceedences noted in PCS.

EFO Comments:

Wood Containers. No more Wet Storage and no more discharge, should be able to terminate permit this year.

6.4.B. Water Treatment Plant Permits

TN0060828 Dyersburg Suburban Consolidated U.D. Water Treatment Plant

Discharger rating:MinorCity:DyersburgCounty:DyerEFO Name:JacksonIssuance Date:9/29/04Expiration Date:9/29/09

Receiving Stream(s): Unnamed tributary at mile 1.0 to the North Fork Forked Deer

River at mile 5.4

HUC-12: 080102040402

Effluent Summary: Filter backwash and/or sedimentation basin washdown from

Outfall 001

Treatment system: Lime, chlorine, aqua mag, and fluorosilicic acid

Segment	TN08010204001_1000			
Name	North Fork Forked Deer River			
Size	8.34			
Unit	Miles			
First Year on 303(d) List	1990			
Designated Uses	Irrigation (Supporting), Livestock Watering and Wildlife (Supporting), Recreation (Non-Supporting), Fish and Aquatic Life (Non-Supporting)			
Causes	Escherichia coli, Phosphate, Sedimentation/Siltation			
Sources	Non-irrigated Crop Production, Channelization, Discharges from Municipal Separate Storm Sewer Systems (MS4), Source Unknown			

Table 6-24. Stream Segment Information for Dyersburg Suburban Consolidated U.D. WTP.

PARAMETER	SEASON	LIMIT	UNITS	SAMPLE DESIGNATOR	MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Fe (T)	All Year	2	mg/L	DMax Conc	Monthly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Monthly	Instantaneous	Effluent
Settleable Solids	All Year	0.5	mL/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.019	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Monthly	Grab	Effluent
рН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-25. Permit Limits for Dyersburg Suburban Consolidated U.D. WTP.

Compliance History:

The following numbers of exceedences were noted in PCS:

- 4 Iron
- 3 Chlorine

EFO Comments:

Iron removal WTP

TN0056243 Northwest Dyersburg Utility District Water Treatment Plant

Discharger rating: Minor
City: Dyersburg
County: Dyer
EFO Name: Jackson
Issuance Date: 9/29/04
Expiration Date: 9/27/09

Receiving Stream(s): Unnamed tributary of Lewis Creek

HUC-12: 080102060404

Effluent Summary: Filter backwash and/or sedimentation basin washdown from

Outfall 001

Treatment system: Lime, chlorine and hydroflourosylicic acid

Segment	TN08010204023_1000
Name	Lewis Creek
Size	46.3
Unit	Miles
First Year on 303(d) List	1990
Designated Uses	Fish and Aquatic Life (Non-Supporting), Recreation (Non-Supporting), Irrigation (Supporting), Livestock Watering and Wildlife (Supporting)
Causes	Physical substrate habitat alterations, Sedimentation/Siltation, Escherichia coli
Sources	Channelization, Discharges from Municipal Separate Storm Sewer Systems (MS4), Non-irrigated Crop Production

Table 6-26. Stream Segment Information for Northwest Dyersburg Utility District WTP

PARAMETER	SEASON	LIMIT	UNITS		MONITORING FREQUENCY	SAMPLE TYPE	MONITORING LOCATION
Fe (T)	All Year	2	mg/L	DMax Conc	Monthly	Grab	Effluent
Flow	All Year		MGD	DMax Load	Monthly	Instantaneous	Effluent
Settleable Solids	All Year	0.5	mL/L	DMax Conc	Monthly	Grab	Effluent
TRC	All Year	0.019	mg/L	DMax Conc	Monthly	Grab	Effluent
TSS	All Year	40	mg/L	DMax Conc	Monthly	Grab	Effluent
pН	All Year	9	SU	DMax Conc	Monthly	Grab	Effluent
рН	All Year	6.5	SU	DMin Conc	Monthly	Grab	Effluent

Table 6-27. Permit Limits for Northwest Dyersburg Utility District WTP

Compliance History:

The following numbers of exceedences were noted in PCS:

- 1 Settleable Solids
- 1 Chlorine

EFO Comments:

Iron removal WTP

APPENDIX II

ID	NAME	HAZARD	ID	NAME	HAZARD
17003	Commerce Park	2	277025	New Enterprise 437-Ne-2	3
97008	Moss Creek #1 (#87-4)	2	277028	Hayes	2
97010	Moss Creek #2 (87-3)	2	277029	Dry Creek Branch (445-Sw)	3
97015	Belue	L	277030	N. Fork Forked Deer #2	Q
97024	Ofdba #86-87-2	N	277032	N. Fork Forked Deer #4	Q
177001	Humbolt Lake	2	397006	Susan Branch #1 (87-7)	2
177002	Reasons	0	397008	Spring Creek Trib #88-2	2
177003	Cotton's Pond	3	397012	Mt. Gilead #87-5	3
237001	Pillow Lake	3	397014		3
237005	Lewis Creek #60-11	1	397015	Barker Branch #446-Ne-4	3
237006	Pioneer #2a	0	397016	Cane Creek	3
237007	Pioneer #3	Н	577012	Springbrook	3
237008	Pioneer #4	Н	577013	Sunset	3
237009	Pioneer #5	Н	577014	Fern	3
237010	Roellen #61-71-3	3	577016	Williamson Camp Lake	3
237011	Rolling Acres	3	577017	Lake Deforest	2
237012	Clark Farm Lake	3	577019	Spring Creek #86-95-2	2
237013	Jones	3	577021	Rockwell Lake	3
237016	Kirk 'A'	3	577022	Construction Products	Н
237017	Kirk 'B'	3	577026	Dyer Creek #438-Ne-3	3
237018	Kirk #60-11-1	1	577027	Eubank Branch #445-Se-1	3
237019	Kirk #60-11-1-A	3	577028	Gilmer's Creek # 446-Nw-6	3
237024	Lewis #2	1	577029	New Carmel #445-Sw-4	3
237025	Lake Luanna	1	577037	Ofdba #86-87-1	Ν
247003	Hall	3	577038	<u> </u>	2
277002	Bowers	3	577039	Eubank Branch #2 #445-Se-Sw-4	3
277003	Jones Farm Pond	L	577040	Beech Branch #438-Nw-1	3
	New Hope #437-Nw-1	3	577041	Claybrook #446-Ne-8	2
277016	Mt Olive #428-Se-1	3		A Daniel Material and Manager Control	

Table A2-1. Inventoried Dams in the North Fork Forked Deer Watershed. Hazard Codes: F, Federal; High (H, 1); Significant, (S, 2); Low, (L, 3); Breached, (B); O, Too Small. TDEC only regulates dams indicated by a numeric hazard score.

LAND COVER/LAND USE	ACRES	% OF WATERSHED
Open Water	7,275	1.2
Other Grasses	860	0.1
Pasture/Hay	181,517	29.6
Row Crops	257,559	42.0
Woody Wetlands	36,713	6.0
Small Grains	1,927	0.3
Deciduous Forest	76,767	12.5
Mixed Forest	25,223	4.1
Evergreen Forest	6,371	1.0
High Intensity: Commercial/Industrial	3,399	0.6
High Intensity: Residential	2,890	0.5
Low Intensity: Residential	11,510	1.9
Quarries/Strip Mines/Gravel Pits	122	0.0
Transitional	673	0.1
Bare Rock/Sand/Clay	75	0.0
Total	612,881	99.9

Table A2-2. Land Use Distribution in North Fork Forked Deer Watershed. Data are from Multi-Resolution Land Characterization (MRLC) derived by applying a generalized Anderson level II system to mosaics of Landsat thematic mapper images collected every five years.

ECOREGION	REFERENCE STREAM	WATERSHED	(HUC)
	Blunt Creek	TN Western Valley (KY Lake)	06040005
Southeastern Plains	Griffin Creek	North Fork Forked Deer	08010204
and Hills (65e)	Harris Creek	South Fork Forked Deer	08010205
	Marshall Creek	Hatchie River	08010208
	West Fork Spring Creek	Hatchie River	08010208
	Cold Creek	Mississippi River	08010100
Northern Mississippi	Middle Fork, Forked Deer River	Mississippi River	08010100
Alluvial Plain (73a)	Cold Creek	Mississippi River	08010100
, ,	Bayou du Chien	Obion River	08010202
	Sugar Creek	Mississippi River	08010100
Bluff Hills (74a)	Paw Paw Creek	Obion River	08010202
	Terrapin Creek	Obion River	08010202
Loess Plains (74b)	Powell Creek	Obion River	08010202
, ,	Wolf River	Wolf River	08010210

Table A2-3. Ecoregion Monitoring Sites in Ecoregions 65e, 73a, 74a, and 74b.

•

CODE	NAME	AGENCY	AGENCY ID
276	TDOT SR 152 MITIGATION SITE	TDOT	
363	TDOT TRIB TO MFFD R MITIGATION/PERMIT SITE	TDOT	
385	TDOT SR-20 PERMIT SITE	TDOT	
399	TDOT MFFDR-15 PERMIT SITE	TDOT	
474	TDEC/WPC TRIB OF LEWIS CRK PERMIT/MITIGATION SITE	TDEC/WPC	
857	USFWS ALMOUS AUSTIN WRP SITE	USFWS	TRACT 9535, FARM 3267
858	USFWS JAMES AUSTIN WRP SITE	USFWS	TRACT 9532, FARM 3264
859	USFWS JAMES AUSTIN WRP SITE	USFWS	TRACT 2942, FARM 3264
860	USFWS FRED WITTBEE WRP SITE	USFWS	TRACT 3001, FARM 1682
861	USFWS MALCOLM BURCHFIELD WRP SITE	USFWS	TRACT 9248, FARM 2892
862	USFWS MALCOLM BURCHFIELD WRP SITE	USFWS	TRACT 3074, FARM 2892
864	USFWS MALCOLM BURCHFIELD WRP SITE	USFWS	TRACT 2911, FARM 2892
881	USFWS WYLIE EVANS WRP SITE	USFWS	TRACT 225, FARM 625
893	USFWS TOM BELL WRP SITE	USFWS	TRACT 2367, FARM 179
896	USFWS M.J. MYHR WRP SITE	USFWS	TRACT 1101, FARM 1661
898	USFWS GERALD TRAVIS WOODS WRP SITE	USFWS	TRACT 351, FARM 1570
909	USFWS ROLAND MORRIS WRP SITE	USFWS	TRACT 9309, FARM 2971
910	USFWS J.W. DAVIS WRP SITE	USFWS	TRACT 1582, FARM 3157
914	USFWS ROLAND MORRIS WRP SITE	USFWS	TRACT 2865, FARM 3287
915	USFWS ROLAND MORRIS WRP SITE	USFWS	TRACT 2916, FARM 3287
916	USFWS ROBERT BELL WRP SITE	USFWS	TRACT 2335, FARM 71
917	USFWS ROBERT S. BELL WRP SITE	USFWS	TRACT 2336, FARM 2488
918	USFWS ROLAND MORRIS WRP SITE	USFWS	TRACT 2863, FARM 3287
1213	TWRA TIGRETT SITE	TWRA	
1214	TWRA TIGRETT REFUGE SITE	TWRA	
1216	TWRA TIGRETT SITE	TWRA	
1217	TWRA TIGRETT REFUGE SITE	TWRA	
1218	TWRA TIGRETT SITE	TWRA	
1219	TWRA TIGRETT SITE	TWRA	
1220	TWRA TIGRETT SITE	TWRA	
1233	TWRA SITE	TWRA	
1243	TWRS TIGRETT SITE	TWRA	
1252	TWRA SITE	TWRA	
1254	TWRA SITE	TWRA	
1280	USACOE FORKED DEER R 95-003 [TS] SITE	USACOE-M	
1331	USACOE M. FORK FORKED DEER R 95-001 [TS] SITE	USACOE-M	
1332	USACOE M. FORK FORKED DEER R 95-003 [TF] SITE	USACOE-M	
1333	USACOE M. FORK FORKED DEER R 95-012 [TF] SITE	USACOE M	
1334	USACOE M. FORK FORKED DEER R 95-014 [TD] SITE	USACOE M	
1345 1372	USACOE MOIZE CREEK SITE USACOE NORTH FORK FORKED DEER R-32-TD SITE	USACOE-M USACOE-M	
1372	USACOE NORTH FORK FORKED DEER R-32-1D SITE	USACOE-M	
1375	USACOE N. FORK FORKED DEER R 95-010 [TF] SITE	USACOE-M	
1376	USACOE N. FORK FORKED DEER R 96-004 [TD] SITE	USACOE-M	
1403	USACOE SUGAR CREEK SITE	USACOE-M	
1486	USACOE MIDDLE FORK FORKED DEER R-1 SITE	USACOE-M	
1488	USACOE MIDDLE FORK FORKED DEER R-2A SITE	USACOE-M	
1489	USACOE MIDDLE FORK FORKED DER R-3 SITE	USACOE-M	
1490	USACOE MIDDLE FORK FORKED DEER R-6 SITE	USACOE-M	
1491	USACOE MIDDLE FORK FORKED DEER R-7 SITE	USACOE-M	
1491	09400E MIDDLE FORK FORKED DEEK K-/ SITE	USACOE-M	

1492	USACOE MIDDLE FORK FORKED DEER R-8 SITE	USACOE-M
1533	USACOE M. FORK FORKED DEER R-13 & 13A SITE	USACOE-M
1534	USACOE MIDDLE FORK FORKED DEER R-15 SITE	USACOE-M
1535	USACOE MIDDLE FORK FORKED DEER R-21 SITE	USACOE-M
1536	USACOE NORTH FORK FORKED DEER R-18 SITE	USACOE-M
1537	USACOE NORTH FORK FORKED DEER R-20 SITE	USACOE-M
1538	USACOE NORTH FORK FORKED DEER R-21 SITE	USACOE-M
1539	USACOE NORTH FORK FORKED DEER R-22 SITE	USACOE-M
1540	USACOE NORTH FORK FORKED DEER R-24 SITE	USACOE-M
1541	USACOE NORTH FORK FORKED DEER R-26 SITE	USACOE-M
	USACOE NORTH FORK FORKED DEER RIVER:	
1542	POND CREEK-27	USACOE-M
1543	USACOE NORTH FORK FORKED DEER RIVER-27 SITE	USACOE-M
1544	USACOE NORTH FORK FORKED DEER RIVER-28 SITE	USACOE-M
1545	USACOE NORTH FORK FORKED DEER RIVER-30 SITE	USACOE-M
1546	USACOE NORTH FORK FORKED DEER RIVER-29 SITE	USACOE-M
1547	USACOE NORTH FORK FORKED DEER RIVER-31 SITE	USACOE-M
1548	USACOE NORTH FORK FORKED DEER RIVER-35 SITE	USACOE-M
1549	USACOE NORTH FORK FORKED DEER RIVER/MUD CREEK-1	USACOE-M
1550	USACOE STOKES CREEK-1 SITE	USACOE-M
1551	USACOE NORTH FORK FORKED DEER R-14 SITE	USACOE-M
1552	USACOE NORTH FORK FORKED DEER R-16 SITE	USACOE-M
1553	USACOE NORTH FORK FORKED DEER R-17 SITE	USACOE-M
1554	USACOE OBION-FORKED DEER BASIN AUTHORITY-1B SITE	USACOE-M
1555	USACOE NORTH FORK FORKED DEER R-9 SITE	USACOE-M
1556	USACOE NORTH FORK FORKED DEER R-3 SITE	USACOE-M
1557	USACOE NORTH FORK FORKED DEER R-4 SITE	USACOE-M
1558	USACOE NORTH FORK FORKED DEER R-5 SITE	USACOE-M
1559	USACOE NORTH FORK FORKED DEER R-6 SITE	USACOE-M
1560	USACOE NORTH FORK FORKED DEER R-7 SITE	USACOE-M
1561	USACOE NORTH FORK FORKED DEER R-2 SITE	USACOE-M
1563	USACOE NORTH FORK FORKED DEER R-10 SITE	USACOE-M
1564	USACOE NORTH FORK FORKED DEER R-11 SITE	USACOE-M
1565	USACOE NORTH FORK FORKED DEER R-12 SITE	USACOE-M
1566	USACOE NORTH FORK FORKED DEER R-13 SITE	USACOE-M
1650	USACOE MIDDLE FORK FORKED DEER R-17 SITE	USACOE-M
1651	USACOE MIDDLE FORK FORKED DEER R-17 SITE	USACOE-M
1770	USACOE POND CREEK-2 SITE	USACOE-M
1771	USACOE BETHEL BRANCH-1 SITE	USACOE-M
1772	USACOE DOAKVILLE CREEK-1 SITE	USACOE-M
1773	USACOE NORTH FORK FORKED DEER R-MUD CREEK-2	USACOE-M
1774	USACOE LEWIS CREEK-1 SITE	USACOE-M
4775	USACOE NORTH FORK FORKED DEER:	LICACOE M
1775	POND CREEK-3-TD SITE	USACOE-M
1811	TWRA FORKED DEER R CORPORATION SITE	TWRA
1820	NRCS SITE	NRCS
1823	NRCS SITE	NRCS
1824	NRCS SITE	NRCS
1825	NRCS SITE	NRCS
1826	NRCS SITE	NRCS
1849	NRCS SITE	NRCS
1852	NRCS SITE	NRCS

1853	NRCS SITE	NRCS
1884	TWRA SPRING CREEK SITE	TWRA
1885	TWRA SPRING CREEK SITE	TWRA
1897	TWRA HORNS BLUFF SITE	TWRA
1898	TWRA HORNS BLUFF REFUGE SITE	TWRA
1899	TWRA HORNS BLUFF SITE	TWRA
1900	TWRA HORNS BLUFF SITE	TWRA
1901	TWRA HORNS BLUFF REFUGE SITE	TWRA
1902	TWRA HORNS BLUFF REFUGE SITE	TWRA
1903	TWRA HORNS BLUFF SITE	TWRA
1904	TWRA HORNS BLUFF SITE	TWRA
1905	TWRA HORNS BLUFF SITE	TWRA
1928	TWRA HORNS BLUFF SITE	TWRA
1942	TWRA TIGRETT SITE	TWRA
1944	TWRA TIGRETT SITE	TWRA
1945	TWRA TIGRETT SITE	TWRA
1946	TWRA TIGRETT SITE	TWRA
1947	TWRA TIGRETT SITE	TWRA
1948	TWRA TIGRETT SITE	TWRA
1949	TWRA TIGRETT SITE	TWRA
1951	TWRA TIGRETT SITE	TWRA
1960	TWRA TIGRETT SITE	TWRA
1961	TWRA TIGRETT SITE	TWRA
2013	TWRA TIGRETT MITIGATION SITE	TWRA
2014	TWRA TIGRETT/TIGRETT ORIGINAL SITE	TWRA
2015	TWRA TIGRETT/TIGRETT ORIGINAL SITE	TWRA
2016	TWRA TIGRETT/TIGRETT WMA-ORIGINAL SITE	TWRA
2017	TWRA TIGRETT MITIGATION SITE	TWRA
2018	TWRA TIGRETT MITIGATION SITE	TWRA
2019	TWRA TIGRETT MITIGATION SITE	TWRA
2020	TWRA TIGRETT REFUGE SITE	TWRA
2021	TWRA TIGRETT MITIGATION SITE	TWRA
2064	TWRA HORNS BLUFF SITE	TWRA
2065	TWRA HORNS BLUFF SITE	TWRA
2066	TWRA HORNS BLUFF SITE	TWRA
2067	TWRA HORNS BLUFF SITE	TWRA
2068		TWRA
2118	TWRA TIGRETT SITE	TWRA
2129	TWRA HORNS BLUFF SITE	TWRA
2235	TWRA EATON BOTTOM SITE	TWRA
2236	TWRA EATON BOTTOM SITE	TWRA
2237	TWRA MITIGATION SITE	TWRA
2238	TWRA EATON BOTTOM SITE	TWRA
2239	TWRA MITIGATION SITE	TWRA
2240	TWRA EATON BOTTOM SITE	TWRA
2307	TWRA HORNS BLUFF SITE	TWRA TWRA
2308	TWRA HORNS BLUFF SITE TWRA HORNS BLUFF SITE	TWRA
2309	TWRA HORNS BLUFF SITE	TWRA
2310	TWRA HORNS BLUFF SITE	TWRA
2311	TWRA HORNS BLUFF SITE	TWRA
2312	TWRA HORNS BLUFF SITE	TWRA
2313	TWINT HOINING DEUTT SITE	1 VV 1\/\tau

2314	TWRA HORNS BLUFF SITE	TWRA	
2315	TWRA HORNS BLUFF SITE	TWRA	
2316	TWRA HORNS BLUFF SITE	TWRA	
2317	TWRA HORNS BLUFF SITE	TWRA	
2318	TWRA HORNS BLUFF SITE	TWRA	
2319	TWRA HORNS BLUFF SITE	TWRA	
2320	TWRA HORNS BLUFF SITE	TWRA	
2321	TWRA HORNS BLUFF SITE	TWRA	
2323	TWRA HORNS BLUFF SITE	TWRA	
2324	TWRA HORNS BLUFF SITE	TWRA	
2331	TWRA HORNS BLUFF SITE	TWRA	
2332	TWRA HORNS BLUFF SITE	TWRA	
2333	TWRA HORNS BLUFF SITE	TWRA	
2563	TWRA TIGRETT SITE	TWRA	
2564	TWRA TIGRETT REFUGE SITE	TWRA	
2565	TWRA TIGRETT SITE	TWRA	
2566	TWRA TIGRETT SITE	TWRA	
2567	TWRA TIGRETT SITE	TWRA	
2568	TWRA TIGRETT SITE	TWRA	
2569	TWRA TIGRETT SITE	TWRA	
2570	TWRA TIGRETT SITE	TWRA	
2571	TWRA TIGRETT SITE	TWRA	
2572	TWRA SITE	TWRA	
2573	TWRA TIGRETT SITE	TWRA	
2675	NRCS SITE	NRCS	
2676	NRCS SITE	NRCS	
2687	NRCS SITE	NRCS	
2689	NRCS SITE	NRCS	
2791	USACOE SOUTH FORK FORKED DEER 97-058 [TD] SITE	USACOE-M	970410580

Table A2-4. Wetland Sites in North Fork Forked Deer Watershed in TDEC Database. TDEC, Tennessee Department of Environment and Conservation; USACOE, United States Army Corps of Engineers-Memphis District; WPC, Water Pollution Control; TDOT, Tennessee Department of Transportation' USFWS, United States Fish and Wildlife Service; TWRA, Tennessee Wildlife Resources Agency; DNH, Division of Natural Heritage, NRCS, Natural Resources Conservation Service. This table represents an incomplete inventory and should not be considered a dependable indicator of the presence of wetlands in the watershed.

APPENDIX III

SEGMENT NAME	WATERBODY SEGMENT ID	SEGMENT SIZE (MILES)
Cane Creek	TN08010204014_0300	17.8
Griffin Creek	TN08010204014_0200	24.7
Gurley Creek	TN08010204014_0500	15.6
Middle Fork Forked Deer	TN08010204010_2000	8.5
Middle Fork Forked Deer	TN08010204014_1000	23.2
Middle Fork Forked Deer River	TN08010204010_3000	11.3
Mud Creek	TN08010204021_1000	41.7
North Fork Forked Deer	TN08010204020_1000	10.9
North Fork Forked Deer River	TN08010204004_1000	20.6
Spring Creek	TN08010204014_0600	14.4

Table A3-1a. Streams Fully Supporting Designated Uses in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment

SEGMENT NAME	WATERBODY SEGMENT ID	SEGMENT SIZE (MILES)
Beech Creek	TN08010204010_1100	23.8
Bethel Branch	TN08010204022_0200	30.4
Cypress Creek	TN08010204009_1000	13.0
Davis Creek	TN08010204017_0100	32.6
Doakville Creek	TN08010204022_1000	36.0
Dyer Creek	TN08010204010_0600	30.6
Gilme's Creek	TN08010204013_1000	15.3
Jones Creek	TN08010204023_0200	50.6
Lewis Creek	TN08010204023_1000	46.3
Middle Fork Forked Deer	TN08010204007_1000	15.3
Middle Fork Forked Deer River	TN08010204010_1000	9.5
Moize Creek	TN08010204010_0700	12.8
North Fork Forked Deer	TN08010204020_2000	8.2
North Fork Forked Deer River	TN08010204001_1000	15.5
Poplar Creek	TN08010204010_0400	9.7
Reagan Creek	TN08010204017_0110	13.3
Stokes Creek	TN08010204005_1000	31.0
Sugar Creek	TN08010204016_1000	26.5

Table A3-1b. Streams Partially Supporting Designated Uses in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

SEGMENT NAME	WATERBODY SEGMENT ID	SEGMENT SIZE (MILES)
Buck Creek	TN08010204017_1000	39.8
Dry Creek	TN08010204014_0100	9.0
Johnson Creek	TN08010204010_0500	11.0
Pond Creek	TN08010204003_1000	24.7
Turkey Creek	TN08010204015_1000	24.3

Table A3-1c. Streams Not Supporting Designated Uses in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

SEGMENT NAME	WATERBODY SEGMENT ID	SEGMENT SIZE (MILES)
Barnett Branch	TN08010204010_0100	15.6
Bear Creek	TN08010204010_1300	8.1
Buck Creek	TN08010204007_0100	29.4
Cain Creek	TN08010204020_0500	27.1
Cow Creek	TN08010204021_0100	11.8
De Loach Creek	TN08010204010_0800	13.4
Dry Branch	TN08010204010_0300	9.7
Duffy's Branch	TN08010204010_0200	6.4
Harris Creek	TN08010204022_0100	11.6
Hog Creek	TN08010204020_0200	6.2
Matthews Creek	TN08010204010_0900	16.1
Misc tribs to Cypress Creek	TN08010204009_0999	56.9
Misc. Tribs	TN08010204003_0999	76.8
Misc. Tribs	TN08010204004_0999	134.8
Misc. Tribs	TN08010204007_0999	79.2
Misc. Tribs	TN08010204010_0999	112.6
Misc. tribs	TN08010204014_0999	119.1
Misc. tribs	TN08010204020_0999	157.4
Misc. Tribs.	TN08010204001_0999	19.3
North Fork Forked Deer	TN08010204020_3000	9.7
Old Lewis Creek	TN08010204023_0100	17.7
Oliver Branch	TN08010204020_0100	12.6
Parker Branch	TN08010204020_0400	12.0
Spring Creek	TN08010204014_0400	19.2
Wallsmith Branch	TN08010204020_0300	6.8
Warren Ditch	TN08010204010_1200	9.0

Table A3-1d. Streams Not Assessed in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

SEGMENT NAME	WATERBODY SEGMENT ID	SEGMENT SIZE (ACRES)
Humboldt Lake	TN08010204HUMBOLDTLK_1000	87.0

Table A3-1e. Lakes Not Supporting in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

CECMENT NAME	WATERDORY SEGMENT ID	CIZE (MILEC)	SUPPORT
SEGMENT NAME	WATERBODY SEGMENT ID	SIZE (MILES)	
Beech Creek	TN08010204010_1100	23.8	Partial
Bethel Branch	TN08010204022_0200	30.4	Partial
Buck Creek	TN08010204017_1000	39.8	Not supporting
Cypress Creek	TN08010204009_1000	13.0	Partial
Davis Creek	TN08010204017_0100	32.6	Partial
Doakville Creek	TN08010204022_1000	36.0	Partial
Dry Creek	TN08010204014_0100	9.0	Not supporting
Dyer Creek	TN08010204010_0600	30.6	Partial
Gilme's Creek	TN08010204013_1000	15.3	Partial
Jones Creek	TN08010204023_0200	50.6	Partial
Lewis Creek	TN08010204023_1000	46.3	Partial
Middle Fork Forked Deer	TN08010204007_1000	15.3	Partial
Moize Creek	TN08010204010_0700	12.8	Partial
North Fork Forked Deer	TN08010204020_2000	8.2	Partial
Pond Creek	TN08010204003_1000	24.7	Not supporting
Poplar Creek	TN08010204010_0400	9.7	Partial
Reagan Creek	TN08010204017_0110	13.3	Partial
Stokes Creek	TN08010204005_1000	31.0	Partial
Sugar Creek	TN08010204016_1000	26.5	Partial
Turkey Creek	TN08010204015_1000	24.3	Not supporting

Table A3-2a. Stream Impairment Due to Habitat Alterations in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

SEGMENT NAME	WATERBODY SEGMENT ID	SIZE (MILES)	SUPPORT DESCRIPTION
Buck Creek	TN08010204017_1000	39.8	Not supporting
Humboldt Lake	TN08010204HUMBOLDTLK_1000	87.0	Not supporting

Table A3-2b. Stream Impairment Due to Organic Enrichment/Low Dissolved Oxygen Levels in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

SEGMENT NAME	WATERBODY		SUPPORT
	SEGMENT ID	SIZE (MILES)	DESCRIPTION
Beech Creek	TN08010204010_1100	23.8	Partial
Buck Creek	TN08010204017_1000	39.8	Not supporting
Doakville Creek	TN08010204022_1000	36.0	Partial
Dry Creek	TN08010204014_0100	9.0	Not supporting
Lewis Creek	TN08010204023_1000	46.3	Partial
Middle Fork Forked Deer	TN08010204007_1000	15.3	Partial
Middle Fork Forked Deer River	TN08010204010_1000	9.5	Partial
North Fork Forked Deer River	TN08010204001_1000	15.5	Partial
Pond Creek	TN08010204003_1000	24.7	Not supporting

Table A3-2c. Stream Impairment Due to Pathogens in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

	WATERBODY		SUPPORT
SEGMENT NAME	SEGMENT ID	SIZE (MILES)	DESCRIPTION
Buck Creek	TN08010204017_1000	39.8	Not supporting
Doakville Creek	TN08010204022_1000	36.0	Partial
Johnson Creek	TN08010204010_0500	11.0	Not supporting
Lewis Creek	TN08010204023_1000	46.3	Partial
Middle Fork Forked Deer	TN08010204007_1000	15.3	Partial
North Fork Forked Deer River	TN08010204001_1000	15.5	Partial
Pond Creek	TN08010204003_1000	24.7	Not supporting
Stokes Creek	TN08010204005_1000	31.0	Partial
Sugar Creek	TN08010204016_1000	26.5	Partial
Turkey Creek	TN08010204015_1000	24.3	Not supporting

Table A3-2d. Stream Impairment Due to Siltation in North Fork Forked Deer River Watershed. Data are based on Year 2000 Water Quality Assessment.

APPENDIX IV

LAND USE/LAND COVER	AREAS IN HUC-10 SUBWATERSHEDS (ACRES)				
	01	02	03	04	
Deciduous Forest	50,628	5,900	12,740	8,512	
Evergreen Forest	4,220	581	875	699	
High Intensity:					
Commercial/Industrial/Transportation	567	378	454	1,969	
High Intensity: Residential	932	365	344	1,200	
Low Intensity: Residential	4,127	1,816	2,315	2,967	
Mixed Forest	11,712	3,859	4,996	4,745	
Open Water	980	2,407	1,503	2,346	
Other Grasses:					
Urban/Recreational	101	110	226	378	
Pasture/Hay	40,031	43,856	62,015	35,299	
Row Crops	47,893	68,861	63,405	75,029	
Transitional	274	81	64	211	
Woody Wetlands	7,381	11,552	6,719	11,029	
Small Grains	1,357	427		70	
Bare Rock/Sand/Clay		48		12	
Quarries/Strip Mines	122				
Total	170,324	140,242	155,668	144,465	

Table A4-1. Land Use Distribution in North Fork Forked Deer River Watershed by HUC-10. Data are from 1992 Multi-Resolution Land Characterization (MRLC) derived by applying a generalized Anderson Level II system to mosaics of Landsat thematic mapper images collected every five years.

HYDROLOGIC SOIL GROUPS

GROUP A SOILS have low runoff potential and high infiltration rates even when wet. They consist chiefly of sand and gravel and are well to excessively drained.

GROUP B SOILS have moderate infiltration rates when wet and consist chiefly of soils that are moderately deep to deep, moderately to well drained, and moderately coarse to coarse textures.

GROUP C SOILS have low infiltration rates when wet and consist chiefly of soils having a layer that impedes downward movement of water with moderately fine to fine texture.

GROUP D SOILS have high runoff potential, very low infiltration rates, and consist chiefly of clay soils.

Table A4-2. Hydrologic Soil Groups in Tennessee as Described in WCS.

STATION	HUC-10	AGENCY	NAME	AREA (SQ MILES)	LOW	FLOW (CFS)
O I / KI I O K	110010	/ CENTO!	10,002	(54 1111225)	1Q10	7Q10	3Q20
07028900	0801020401	USGS	Middle Fork Forked Deer River	88.2	3.88	4.23	3.48
07028930	0801020401	USGS	Turkey Creek				
07028940	0801020401	USGS	Turkey Creek				
07028935	0801020401	USGS	Trib to Turkey Creek				
07028950	0801020401	USGS	Turkey Creek	13.3			0
FM111	0801020401	USACOE	Middle Fork Forked Deer River				
07029000	0801020402	USGS	Middle Fork Forked Deer River	369	75.2	77.0	72.8
07028985	0801020402	USGS	Trib to Middle Fork Forked Deer				
07028500	0801020403	USGS	North Fork Forked Deer River	73.4	7.12	7.46	6.25
07028700	0801020403	USGS	Cain Creek				
07028600	0801020403	USGS	Trib to Cain Creek	0.95			0
07028540	0801020403	USGS	Cain Creek				
07029090	0801020404	USGS	Lewis Creek	25.5			0
FN111	0801020404	USACOE	North Fork Forked Deer River				
07029100	0801020404	USGS	North Fork Forked Deer River	867	86.4	96.2	81.6
07029050	0801020404	USGS	Nash Creek	7.23			0

Table A4-3. Historical Streamflow Data Summary Based on Mean Daily Flows in North Fork Forked Deer River Watershed. USGS, United States Geological Survey; USACOE, United States Army Corps of Engineers.

PARAMETER	SUBWATERSHED				
	01	02	03	04	
E. coli	A	D, G	K, N		
Fecal Coliform	A	G G	K, N	P, Q, S, V P, Q, S, T, U, V	
Fecal Streptococcus			17, 17	T	
Enterococcus		G	K,N	Q, S, V	
Enterococcus		G	r,in	Q, S, V	
Acidity				U	
Alkalinity (Total)	Α	D C	IZ NI	P, Q, S, T, U, V	
, ,	A	D, G	K, N	V	
BOD ₅		<u> </u>	IZ NI		
BOD (C)	_	D	K, N	P, Q, S	
Color (Apparent)	A				
Color (True)	A	D 0	17. 11	D 0 0 T 11 1/	
Conductivity (Field)	Α	D, G	K, N	P, Q, S, T, U, V	
DO	Α	D, G	K, N	P, Q, S, T, U, V	
Flow	Α				
Hardness (Total)	Α	D, G	K, N	P, Q, S, U, V	
pH (Field)	Α	D, G	K, N	P, Q, S, T, U, V	
pH (Lab)				U	
Residue (Dissolved)	Α	G	K, N	Q, S, V	
Residue (Settlable)		D	K, N	P, Q, S, T, U, V	
Residue (Suspended)	Α	D, G	K, N	P, Q, S, T, U, V	
Residue (Total)				Т	
Temperature	Α	D, G	K, N	P, Q, S, T, U, V	
Turbidity	Α	G	K, N	Q, S, V	
Biorecon	Α				
RBP III	Α				
Ammonia N	Α	D, G	K, N	P, Q, S, T, U, V	
As	Α	D, G	K, N	P, Q, S, T, U, V	
Ca		, -	,	V	
Cd	Α	D, G	K, N	P, Q, S, T, U, V	
Cr (Total)	A	D, G	K, N	P, Q, S, T, U, V	
Cu	A	D, G	K, N	P, Q, S, T, U, V	
Fe	A	D, G	K, N	P, Q, S, T, V	
Hg	A		1.5, 1.4	T, U, V	
Mg				T T	
Mn	Α	D, G	K, N	P, Q, S, T, U, V	
N (Total Kjeldahl)	A	G G	K, N	Q, S, V	
Ni	A	G	IX, IX	T, U, V	
NO ₂ +NO ₃	A		I∠ NI		
		D, G	K, N	P, Q, S, T, U, V	
P (Total)	A	D, G	K, N	P, Q, S, T, U, V	
Pb	А	D, G	K, N	P, Q, S, T, U, V	
Se	-			U	
SO ₄			17. 11	U	
TOC	A	G	K, N	Q, S, V	
Zn	А	D	K, N	P, Q, S, T, U, V	

Table A4-4a. Water Quality Parameters Monitored in the North Fork Forked Deer River Watershed. Codes are described in Table 4-4b.

CODE	STATION	ALIAS	AGENCY	LOCATION
Α	ECO65E06		TDEC	Griffen Creek
В	MDFKFKDEER30.5		TDEC	Middle Fork Forked Deer River @ RM 30.5
С	MDFKFKDEER49.5		TDEC	Middle Fork Forked Deer River @ RM 49.5
D	BIRDS007.4BN		TDEC	Birdsong Creek @ RM 7.4
Е	MFFDE023.4GI	HUMBOLDTSTP01	TDEC	Middle Fork Forked Deer River @ RM 23.4
F	001853		TDEC	Middle Fork Forked Deer River @ RM 14.6
G	BUCK001.2GI		TDEC	Buck Creek @ RM 1.2
Н	MDFKFKDEER05.2		TDEC	Middle Fork Forked Deer River @ RM 5.2
I	MDFKFKDEER07.0		TDEC	Middle Fork Forked Deer River @ RM 7.0
J	MDFKFKDEER21.5		TDEC	Middle Fork Forked Deer River @ RM 21.5
K	DOAKV002.0DY		TDEC	Doakville Creek @ RM 2.0
L	MND002.1GI		TDEC	Mud Creek @ RM 2.1
М	NFFDE036.8		TDEC	North Fork Forked Deer River @ RM 36.8
N	NFFDE020.5DY	001852	TDEC	North Fork Forked Deer River @ RM 20.5
0	NFKFKDEER36.5		TDEC	North Fork Forked Deer River @ RM 36.5
Р	MCCOOL1HY	MCCOOL1	TDEC	McCool Lake #1
Q	LEWIS004.4HY		TDEC	Lewis Creek @ RM 4.4
R	NFFDE002.2DY	001854	TDEC	North Fork Forked Deer River @ RM 2.2
S	NFFDE022.8DY		TDEC	North Fork Forked Deer River @ RM 22.8
Т	001970		TDEC	North Fork Forked Deer River @ RM 6.8
U	NFKFKDEER04.0		TDEC	North Fork Forked Deer River @ RM 4.0
V	NFFD007.3DY	NFKFKDEER07.3	TDEC	North Fork Forked Deer River @ RM 7.3

Table A4-4b. Water Quality Monitoring Stations in the North Fork Forked Deer River Watershed. TDEC, Tennessee Department of Environment and Conservation; USGS, United States Geologic Survey; TVA, Tennessee Valley Authority; NPS, National Park Service.

FACILITY NUMBER	FACILITY NAME	SIC	SIC NAME	MADI	WATERBODY	HUC-10
	17101211111711112	0.0	0.0.0.0.0.0	1017 (2)	Unnamed Trib to Johnson	1100 10
TN0023264	Nova School	4952	Sewerage System	Minor	Creek @ RM 4.4	0801020401
					Unnamed Trib	
TN0056481	East Elementary School	4952	Sewerage System	Minor	to MFFD @ RM 35.1	0801020401
			Steel Works, Blast		Dyer Creek	
			Furnaces and		@ RM 1.5, Unnamed Trib	
TN0074811	Ameristeel	3312	Rolling Mills	Minor	to MFFD @ RM 32.5	0801020401
TN0075876	Middle Fork STP	4952	Sewerage System	Major	MFFD @ RM 29.1	0801020401
	Humboldt Board of					
TN0062588	Public Utilities STP	4952	Sewerage System	Major	MFFD @ RM 23.4	0801020402
TN0021750	Trenton Lagoon	4952	Sewerage System	Minor	NFFD @ RM 35.9	0801020403
	Heckethorn		Ordinance and		Unnamed Trib to Old	
TN0000027	Manufacturing	3489	Accessories	Minor	Channel NFFD @ RM 1.3	0801020404
			Fabricated Rubber		Unnamed Trib	
TN0000221	PolyOne Elastomers	3069	Products	Minor	to NFFD @ RM 6.2	0801020404
			Bottled and			
	Dr. Pepper Pepsi-Cola		Canned Soft		Unnmaed Trib to Pond	
TN0064017	Bottling Company	2086	Drinks	Minor	Creek @ RM 1.2	0801020404
	Trunkline Gas Company		Natural Gas		Unnamed Trib to Nash	
TN0072966	(Dyersburg Compressor)	4922	Transmission	Minor	Creek @ RM 3.0	0801020404

Table A4-5. Active Permitted Point Source Facilities in the North Fork Forked Deer River Watershed. SIC, Standard Industrial Classification; MADI, Major Discharge Indicator; WWC, Wet Weather Conveyance.

FACILITY NUMBER	PERMITEE	SIC	SIC NAME	WATERBODY	HUC-10
			Construction Sand		
TN0071072	Ford Construction Co.	1442	and Gravel	Light Creek	0801020404
	Memphis Stone and		Construction Sand	Unnamed Trib	
TN0066419	Gravel Company	1442	and Gravel	to Jones Creek	0801020404

Table A4-6. Active Permitted Mining Sites in the North Fork Forked Deer River Watershed. SIC, Standard Industrial Classification.

FACILITY					
NUMBER	FACILITY NAME	SECTOR	RECEIVING STREAM	AREA*	HUC-10
		_	Unnamed Trib		
TNR050189	Ace Trucking Company	Р	to Johnson Creek	6.0	0801020401
TNR050553	AmeriSteel Corporation	F, N, AD, L	Unnamed Trib to MFFD	290.0	0801020401
TNR051052	Chicago Metallic Products	AA		12.1	0801020401
TNR051260	Waste Management of TN	Р	Dyer Creek	3.5	0801020401
TNR051362	Porter-Cable Corporation	AB	MFFD	69.5	0801020401
TNR051444	Consolidated Freightways	Р		5.0	0801020401
TNR051725	Con-Way Southern Express	Р	Little Sugar Creek	1.0	0801020401
TNR051965	Delta Faucet Company	AA	Dyer Creek	9.0	0801020401
TNR052040	Dement Construction Co.	D	Dyer Creek	16.0	0801020401
TNR053017	Jackson Wilburt Burial Vault	Е	MFFD	3.7	0801020401
			Unnamed Trib		
TNR053060	AEMP Corporation	AA, F	to Dyer Creek	80.0	0801020401
			Unnamed Trib		
TNR053246	Milan Express Company	Р	to Jones Creek	8.0	0801020401
TNR050001	Emerson Hermetic Motor	AC	MFFD	21.7	0801020402
TNR050075	DENSO Manufacturing	AC, AB	Laural Bank Branch	143.5	0801020402
			Lick Creek		
TNR050164	J. Hungerford Smith	U	Ditch to Lick Creek	3.5	0801020402
TNR050586	Dana Corporation	AB	MFFD	55.7	0801020402
TNR050663	J&P Auto salvage	М	Reagan Creek	1.5	0801020402
			Intermittent Stream		
TNR051648	General Metals Products	AA	to MFFD	20.5	0801020402
TNR053282	Jones Companies	V	Humboldt Storm Sewer	15.0	0801020402
TNR053284	Jones Companies	V	Humboldt Storm Sewer	4.0	0801020402
TNR053285	Jones Companies	V	Humboldt Storm Sewer	10.0	0801020402
TNR053286	Jones Companies	V	Humboldt Storm Sewer	5.0	0801020402
TNR054043	American Woodwork Corp.	W	MFFD	25.0	0801020402
TNR054110	C&C Enterprises	N	Duffy's Branch	1.0	0801020402
TNR050285	TB Woods Incorporated	AB	Cain Creek	13.0	0801020403
TNR050349	Milan Seating Systems	Y, W, AB	Wolf Creek	18.5	0801020403
TNR051353	El Dorado Chemical Co.	C	Forked Deer River	3.0	0801020403
TNR051490	Windsor Forestry Tools	AA	Sand Creek	2.8	0801020403
TNR051538	Holloway Repair Facility	Р	Reed Creek	12.0	0801020403
	l lene may respain a demity	•	Unnamed Trib	12.0	000.020.00
TNR051854	CECO Door Products	AA	to Clear Creek	17.3	0801020403
TNR053292	Trenton-Gibson Co Airport	S	NFFD	104.0	0801020403
TNR054052	Highway 54 Salvage, Inc.	M	Cain Creek	22.0	0801020403
	l ngay o r carrage, mer		Unnamed Trib	1	000.020.00
TNR054394	SR Products	Υ	to Harris Creek	9.9	0801020403
TNR054477	Coker's Machine Shop	AB		2.0	
TNR054587	Honeywell Consumer Products	AC	Harris Creek	23.0	0801020403
11111001001	Tizine, item consumer rioddolo		Unnamed Trib	1	100.020.00
TNR050241	Heckethorn Manufacturing Co.	AB	to Old Channel NFFD	38.7	0801020403
TNR050617	Bekaert Corporation	V	Lewis Creek	14.0	0801020404
TNR051292	Ford Construction Company	Ď	NFFD	34.0	0801020404
1141(001202	Electric Research &	<u> </u>	11110	04.0	3001020404
TNR051757	Manufacturing Co. (ERMCO)	AC	Lewis Creek	8.5	0801020404
				1	

TNR053100	UPS	Р	Forked Deer	1.0	0801020404
TNR053234	Firestone Industrial Products	AA	Lewis Creek	15.2	0801020404
TNR053298	Huish Detergents, Incorporated	С	Light Creek	90.0	0801020404
			Unnamed Trib		
TR053438	Federal Express	S	to Forked Deer River	0.5	0801020404
			Unnamed Trib		
TNR053896	QW Memphis Corporation	X	to Hunsacker Creek	20.0	0801020404
TNR054224	Dyersburg Pallet	Α	Unnamed Trib to NFFD	2.0	0801020404
TNR054385	Impressive Manufacturing	AA	Metro Storm Sewer	2.2	0801020404
TNR054386	Bennett's, Incorporated	AB, AA	Metro Storm Sewer	8.0	0801020404
TNR054398	Excalibar Minerals	E	Lewis Creek	13.0	0801020404
TNR054579	Boss Hoss Cycles, Inc.	AB	NFFD	5.5	0801020404

Table A4-7. Active Permitted TMSP Facilities in the North Fork Forked Deer River Watershed. Area, acres of property associated with industrial activity. Sector details may be found I Table A4-8.

SECTOR	TMSP SECTOR NAME
Α	Timber Products Facilities
	Facilities That Manufacture Metal Products including Jewelry, Silverware
AA	and Plated Ware
	Facilities That Manufacture Transportation Equipment, Industrial
AB	or Commercial Machinery
	Facilities That Manufacture Electronic and Electrical Equipment and Components,
AC	Photographic and Optical Goods
AD	Facilities That Are Not Covered Under Sectors A Thru AC (Monitoring Required)
AE	Facilities That Are Not Covered Under Sectors A Thru AC (Monitoring Not Required)
В	Paper and Allied Products Manufacturing Facilities
С	Chemical and Allied Products Manufacturing Facilities
D	Asphalt Paving, Roofing Materials, and Lubricant Manufacturing Facilities
Е	Glass, Clay, Cement, Concrete, and Gypsum Product Manufacturing Facilities
F	Primary Metals Facilities
G	Metal Mines (Ore Mining and Dressing) (RESERVED)
Н	Inactive Coal Mines and Inactive Coal Mining-Related Facilities
1	Oil or Gas Extraction Facilities
	Construction Sand and Gravel Mining and Processing and Dimension Stone Mining
J	and Quarrying Facilities
K	Hazardous Waste Treatment Storage or Disposal Facilities
L	Landfills and Land Application Sites
M	Automobile Salvage Yards
N	Scrap Recycling and Waste and Recycling Facilities
0	Steam Electric Power Generating Facilities
	Vehicle Maintenance or Equipment Cleaning areas at Motor Freight Transportation
	Facilities, Passenger Transportation Facilities, Petroleum Bulk Oil Stations and
Р	Terminals, the United States Postal Service, or Railroad Transportation Facilities
	Vehicle Maintenance Areas and Equipment Cleaning Areas of
Q	Water Transportation Facilities
R	Ship or Boat Building and Repair Yards
	Vehicle Maintenance Areas, Equipment Cleaning Areas or From Airport Deicing
S	Operations located at Air Transportation Facilities
Т	Wastewater Treatment Works
U	Food and Kindred Products Facilities
V	Textile Mills, Apparel and other Fabric Product Manufacturing Facilities
W	Furniture and Fixture Manufacturing Facilities
Χ	Printing and Platemaking Facilities
Υ	Rubber and Miscellaneous Plastic Product Manufacturing Facilities
Z	Leather Tanning and Finishing Facilities

Table A4-8. TMSP Sectors and Descriptions.

FACILITY NUMBER	PERMITEE	COUNTY	LIVESTOCK	WATERBODY	HUC-10
TNA000017	Nichols Farms, Inc.	Madison	Swine	Johnson Creek	0801020401

Table A4-9. CAFO Sites in the North Fork Forked Deer River Watershed.

LOG NUMBER	COUNTY	DESCRIPTION	WATERBODY	HUC-10
98.641	Carroll	Channel Excavation	Unnamed Trib to MFFD River	0801020401
		Box Bridge		
99.013	Gibson	Construction	Sugar Creek	0801020401
99.014	Gibson	Box Culvert	Turkey Creek	0801020401
99.137	Madison	Wetland Fill (0.66 Acre)	Unnamed Trib to MFFD River	0801020401
99.394	Madison	Bridge Construction	Moize Creek	0801020401
99.522F	Madison	Debris Removal	Unnamed Trib to Turkey Creek	0801020401
99.522G	Madison	Debris Removal	Unnamed Trib to Turkey Creek	0801020401
99.5220	Madison	Debris Removal	Dry Creek	0801020401
99.522Q	Madison	Debris Removal	Unnamed Trib to Turkey Creek	0801020401
		Old Channel		
99.450	Gibson	Maintenance	Forked Deer River	0801020402
98.100	Gibson	Impoundment	Thompson Creek	0801020403
98.222	Gibson	Box Culvert	Unnamed Trib to NFFD River	0801020403
98.223	Gibson	Box Culvert	Unnamed Trib to NFFD River	0801020403
98.224	Gibson	Box Culvert	Cow Creek	0801020403
98.225	Gibson	Box Culvert	Sand Creek	0801020403
98.226	Gibson	Box Culvert	Unnamed Trib to NFFD River	0801020403
98.227	Gibson	Box Culvert	Unnamed Trib to NFFD River	0801020403
98.228	Gibson	Box Culvert	Rogers Branch	0801020403
98.229	Gibson	Box Culvert	Unnamed Trib to NFFD River	0801020403
98.230	Gibson	Box Culvert	Cow Creek	0801020403
98.231	Gibson	Culvert	Sand Creek	0801020403
98.535	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
98.536	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
98.537	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
98.538	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
98.539	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
98.540	Gibson	Culvert	Unnamed Trib to Cain Creek	0801020403
99.047	Lauderdale	Bridge Scour Repair	Mud Creek	0801020403
99.350	Gibson	Box Culvert Lean-out	Unnamed Trib to NFFD River	0801020403
98.649	Crockett	Debris Removal	Pond Creek	0801020404
99.131	Dyer	Impoundment	Lewis Creek, Trib to NFFD	0801020404
99.456	Dyer	Debris Removal	Hunsacker Creek	0801020404

Table A4-10. Individual ARAP Permits Issued January 1994 Through June 2000 in the North Fork Forked Deer River Watershed.

APPENDIX V

CONSERVATION PRACTICE	UNITS	AMOUNT
Alley Cropping	Acres	0
Contour Buffer Strips	Acres	0
Crosswind Trap Strips	Acres	0
Field Borders	Feet	0
Filter Strips	Acres	79
Grassed Waterways	Acres	4
Riparian Forest Buffers	Acres	16
Streambank and Shoreline Protection	Feet	0
Windbreaks and Shelterbelts	Feet	0
Hedgerow Plantings	Feet	0
Herbaceous Wind Barriers	Feet	0
Total Conservation Buffers	Acres	99

Table A5-1a. Conservation Buffers Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from Performance & Results Measurement System (PRMS) for October 1, 2001 through September 30, 2002 reporting period.

PARAMETER	TOTAL
Erosion Reduction Applied (Acres)	14,955
Highly Erodible Land	
With Erosion Control Practices (Acres)	13,189
Estimated Annual Soil Saved	
By Erosion Control Measures (Tons/Year)	185,255
Total Estimated Soil Saved (Tons/Year)	185,255

Table A5-1b. Erosion Control Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

PARAMETER	TOTAL
Acres of AFO Nutrient Management Applied	25
Acres of Non-AFO Nutrient Management Applied	9,110
Total Acres Applied	9,135

Table A5-1c. Nutrient Management Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

PARAMETER	TOTAL
Acres of Pest Management Systems Applied	9,792

Table A5-1d. Pest Management Conservation Practices in Partnership with NRCS in Noreth Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

CONSERVATION PRACTICE	ACRES
Acres Prepared for Revegetation of Forestland	0
Acres Improved Through Forest Stand Improvement	0
Acres of Tree and Shrub Establishment	110

Table A5-1e. Tree and Shrub Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

CONSERVATION PRACTICE	ACRES
Acres of Wetlands Created or Restored	221
Acres of Wetlands Enhanced	0
Total Acres Created, Restored, or Enhanced	221

Table A5-1f. Wetland Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

CONSERVATION PRACTICE	ACRES
Acres of Upland Habitat Management	3,048
Acres of Wetland Habitat Management	0
Total Acres Wildlife Habitat Management	3,048

Table A5-1g. Wildlife Habitat Management Conservation Practices in Partnership with NRCS in North Fork Forked Deer River Watershed. Data are from PRMS for October 1, 2001 through September 30, 2002 reporting period.

COMMUNITY	PROJECT DESCRIPTION	AWARD DATE	AWARD AMOUNT
	Wastewater Treatment Plant Upgrade		
Dyersburg	And Expansion	04/06/92	\$5,710,000
Humboldt	Wastewater Treatment Plant Upgrade	05/01/95	\$3,315,000
	Wastewater Treatment Plant		
Maury City	And Collection System	04/15/92	\$2,348,166
	Wastewater Treatment Plant Upgrade		
Newbern	And Expansion	03/26/93	\$1,544,370

Table A5-2. Communities in North Fork Forked Deer River Watershed Receiving SRF Grants or Loans.

NRCS CODE	PRACTICE	NUMBER OF BMPs
329	Conservation Tillage	1
340	Winter Cover	10
342	Critical Area Treatment	2
350	Sediment basin	3
362	Diversion	33
378	Pond	7
382	Fencing	2
386	Field Border	1
410	Grade Stabilization Structure	35
412	Grass waterway	5
512	Pasture or Hayland Renovation	19
512a	Cropland Conversion	3
516	Pond	1
561	Heavy Use Area	1
580	Stream Stabilization	1
600	Terrace	52
638	Water/Sediment Control Basin	58
645	Wildlife Upland Management	1

Table A5-3. Best Management Practices Installed by Tennessee Department of Agriculture and Partners in North Fork Forked Deer River Watershed.